Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 92(6): e0009024, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38700336

RESUMO

bb0616 of Borrelia burgdorferi, the Lyme disease pathogen, encodes a hypothetical protein of unknown function. In this study, we showed that BB0616 was not surface-exposed or associated with the membrane through localization analyses using proteinase K digestion and cell partitioning assays. The expression of bb0616 was influenced by a reduced pH but not by growth phases, elevated temperatures, or carbon sources during in vitro cultivation. A transcriptional start site for bb0616 was identified by using 5' rapid amplification of cDNA ends, which led to the identification of a functional promoter in the 5' regulatory region upstream of bb0616. By analyzing a bb0616-deficient mutant and its isogenic complemented counterparts, we found that the infectivity potential of the mutant was significantly attenuated. The inactivation of bb0616 displayed no effect on borrelial growth in the medium or resistance to oxidative stress, but the mutant was significantly more susceptible to osmotic stress. In addition, the production of global virulence regulators such as BosR and RpoS as well as virulence-associated outer surface lipoproteins OspC and DbpA was reduced in the mutant. These phenotypes were fully restored when gene mutation was complemented with a wild-type copy of bb0616. Based on these findings, we concluded that the hypothetical protein BB0616 is required for the optimal infectivity of B. burgdorferi, potentially by impacting B. burgdorferi virulence gene expression as well as survival of the spirochete under stressful conditions.


Assuntos
Proteínas de Bactérias , Borrelia burgdorferi , Regulação Bacteriana da Expressão Gênica , Doença de Lyme , Borrelia burgdorferi/genética , Borrelia burgdorferi/patogenicidade , Borrelia burgdorferi/metabolismo , Animais , Camundongos , Doença de Lyme/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regiões Promotoras Genéticas , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Virulência , Camundongos Endogâmicos C3H , Fator sigma/genética , Fator sigma/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítio de Iniciação de Transcrição , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Teste de Complementação Genética , Concentração de Íons de Hidrogênio
2.
Microb Pathog ; 167: 105556, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35489635

RESUMO

Outer membrane proteins (OMPs) play an important role in bacterial fitness costs. Derived from the interaction between Klebsiella pneumoniae K7 and phage GH-K3, K7RB is an outer membrane porin-deficient phage-resistant mutant strain triggered by ompC712 deletion, exhibits expression inhibition of OmpC, OmpN, KPN_02430 and OmpF, but its fitness costs and regulatory mechanism remains unknown. In this study, compared with K7, K7RB showed almost unaffected growth rate, slightly decreased virulence, and increased resistance to some antibiotics. Transcriptome analysis showed that the pathways of glycerolipid metabolism and nitrogen metabolism in K7RB were significantly inhibited, while the transcription of permeases belonging to ABC transporters tended to be active, nutrient uptakes such as citrate and phenylalanine were also enhanced. However, transcriptional up-regulation in K7RB was inhibited by overexpression of OmpC, OmpN, KPN_02430 and OmpF in general. Overexpression of OmpN, KPN_02430 and OmpF, respectively, restoring the sensitivity of strains to antibiotics to varying degrees, while OmpC overexpression aggravated the bacterial drug-resistance especially to ß-lactam antibiotics. Besides, unlike OmpC and OmpF, overexpression of OmpN and KPN_02430 reduced bacterial virulence. In brief, by revealing the limited fitness costs of phage-resistant mutant K. pneumoniae with porin-deficiency, our study providing a reference for the design and development of drugs to inhibit the ways of bacterial metabolic rewiring and to increase fitness costs.


Assuntos
Bacteriófagos , Klebsiella pneumoniae , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Mutação , Porinas/genética , Porinas/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330833

RESUMO

Outer-membrane beta barrels (OMBBs) are found in the outer membrane of gram-negative bacteria and eukaryotic organelles. OMBBs fold as antiparallel ß-sheets that close onto themselves, forming pores that traverse the membrane. Currently known structures include only one barrel, of 8 to 36 strands, per chain. The lack of multi-OMBB chains is surprising, as most OMBBs form oligomers, and some function only in this state. Using a combination of sensitive sequence comparison methods and coevolutionary analysis tools, we identify many proteins combining multiple beta barrels within a single chain; combinations that include eight-stranded barrels prevail. These multibarrels seem to be the result of independent, lineage-specific fusion and amplification events. The absence of multibarrels that are universally conserved in bacteria with an outer membrane, coupled with their frequent de novo genesis, suggests that their functions are not essential but rather beneficial in specific environments. Adjacent barrels of complementary function within the same chain may allow for functions beyond those of the individual barrels.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Gammaproteobacteria/metabolismo , Proteínas da Membrana Bacteriana Externa/classificação , Proteínas da Membrana Bacteriana Externa/metabolismo , Simulação por Computador , Cadeias de Markov , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
4.
Methods Mol Biol ; 2186: 159-169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32918736

RESUMO

Bacterial porins often exhibit ion conductance and gating behavior which can be modulated by pH. However, the underlying control mechanism of gating is often complex, and direct inspection of the protein structure is generally insufficient for full mechanistic understanding. Here we describe Pretzel, a computational framework that can effectively model loop-based gating events in membrane proteins. Our method combines Monte Carlo conformational sampling, structure clustering, ensemble energy evaluation, and a topological gating criterion to model the equilibrium gating state under the pH environment of interest. We discuss details of applying Pretzel to the porin outer membrane protein G (OmpG).


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Ativação do Canal Iônico , Simulação de Dinâmica Molecular , Porinas/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Método de Monte Carlo , Porinas/metabolismo , Domínios Proteicos
5.
Phys Rev E ; 101(1-1): 012409, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32069674

RESUMO

A fundamental trade-off in biological systems is whether they consume resources to perform biological functions or save resources. Bacteria need to reliably and rapidly respond to input signals by using limited cellular resources. However, excessive resource consumption will become a burden for bacteria growth. To investigate the relationship between functional effectiveness and resource cost, we study the ubiquitous bifunctional enzyme circuit, which is robust to fluctuations in protein concentration and responds quickly to signal changes. We show that trade-off relationships exist between functional effectiveness and protein cost. Expressing more proteins of the circuit increases concentration robustness and response speed but affects bacterial growth. In particular, our study reveals a general relationship between free-energy dissipation rate, response speed, and concentration robustness. The dissipation of free energy plays an important role in the concentration robustness and response speed. High robustness can only be achieved with a large amount of free-energy consumption and protein cost. In addition, the noise of the output increases with increasing protein cost, while the noise of the response time decreases with increasing protein cost. We also calculate the trade-off relationships in the EnvZ-OmpR system and the nitrogen assimilation system, which both have the bifunctional enzyme. Similar results indicate that these relationships are mainly derived from the specific feature of the bifunctional enzyme circuits and are not relevant to the details of the models. According to the trade-off relationships, bacteria take a compromise solution that reliably performs biological functions at a reasonable cost.


Assuntos
Enzimas/metabolismo , Modelos Biológicos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Complexos Multienzimáticos/metabolismo , Termodinâmica , Transativadores/metabolismo
6.
J Bacteriol ; 202(6)2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31871033

RESUMO

The intrinsic resistance of Pseudomonas aeruginosa to many antibiotics limits treatment options for pseudomonal infections. P. aeruginosa's outer membrane is highly impermeable and decreases antibiotic entry into the cell. We used an unbiased high-throughput approach to examine mechanisms underlying outer membrane-mediated antibiotic exclusion. Insertion sequencing (INSeq) identified genes that altered fitness in the presence of linezolid, rifampin, and vancomycin, antibiotics to which P. aeruginosa is intrinsically resistant. We reasoned that resistance to at least one of these antibiotics would depend on outer membrane barrier function, as previously demonstrated in Escherichia coli and Vibrio cholerae This approach demonstrated a critical role of the outer membrane barrier in vancomycin fitness, while efflux pumps were primary contributors to fitness in the presence of linezolid and rifampin. Disruption of flagellar assembly or function was sufficient to confer a fitness advantage to bacteria exposed to vancomycin. These findings clearly show that loss of flagellar function alone can confer a fitness advantage in the presence of an antibiotic.IMPORTANCE The cell envelopes of Gram-negative bacteria render them intrinsically resistant to many classes of antibiotics. We used insertion sequencing to identify genes whose disruption altered the fitness of a highly antibiotic-resistant pathogen, Pseudomonas aeruginosa, in the presence of antibiotics usually excluded by the cell envelope. This screen identified gene products involved in outer membrane biogenesis and homeostasis, respiration, and efflux as important contributors to fitness. An unanticipated fitness cost of flagellar assembly and function in the presence of the glycopeptide antibiotic vancomycin was further characterized. These findings have clinical relevance for individuals with cystic fibrosis who are infected with P. aeruginosa and undergo treatment with vancomycin for a concurrent Staphylococcus aureus infection.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Flagelos , Aptidão Genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Relação Dose-Resposta a Droga , Regulação Bacteriana da Expressão Gênica , Humanos , Percepção de Quorum
7.
mBio ; 8(4)2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743808

RESUMO

It is generally assumed that the acquisition of antibiotic resistance is associated with a fitness cost. We have shown that overexpression of the MexEF-OprN efflux pump does not decrease the fitness of a resistant Pseudomonas aeruginosa strain compared to its wild-type counterpart. This lack of fitness cost was associated with a metabolic rewiring that includes increased expression of the anaerobic nitrate respiratory chain when cells are growing under fully aerobic conditions. It was not clear whether this metabolic compensation was exclusive to strains overexpressing MexEF-OprN or if it extended to other resistant strains that overexpress similar systems. To answer this question, we studied a set of P. aeruginosa mutants that independently overexpress the MexAB-OprM, MexCD-OprJ, or MexXY efflux pumps. We observed increased expression of the anaerobic nitrate respiratory chain in all cases, with a concomitant increase in NO3 consumption and NO production. These efflux pumps are proton/substrate antiporters, and their overexpression may lead to intracellular H+ accumulation, which may in turn offset the pH homeostasis. Indeed, all studied mutants showed a decrease in intracellular pH under anaerobic conditions. The fastest way to eliminate the excess of protons is by increasing oxygen consumption, a feature also displayed by all analyzed mutants. Taken together, our results support metabolic rewiring as a general mechanism to avoid the fitness costs derived from overexpression of P. aeruginosa multidrug efflux pumps. The development of drugs that block this metabolic "reaccommodation" might help in reducing the persistence and spread of antibiotic resistance elements among bacterial populations.IMPORTANCE It is widely accepted that the acquisition of resistance confers a fitness cost in such a way that in the absence of antibiotics, resistant populations will be outcompeted by susceptible ones. Based on this assumption, antibiotic cycling regimes have been proposed in the belief that they will reduce the persistence and spread of resistance among bacterial pathogens. Unfortunately, trials testing this possibility have frequently failed, indicating that resistant microorganisms are not always outcompeted by susceptible ones. Indeed, some mutations do not result in a fitness cost, and in case they do, the cost may be compensated for by a secondary mutation. Here we describe an alternative nonmutational mechanism for compensating for fitness costs, which consists of the metabolic rewiring of resistant mutants. Deciphering the mechanisms involved in the compensation of fitness costs of antibiotic-resistant mutants may help in the development of drugs that will reduce the persistence of resistance by increasing said costs.


Assuntos
Farmacorresistência Bacteriana Múltipla , Proteínas de Membrana Transportadoras/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Transporte de Elétrons/genética , Transporte de Elétrons/fisiologia , Aptidão Genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Mutação , Nitratos/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos
8.
Biophys J ; 112(10): 2089-2098, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28538146

RESUMO

The periplasmic domain of OmpA from Acinetobacter baumannii (AbOmpA-PD) binds to diaminopimelate and anchors the outer membrane to the peptidoglycan layer in the cell wall. Although the crystal structure of AbOmpA-PD with its ligands has been reported, the mechanism of ligand-mediated folding of AbOmpA remains elusive. Here, we report that in vitro refolded apo-AbOmpA-PD in the absence of ligand exists as a mixture of two partially folded forms in solution: mostly unfolded (apo-state I) and hololike (apo-state II) states. Binding of the diaminopimelate or glycine ligand induced complete folding of AbOmpA-PD. The apo-state I was highly flexible and contained some secondary structural elements, whereas the apo-state II closely resembled the holo-state in terms of both structure and backbone dynamics, except for the ligand-binding region. 15N-relaxation-dispersion analyses for apo-state II revealed substantial motion on a millisecond timescale of residues in the H3 helix near the ligand-binding site, with this motion disappearing upon ligand binding. These results provide an insight into the ligand-mediated folding mechanism of AbOmpA-PD in solution.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Acinetobacter baumannii , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Cromatografia em Gel , Dicroísmo Circular , Escherichia coli , Fluorometria , Glicina/química , Glicina/metabolismo , Simulação de Dinâmica Molecular , Método de Monte Carlo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Soluções
9.
Mol Biol Evol ; 32(12): 3252-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26358402

RESUMO

The fitness cost of antibiotic resistance is a key parameter in determining the evolutionary success of resistant bacteria. Studies of the effect of antibiotic resistance on bacterial fitness are heavily biased toward target alterations. Here we investigated how the costs in the form of a severely impaired growth rate associated with resistance due to absence of two major outer membrane porins can be genetically compensated. We performed an evolution experiment with 16 lineages of a double mutant of Escherichia coli with the ompCF genes deleted, and reduced fitness and increased resistance to different classes of antibiotics, including the carbapenems ertapenem and meropenem. After serial passage for only 250 generations, the relative growth rate increased from 0.85 to 0.99 (susceptible wild type set to 1.0). Compensation of the costs followed two different adaptive pathways where upregulation of expression of alternative porins bypassed the need for functional OmpCF porins. The first compensatory mechanism involved mutations in the phoR and pstS genes, causing constitutive high-level expression of the PhoE porin. The second mechanism involved mutations in the hfq and chiX genes that disrupted Hfq-dependent small RNA regulation, causing overexpression of the ChiP porin. Although susceptibility was restored in compensated mutants with PhoE overexpression, evolved mutants with high ChiP expression maintained the resistance phenotype. Our findings may explain why porin composition is often altered in resistant clinical isolates and provide new insights into how bypass mechanisms may allow genetic adaptation to a common multidrug resistance mechanism.


Assuntos
Antibacterianos/farmacologia , Aptidão Genética , Porinas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Carbapenêmicos/farmacologia , Permeabilidade da Membrana Celular , Resistência Microbiana a Medicamentos/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Testes de Sensibilidade Microbiana , Porinas/genética , Ativação Transcricional , Regulação para Cima , beta-Lactamases/genética
10.
Foodborne Pathog Dis ; 12(6): 479-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25974222

RESUMO

The frequent use of antimicrobials in commercial poultry production has raised concerns regarding the potential impact of antimicrobials on human health due to selection for resistant bacteria. Several studies have reported similarities between extraintestinal pathogenic Escherichia coli (ExPEC) strains isolated from birds and humans, indicating that these contaminant bacteria in poultry may be linked to human disease. The aim of our study was to analyze the frequency of antimicrobial resistance and virulence factors among E. coli strains isolated from commercial chicken carcasses in Paraná, Brazil, in 2007 and 2013. A total of 84 E. coli strains were isolated from chicken carcasses in 2007, and 121 E. coli strains were isolated in 2013. Polymerase chain reaction was used to detect virulence genes (hlyF, iss, ompT, iron, and iutA) and to determine phylogenetic classification. Antimicrobial susceptibility testing was performed using 15 antimicrobials. The strains were also confirmed as extended-spectrum ß-lactamase (ESBL)-producing E. coli with phenotypic and genotypic tests. The results indicated that our strains harbored virulence genes characteristic of ExPEC, with the iutA gene being the most prevalent. The phylogenetic groups D and B1 were the most prevalent among the strains isolated in 2007 and 2013, respectively. There was an increase in the frequency of resistance to a majority of antimicrobials tested. An important finding in this study was the large number of ESBL-producing E. coli strains isolated from chicken carcasses in 2013, primarily for the group 2 cefotaximase (CTX-M) enzyme. ESBL production confers broad-spectrum resistance and is a health risk because ESBL genes are transferable from food-producing animals to humans via poultry meat. These findings suggest that our strains harbored virulence and resistance genes, which are often associated with plasmids that can facilitate their transmission between bacteria derived from different hosts, suggesting zoonotic risks.


Assuntos
Antibacterianos/farmacologia , Galinhas/microbiologia , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Carne/microbiologia , Fatores de Virulência/metabolismo , Animais , Anti-Infecciosos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Brasil , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Inspeção de Alimentos , Microbiologia de Alimentos/tendências , Isoenzimas/genética , Isoenzimas/metabolismo , Carne/economia , Tipagem Molecular , Filogenia , Fatores de Virulência/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
11.
Mol Oral Microbiol ; 30(2): 87-96, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25052707

RESUMO

Some amino acids are more energetically costly to synthesize de novo, therefore many microbes have evolved to regulate the metabolic expenditure of the cell and reduce the energy burden of extracellular unrecyclable proteins. Several oral bacterial species take up amino acids and peptides obtained from proteolysis of host proteins and hence do not rely only on de novo synthesis. The aim of this study was to investigate if five oral bacterial species implement cost management strategies to reduce the energy burden of extracellular unrecyclable proteins. Since the relative de novo amino acid synthesis costs are proportional to the masses of the amino acids, the energy costs of producing proteins were assessed by calculating the mean amino acid mass for each protein. For Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Prevotella intermedia and Streptococcus sanguinis, the outer membrane/extracellular proteins are made up of a much larger percentage of lower average mass amino acids whereas cytoplasmic proteins are made up of a larger proportion of higher average mass amino acid residues. These results are consistent with the five oral bacterial species employing energy-saving mechanisms in the production of extracellular unrecyclable proteins. Interestingly, the P. gingivalis and S. sanguinis genomes exhibited significantly lower predicted mean amino acid masses compared with those of the genomes of the other three species, suggesting that this may provide them with an energy advantage with respect to protein biosynthetic cost.


Assuntos
Aminoácidos/biossíntese , Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Biologia Computacional , Boca/patologia , Bactérias/classificação , Bacteroidetes/metabolismo , Genoma Bacteriano , Boca/microbiologia , Porphyromonas gingivalis/metabolismo , Prevotella intermedia/metabolismo , Streptococcus/metabolismo , Treponema denticola/metabolismo
12.
J Am Chem Soc ; 136(32): 11308-10, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-24937763

RESUMO

Structural characterization of membrane proteins and other large proteins with NMR relies increasingly on perdeuteration combined with incorporation of specifically protonated amino acid moieties, such as methyl groups of isoleucines, valines, or leucines. The resulting proton dilution reduces dipolar broadening producing sharper resonance lines, ameliorates spectral crowding, and enables measuring of crucial distances between and to methyl groups. While incorporation of specific methyl labeling is now well established for bacterial expression using suitable precursors, corresponding methods are still lacking for cell-free expression, which is often the only choice for producing labeled eukaryotic membrane proteins in mg quantities. Here we show that we can express methyl-labeled human integral membrane proteins cost-effectively by cell-free expression based of crude hydrolyzed ILV-labeled OmpX inclusion bodies. These are obtained in Escherichia coli with very high quantity and represent an optimal intermediate to channel ILV precursors into the eukaryotic proteins.


Assuntos
Sistema Livre de Células , Proteínas de Membrana/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Isótopos de Carbono/química , Análise Custo-Benefício , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Hidrogênio/química , Hidrolases/metabolismo , Hidrólise , Corpos de Inclusão/metabolismo , Isoleucina/química , Leucina/química , Espectroscopia de Ressonância Magnética , Micelas , Valina/química
13.
Mol Microbiol ; 91(5): 965-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24386963

RESUMO

The tripartite AcrAB-TolC multidrug efflux pump of Escherichia coli is the central conduit for cell-toxic compounds and contributes to antibiotic resistance. While high-resolution structures of all three proteins have been solved, much remains to be learned as to how the individual components come together to form a functional complex. In this study, we investigated the importance of the AcrB ß-hairpins belonging to the DN and DC subdomains, which are presumed to dock with TolC, in complex stability and activity of the complete pump. Our data show that the DN subdomain ß-hairpin residues play a more critical role in complex stability and activity than the DC subdomain hairpin residues. The failure of the AcrB DN ß-hairpin deletion mutant to engage with TolC leads to the drug hypersensitivity phenotype, which is reversed by compensatory alterations in the lipoyl and ß-barrel domains of AcrA. Moreover, AcrA and TolC mutants that induce TolC opening also reverse the drug hypersensitivity phenotype of the AcrB ß-hairpin mutants, indicating a failure by the AcrB mutant to interact and thus induce TolC opening on its own. Together, these data suggest that both AcrB ß-hairpins and AcrA act to stabilize the tripartite complex and induce TolC opening for drug expulsion.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Aminoácidos/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Western Blotting , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estabilidade Proteica , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Supressão Genética
14.
Pathog Dis ; 70(2): 176-84, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24376161

RESUMO

OspC is produced by all species of the Borrelia burgdorferi sensu lato complex and is required for infectivity in mammals. To test the hypothesis that the conserved C-terminal motif (C10) of OspC is required for function in vivo, a mutant B. burgdorferi strain (B31::ospCΔC10) was created in which ospC was replaced with an ospC gene lacking the C10 motif. The ability of the mutant to infect mice was investigated using tick transmission and needle inoculation. Infectivity was assessed by cultivation, qRT-PCR, and measurement of IgG antibody responses. B31::ospCΔC10 retained the ability to infect mice by both needle and tick challenge and was competent to survive in ticks after exposure to the blood meal. To determine whether recombinant OspC protein lacking the C-terminal 10 amino acid residues (rOspCΔC10) can bind plasminogen, the only known mammalian-derived ligand for OspC, binding analyses were performed. Deletion of the C10 motif resulted in a statistically significant decrease in plasminogen binding. Although deletion of the C10 motif influenced plasminogen binding, it can be concluded that the C10 motif is not required for OspC to carry out its critical in vivo functions in tick to mouse transmission.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Grupo Borrelia Burgdorferi/fisiologia , Doença de Lyme/transmissão , Fatores de Virulência/metabolismo , Motivos de Aminoácidos , Animais , Antígenos de Bactérias/genética , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Grupo Borrelia Burgdorferi/genética , Análise Mutacional de DNA , Camundongos Endogâmicos C3H , Plasminogênio/metabolismo , Deleção de Sequência , Carrapatos
15.
Biophys J ; 102(10): 2279-87, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22677381

RESUMO

To understand the effects of lipid composition on membrane protein function in a mixture as complex as a biomembrane, one must know whether the lipid composition local to the protein differs from the mean lipid composition. In this study, we simulated the transmembrane domain of a ß-barrel protein, OmpA, in mixtures of lipids of different tail lengths under conditions of negative hydrophobic mismatch, i.e., local bilayer thinning. We modeled the influence of OmpA on the local lipid composition both at a coarse-grained (CG) resolution using conventional molecular dynamics, and at an atomistic resolution within the semi-grand canonical ensemble using mutation moves to rapidly approach an equilibrium lateral distribution of lipids. Moderate enrichment of the shorter tail component (either DDPC in DDPC/DMPC mixtures or DMPC in DMPC/DSPC mixtures) extending 2-3 nm away from the protein surface was observed with both the atomistic and CG models. The similarity in trends suggests that the more computationally economical CG models capture the essential features of lipid sorting induced by hydrophobic mismatch.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Lipídeos/química , Simulação de Dinâmica Molecular , 1,2-Dipalmitoilfosfatidilcolina/química , Cristalização , Dimiristoilfosfatidilcolina/química , Método de Monte Carlo , Peptídeos/química , Fosfatidilcolinas/química , Conformação Proteica
16.
Biophys J ; 99(12): 3880-6, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21156129

RESUMO

Diffusion of two Escherichia coli outer membrane proteins-the cobalamin (vitamin B12) receptor (BtuB) and the OmpF porin, which are implicated in the cellular import pathways of colicins and phages-was measured in vivo. The lateral mobility of these proteins is relevant to the mechanism of formation of the translocon for cellular import of colicins such as the rRNase colicin E3. The diffusion coefficient (D) of BtuB, the primary colicin receptor, complexed to fluorescent antibody or colicin, is 0.05±0.01 µm2/s and 0.10±0.02 µm2/s, respectively, over a timescale of 25-150 ms. Mutagenesis of the BtuB TonB box, which eliminates or significantly weakens the interaction between BtuB and the TonB energy-transducing protein that is anchored in the cytoplasmic membrane, resulted in a fivefold larger value of D, 0.27±0.06 µm2/s for antibody-labeled BtuB, indicating a cytoskeletal-like interaction of TonB with BtuB. OmpF has a diffusion coefficient of 0.006±0.002 µm2/s, ∼10-fold smaller than that of BtuB, and is restricted within a domain of diameter 100 nm, showing it to be relatively immobile compared to BtuB. Thus, formation of the outer membrane translocon for cellular import of the nuclease colicins is a demonstrably dynamic process, because it depends on lateral diffusion of BtuB and collisional interaction with relatively immobile OmpF.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Complexos Multiproteicos/metabolismo , Porinas/metabolismo , Anticorpos/imunologia , Colicinas/metabolismo , Simulação por Computador , Difusão , Corantes Fluorescentes/metabolismo , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Método de Monte Carlo , Ligação Proteica , Transporte Proteico , Propriedades de Superfície
17.
PLoS Comput Biol ; 6(6): e1000824, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20585611

RESUMO

The mycobacterial cell envelope has been implicated in the pathogenicity of tuberculosis and therefore has been a prime target for the identification and characterization of surface proteins with potential application in drug and vaccine development. In this study, the genome of Mycobacterium tuberculosis H37Rv was screened using Machine Learning tools that included feature-based predictors, general localizers and transmembrane topology predictors to identify proteins that are potentially secreted to the surface of M. tuberculosis, or to the extracellular milieu through different secretory pathways. The subcellular localization of a set of 8 hypothetically secreted/surface candidate proteins was experimentally assessed by cellular fractionation and immunoelectron microscopy (IEM) to determine the reliability of the computational methodology proposed here, using 4 secreted/surface proteins with experimental confirmation as positive controls and 2 cytoplasmic proteins as negative controls. Subcellular fractionation and IEM studies provided evidence that the candidate proteins Rv0403c, Rv3630, Rv1022, Rv0835, Rv0361 and Rv0178 are secreted either to the mycobacterial surface or to the extracellular milieu. Surface localization was also confirmed for the positive controls, whereas negative controls were located on the cytoplasm. Based on statistical learning methods, we obtained computational subcellular localization predictions that were experimentally assessed and allowed us to construct a computational protocol with experimental support that allowed us to identify a new set of secreted/surface proteins as potential vaccine candidates.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Biologia Computacional/métodos , Mycobacterium tuberculosis/metabolismo , Animais , Anticorpos Antibacterianos/química , Anticorpos Antibacterianos/metabolismo , Inteligência Artificial , Proteínas da Membrana Bacteriana Externa/química , Fracionamento Celular , Eletroforese em Gel de Poliacrilamida , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/metabolismo , Escherichia coli/metabolismo , Immunoblotting , Microscopia Imunoeletrônica , Modelos Estatísticos , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/química , Peptídeos/imunologia , Peptídeos/metabolismo , Coelhos , Sonicação , Frações Subcelulares/metabolismo
18.
BMC Biol ; 7: 68, 2009 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-19821963

RESUMO

BACKGROUND: Different iron transport systems evolved in Gram-negative bacteria during evolution. Most of the transport systems depend on outer membrane localized TonB-dependent transporters (TBDTs), a periplasma-facing TonB protein and a plasma membrane localized machinery (ExbBD). So far, iron chelators (siderophores), oligosaccharides and polypeptides have been identified as substrates of TBDTs. For iron transport, three uptake systems are defined: the lactoferrin/transferrin binding proteins, the porphyrin-dependent transporters and the siderophore-dependent transporters. However, for cyanobacteria almost nothing is known about possible TonB-dependent uptake systems for iron or other substrates. RESULTS: We have screened all publicly available eubacterial genomes for sequences representing (putative) TBDTs. Based on sequence similarity, we identified 195 clusters, where elements of one cluster may possibly recognize similar substrates. For Anabaena sp. PCC 7120 we identified 22 genes as putative TBDTs covering almost all known TBDT subclasses. This is a high number of TBDTs compared to other cyanobacteria. The expression of the 22 putative TBDTs individually depends on the presence of iron, copper or nitrogen. CONCLUSION: We exemplified on TBDTs the power of CLANS-based classification, which demonstrates its importance for future application in systems biology. In addition, the tentative substrate assignment based on characterized proteins will stimulate the research of TBDTs in different species. For cyanobacteria, the atypical dependence of TBDT gene expression on different nutrition points to a yet unknown regulatory mechanism. In addition, we were able to clarify a hypothesis of the absence of TonB in cyanobacteria by the identification of according sequences.


Assuntos
Proteínas de Bactérias/genética , Cianobactérias/genética , Genoma Bacteriano , Transporte de Íons/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Anabaena/genética , Anabaena/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Transporte Biológico Ativo/genética , Análise por Conglomerados , Cobre/metabolismo , Meios de Cultura/química , Cianobactérias/metabolismo , Bases de Dados de Ácidos Nucleicos , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Ligantes , Cadeias de Markov , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/classificação , Proteínas de Membrana Transportadoras/metabolismo , Nitrogênio/metabolismo , Óperon/genética , Filogenia , Homologia de Sequência do Ácido Nucleico , Software , Biologia de Sistemas/métodos
19.
BMC Microbiol ; 9: 200, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19761586

RESUMO

BACKGROUND: Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND) efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear. RESULTS: To investigate the contribution of efflux pumps to intrinsic drug resistance of B. cenocepacia J2315, we deleted 3 operons encoding the putative RND transporters RND-1, RND-3, and RND-4 containing the genes BCAS0591-BCAS0593, BCAL1674-BCAL1676, and BCAL2822-BCAL2820. Each deletion included the genes encoding the RND transporter itself and those encoding predicted periplasmic proteins and outer membrane pores. In addition, the deletion of rnd-3 also included BCAL1672, encoding a putative TetR regulator. The B. cenocepacia rnd-3 and rnd-4 mutants demonstrated increased sensitivity to inhibitory compounds, suggesting an involvement of these proteins in drug resistance. Moreover, the rnd-3 and rnd-4 mutants demonstrated reduced accumulation of N-acyl homoserine lactones in the growth medium. In contrast, deletion of the rnd-1 operon had no detectable phenotypes under the conditions assayed. CONCLUSION: Two of the three inactivated RND efflux pumps in B. cenocepacia J2315 contribute to the high level of intrinsic resistance of this strain to some antibiotics and other inhibitory compounds. Furthermore, these efflux systems also mediate accumulation in the growth medium of quorum sensing molecules that have been shown to contribute to infection. A systematic study of RND efflux systems in B. cenocepacia is required to provide a full picture of intrinsic antibiotic resistance in this opportunistic bacterium.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Burkholderia cepacia/genética , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Membrana Transportadoras/metabolismo , Acil-Butirolactonas/análise , Proteínas da Membrana Bacteriana Externa/genética , Burkholderia cepacia/efeitos dos fármacos , Burkholderia cepacia/metabolismo , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Mutagênese , Ofloxacino/metabolismo , Óperon , Percepção de Quorum
20.
Proteomics ; 6(22): 6023-32, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17051640

RESUMO

Prevotella intermedia binds and invades a variety of host cells. This binding is most probably mediated through cell surface proteins termed adhesins. To identify proteins binding to the host extracellular matrix (ECM) component, fibronectin, and study the molecular mechanism underlying bacterial colonization, we applied proteomic approaches to perform a global investigation of P. intermedia strain 17 outer membrane proteins. 2-DE followed by Far Western Blot analysis using fibronectin as a probe revealed a 29-kDa fibronectin-binding protein, designated here AdpB. The molecular identity of the protein was determined using PMF followed by a search of the P. intermedia 17 protein database. Database searches revealed the similarity of AdpB to multiple bacterial outer membrane proteins including the fibronectin-binding protein from Campylobacter jejuni. A recombinant AdpB protein bound fibronectin as well as other host ECM components, including fibrinogen and laminin, in a saturable, dose-dependent manner. Binding of AdpB to immobilized fibronectin was also inhibited by soluble fibronectin, laminin, and fibrinogen, indicating the binding was specific. Finally, immunoelectron microscopy with anti-AdpB demonstrated the cell surface location of the protein. This is the first cell surface protein with a broad-spectrum ECM-binding abilities identified and characterized in P. intermedia 17.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Prevotella intermedia/metabolismo , Sequência de Aminoácidos , Proposta de Concorrência , Eletroforese em Gel Bidimensional , Dados de Sequência Molecular , Ligação Proteica , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA