Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 22(7): 3464-3474, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29704317

RESUMO

Mitochondrial dysfunction is an early feature of Alzheimer's disease (AD) and may play an important role in the pathogenesis of disease. It has been shown that amyloid beta peptide (Aß) and amyloid precursor protein (APP) interact with mitochondria contributing to the mitochondrial dysfunction in AD. Prevention of abnormal protein targeting to mitochondria can protect normal mitochondrial function, increase neuronal survival and at the end, ameliorate symptoms of AD and other neurodegenerative disorders. First steps of mitochondrial protein import are coordinated by molecular chaperones Hsp70 and Hsp90 that bind to the newly synthesized mitochondria-destined proteins and deliver them to the protein import receptors on the surface of organelle. Here, we have described the development of a novel compound named GMP-1 that disrupts interactions between Hsp70/Hsp90 molecular chaperones and protein import receptor Tom70. GMP-1 treatment of SH-SY5Y cells results in decrease in mitochondria-associated APP and protects SH-SY5Y cells from toxic effect of Aß1-42 exposure. Experiments in drosophila and mice models of AD demonstrated neuroprotective effect of GMP-1 treatment, improvement in memory and behaviour tests as well as restoration of mitochondrial function.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Benzimidazóis/farmacologia , Mitocôndrias/efeitos dos fármacos , Chaperonas Moleculares/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal/efeitos dos fármacos , Benzimidazóis/uso terapêutico , Modelos Animais de Doenças , Drosophila melanogaster/genética , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Simulação de Acoplamento Molecular , Atividade Motora/efeitos dos fármacos , Fragmentos de Peptídeos/genética , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
2.
J Phys Chem B ; 120(24): 5377-85, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27231969

RESUMO

The binding of ligands with their molecular receptors is of tremendous importance in biology. Although much emphasis has been placed on characterizing binding sites and bound poses that determine the binding thermodynamics, the pathway by which a ligand binds importantly determines the binding kinetics. The computational study of entire unbiased ligand binding and release pathways is still an emerging field, made possible only recently by advances in computational hardware and sampling methodologies. We have developed one such method (WExplore) that is based on a weighted ensemble of trajectories, which we apply to ligand release for the first time, using a set of three previously characterized interactions between low-affinity ligands and the protein FKBP-12 (FK-506 binding protein). WExplore is found to be more efficient that conventional sampling, even for the nanosecond-scale unbinding events observed here. From a nonequilibrium ensemble of unbinding trajectories, we obtain ligand residence times and release pathways without using biasing forces or a Markovian assumption of transitions between regions. We introduce a set of analysis tools for unbinding transition pathways, including using von Mises-Fisher distributions to model clouds of ligand exit points, which provide a quantitative proxy for ligand surface diffusion. Differences between the transition pathway ensembles of the three ligands are identified and discussed.


Assuntos
Biologia Computacional/métodos , Ligantes , Proteínas de Ligação a Tacrolimo/metabolismo , Sítios de Ligação , Humanos , Cadeias de Markov , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Ligação a Tacrolimo/química , Termodinâmica
3.
J Comput Chem ; 36(30): 2209-18, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26400829

RESUMO

In the field of drug discovery, it is important to accurately predict the binding affinities between target proteins and drug applicant molecules. Many of the computational methods available for evaluating binding affinities have adopted molecular mechanics-based force fields, although they cannot fully describe protein-ligand interactions. A noteworthy computational method in development involves large-scale electronic structure calculations. Fragment molecular orbital (FMO) method, which is one of such large-scale calculation techniques, is applied in this study for calculating the binding energies between proteins and ligands. By testing the effects of specific FMO calculation conditions (including fragmentation size, basis sets, electron correlation, exchange-correlation functionals, and solvation effects) on the binding energies of the FK506-binding protein and 10 ligand complex molecule, we have found that the standard FMO calculation condition, FMO2-MP2/6-31G(d), is suitable for evaluating the protein-ligand interactions. The correlation coefficient between the binding energies calculated with this FMO calculation condition and experimental values is determined to be R = 0.77. Based on these results, we also propose a practical scheme for predicting binding affinities by combining the FMO method with the quantitative structure-activity relationship (QSAR) model. The results of this combined method can be directly compared with experimental binding affinities. The FMO and QSAR combined scheme shows a higher correlation with experimental data (R = 0.91). Furthermore, we propose an acceleration scheme for the binding energy calculations using a multilayer FMO method focusing on the protein-ligand interaction distance. Our acceleration scheme, which uses FMO2-HF/STO-3G:MP2/6-31G(d) at R(int) = 7.0 Å, reduces computational costs, while maintaining accuracy in the evaluation of binding energy.


Assuntos
Ligantes , Teoria Quântica , Proteínas de Ligação a Tacrolimo/química , Sítios de Ligação , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA