Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Phycol ; 54(4): 529-538, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29889303

RESUMO

Euglena gracilis Z and a "sugar loving" variant strain E. gracilis var. saccharophila were investigated as producers of paramylon, a ß-1,3-glucan polysaccharide with potential medicinal and industrial applications. The strains were grown under diurnal or dark growth conditions on a glucose-yeast extract medium supporting high-level paramylon production. Both strains produced the highest paramylon yields (7.4-8 g · L-1 , respectively) while grown in the dark, but the maximum yield was achieved faster by E. gracilis var. saccharophila (48 h vs. 72 h). The glucose-to-paramylon yield coefficient Ypar/glu  = 0.46 ± 0.03 in the E. gracilis var. saccharophila cultivation, obtained in this study, is the highest reported to date. Proteomic analysis of the metabolic pathways provided molecular clues for the strain behavior observed during cultivation. For example, overexpression of enzymes in the gluconeogenesis/glycolysis pathways including fructokinase-1 and chloroplastic fructose-1,6-bisphosphatase (FBP) may have contributed to the faster rate of paramylon accumulation in E. gracilis var. saccharophila. Differentially expressed proteins in the early steps of chloroplastogenesis pathway including plastid uroporphyrinogen decarboxylases, photoreceptors, and a highly abundant (68-fold increase) plastid transketolase may have provided the E. gracilis var. saccharophila strain an advantage in paramylon production during diurnal cultivations. In conclusion, the variant strain E. gracilis var. saccharophila seems to be well suited for producing large amounts of paramylon. This work has also resulted in the identification of molecular targets for future improvement of paramylon production in E. gracilis, including the FBP and phosophofructokinase 1, the latter being a key regulator of glycolysis.


Assuntos
Euglena gracilis/metabolismo , Glucanos/metabolismo , Luz , beta-Glucanas/metabolismo , Proteínas de Algas/análise , Proteoma/análise , Proteínas de Protozoários/análise
2.
Bioresour Technol ; 172: 97-103, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25247249

RESUMO

The growth of Scenedesmus obliquus improved with increase in phytohormones concentrations (10(-8)-10(-)(5)M). Indole-3-acetic acid (IAA) supported the maximum growth at 10(-5)M with 17.7×10(6)cells/mL and total fatty acid of 97.9mg/g-DCW, enhancing the growth by 1.9-fold compared to control (9.5×10(6)cells/mL). While 10(-5)M of a newly discovered phytohormone Diethyl aminoethyl hexanoate (DAH) demonstrated a 2.5-fold higher growth with 23.5×10(6)cells/mL and a total fatty acid content of 100mg/g-DCW. Poly-unsaturated fatty acid content increased up to 56% and 59% at 10(-)(5)M of IAA and DAH, respectively. The highest carbohydrate content (33% and 34%) achieved at 10(-8)M and 10(-5)M of IAA and DAH, respectively. While, the highest protein content (34% and 35%) obtained at 10(-8)M of IAA and DAH, respectively. The current investigation demonstrates that phytohormones accelerate microalgal growth and induce the quality and quantity of fatty acid content for biodiesel production.


Assuntos
Ácidos Graxos/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Scenedesmus/crescimento & desenvolvimento , Scenedesmus/metabolismo , Proteínas de Algas/análise , Biotecnologia/economia , Caproatos/farmacologia , Carboidratos/análise , Meios de Cultura/farmacologia , Estudos de Viabilidade , Ácidos Indolacéticos/farmacologia , Microalgas/efeitos dos fármacos , Scenedesmus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA