Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 507
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38927631

RESUMO

Soil salinization is a major abiotic stress factor that negatively impacts plant growth, development, and crop yield, severely limiting agricultural production and economic development. Cotton, a key cash crop, is commonly cultivated as a pioneer crop in regions with saline-alkali soil due to its relatively strong tolerance to salt. This characteristic renders it a valuable subject for investigating the molecular mechanisms underlying plant salt tolerance and for identifying genes that confer salt tolerance. In this study, focus was placed on examining a salt-tolerant variety, E991, and a salt-sensitive variety, ZM24. A combined analysis of transcriptomic data from these cotton varieties led to the identification of potential salt stress-responsive genes within the glutathione S-transferase (GST) family. These versatile enzyme proteins, prevalent in animals, plants, and microorganisms, were demonstrated to be involved in various abiotic stress responses. Our findings indicate that suppressing GhGSTF9 in cotton led to a notably salt-sensitive phenotype, whereas heterologous overexpression in Arabidopsis plants decreases the accumulation of reactive oxygen species under salt stress, thereby enhancing salt stress tolerance. This suggests that GhGSTF9 serves as a positive regulator in cotton's response to salt stress. These results offer new target genes for developing salt-tolerant cotton varieties.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Gossypium , Proteínas de Plantas , Plantas Geneticamente Modificadas , Tolerância ao Sal , Arabidopsis/genética , Gossypium/genética , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Espécies Reativas de Oxigênio/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Estresse Fisiológico/genética , Plantas Tolerantes a Sal/genética
2.
BMC Plant Biol ; 24(1): 591, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902617

RESUMO

BACKGROUND: Light deficit in shaded environment critically impacts the growth and development of turf plants. Despite this fact, past research has predominantly concentrated on shade avoidance rather than shade tolerance. To address this, our study examined the photosynthetic adjustments of Bermudagrass when exposed to varying intensities of shade to gain an integrative understanding of the shade response of C4 turfgrass. RESULTS: We observed alterations in photosynthetic pigment-proteins, electron transport and its associated carbon and nitrogen assimilation, along with ROS-scavenging enzyme activity in shaded conditions. Mild shade enriched Chl b and LHC transcripts, while severe shade promoted Chl a, carotenoids and photosynthetic electron transfer beyond QA- (ET0/RC, φE0, Ψ0). The study also highlighted differential effects of shade on leaf and root components. For example, Soluble sugar content varied between leaves and roots as shade diminished SPS, SUT1 but upregulated BAM. Furthermore, we observed that shading decreased the transcriptional level of genes involving in nitrogen assimilation (e.g. NR) and SOD, POD, CAT enzyme activities in leaves, even though it increased in roots. CONCLUSIONS: As shade intensity increased, considerable changes were noted in light energy conversion and photosynthetic metabolism processes along the electron transport chain axis. Our study thus provides valuable theoretical groundwork for understanding how C4 grass acclimates to shade tolerance.


Assuntos
Aclimatação , Cynodon , Fotossíntese , Folhas de Planta , Cynodon/fisiologia , Cynodon/genética , Cynodon/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/genética , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Raízes de Plantas/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Clorofila/metabolismo
3.
Food Chem ; 455: 139889, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833865

RESUMO

The development of nondestructive technology for the detection of seed viability is challenging. In this study, to establish a green and effective method for the viability assessment of single maize seeds, a two-stage seed viability detection method was proposed. The catalase (CAT) activity and malondialdehyde (MDA) content were selected as the most key biochemical components affecting maize seed viability, and regression prediction models were developed based on their hyperspectral information and a data fusion strategy. Qualitative discrimination models for seed viability evaluation were constructed based on the predicted response values of the selected key biochemical components. The results showed that the double components thresholds strategy achieved the highest discrimination accuracy (92.9%), providing a crucial approach for the rapid and environmentally friendly detection of seed viability.


Assuntos
Catalase , Malondialdeído , Sementes , Zea mays , Zea mays/química , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Malondialdeído/metabolismo , Malondialdeído/análise , Catalase/metabolismo , Catalase/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Germinação , Química Verde
4.
J Agric Food Chem ; 72(20): 11804-11819, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717061

RESUMO

Apples (Malus × domestica Borkh.) and pears (Pyrus communis L.) are valuable crops closely related within the Rosaceae family with reported nutraceutical properties derived from secondary metabolites including phloridzin and arbutin, which are distinctive phenolic metabolites characterizing apples and pears, respectively. Here, we generated a de novo transcriptome assembly of an intergeneric hybrid between apple and pear, accumulating intermediate levels of phloridzin and arbutin. Combining RNA-seq, in silico functional annotation prediction, targeted gene expression analysis, and expression-metabolite correlations, we identified candidate genes for functional characterization, resulting in the identification of active arbutin synthases in the hybrid and parental genotypes. Despite exhibiting an active arbutin synthase in vitro, the natural lack of arbutin in apples is reasoned by the absence of the substrate and broad substrate specificity. Altogether, our study serves as the basis for future assessment of potential physiological roles of identified genes by genome editing of hybrids and pears.


Assuntos
Arbutina , Chalconas , Frutas , Malus , Proteínas de Plantas , Pyrus , Transcriptoma , Malus/genética , Malus/metabolismo , Malus/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Pyrus/genética , Pyrus/metabolismo , Pyrus/química , Arbutina/metabolismo , Arbutina/química , Frutas/genética , Frutas/metabolismo , Frutas/química , Chalconas/metabolismo , Chalconas/química , Regulação da Expressão Gênica de Plantas , Hibridização Genética
5.
J Sci Food Agric ; 104(10): 5689-5697, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38372563

RESUMO

BACKGROUND: To manage industrial waste in accordance with the circular bioeconomy concept it is sometimes necessary to handle grape seeds, an abundant by-product of the wine-making process. This study presents a process based on ultrasound technology for the extraction of grape-seed proteins, due to their nutritional and techno-functional properties. The protein content of extracts obtained under silent and lab-scale conditions was compared with that obtained under semi-industrial ultrasound conditions, and the chemical composition (carbohydrates, total phenols, and lipids) and the elemental profiles of the final, up-scaled downstream extracts were characterized. RESULTS: This work found that the maximum amount of protein in the final product was 378.31 g.kg-1 of the extract. Chemical characterization revealed that each 1 kg of extract had an average content of 326.19 g gallic acid equivalent as total phenols, 162.57 g glucose equivalent as carbohydrates, and 382.76 g of lipophilic compounds. Furthermore, when the extract was checked for hazardous elements, none were found in levels that could be considered a risk for human health. CONCLUSION: The proposed semi-industrial strategy has the potential to contribute greatly to the valorization of grape seeds through the preparation of a protein-rich extract that can be used as an alternative to synthetic wine stabilizers and for the development of novel food and nutraceutical products. © 2024 Society of Chemical Industry.


Assuntos
Proteínas de Plantas , Sementes , Vitis , Vitis/química , Sementes/química , Proteínas de Plantas/química , Proteínas de Plantas/análise , Fenóis/química , Fenóis/análise , Resíduos Industriais/análise , Resíduos Industriais/economia , Ultrassom/métodos , Vinho/análise , Manipulação de Alimentos/métodos , Extratos Vegetais/química
6.
Int J Biol Macromol ; 261(Pt 1): 129576, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253140

RESUMO

There is a pressing need for affordable, abundant, and sustainable sources of proteins to address the rising nutrient demands of a growing global population. The food and agriculture sectors produce significant quantities of waste and by-products during the growing, harvesting, storing, transporting, and processing of raw materials. These waste and by-products can sometimes be converted into valuable protein-rich ingredients with excellent functional and nutritional attributes, thereby contributing to a more circular economy. This review critically assesses the potential for agro-industrial wastes and by-products to contribute to global protein requirements. Initially, we discuss the origins and molecular characteristics of plant proteins derived from agro-industrial waste and by-products. We then discuss the techno-functional attributes, extraction methods, and modification techniques that are applied to these plant proteins. Finally, challenges linked to the safety, allergenicity, anti-nutritional factors, digestibility, and sensory attributes of plant proteins derived from these sources are highlighted. The utilization of agro-industrial by-products and wastes as an economical, abundant, and sustainable protein source could contribute towards achieving the Sustainable Development Agenda's 2030 goal of a "zero hunger world", as well as mitigating fluctuations in food availability and prices, which have detrimental impacts on global food security and nutrition.


Assuntos
Resíduos Industriais , Proteínas de Plantas , Alimentos , Agricultura
7.
Regul Toxicol Pharmacol ; 147: 105562, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190935

RESUMO

Serendipity berry plant (Dioscoreophyllum cumminsii (Stapf) Diels) is the source of a naturally sweet protein referred to as monellin. The safety of serendipity berry sweet protein (SBSP) containing single polypeptide monellin (MON) expressed in Komagataella phaffii (formerly Pichia pastoris) and produced via precision fermentation was examined comprehensively through assessments of in vitro and in silico protein digestion, in silico allergenicity, in vitro genotoxicity (reverse mutation and mammalian micronucleus assays), and 14-day and 90-day oral (dietary) toxicity studies in rats. There was no indication of allergenicity for SBSP in the in silico analyses. Results from both in vitro and in silico protein digestibility assessments indicated that SBSP is digested upon ingestion and would therefore be unlikely to pose a toxigenic or allergenic risk to consumers. SBSP was non-genotoxic in in vitro assays and showed no adverse effects in the 14-day or 90-day toxicity studies up to the highest dose tested. The 90-day toxicity study supports a NOAEL for SBSP of 1954 mg/kg bw/day, which corresponds to a NOAEL for MON of 408 mg/kg bw/day.


Assuntos
Frutas , Plantas , Saccharomycetales , Ratos , Animais , Proteínas de Plantas/genética , Mamíferos
8.
Molecules ; 28(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138452

RESUMO

Repeated exposure to pathogens leads to evolutionary selection of adaptive traits. Many species transfer immunological memory to their offspring to counteract future immune challenges. Transfer factors such as those found in the colostrum are among the many mechanisms where transfer of immunologic memory from one generation to the next can be achieved for an enhanced immune response. Here, a library of 100 plants with high protein contents was screened to find plant-based proteins that behave like a transfer factor moiety to boost human immunity. Aqueous extracts from candidate plants were tested in a human peripheral blood mononuclear cell (PBMC) cytotoxicity assay using human cancerous lymphoblast cells-with K562 cells as a target and natural killer cells as an effector. Plant extracts that caused PBMCs to exhibit enhanced killing beyond the capability of the colostrum-based transfer factor were considered hits. Primary screening yielded an 11% hit rate. The protein contents of these hits were tested via a Bradford assay and Coomassie-stained SDS-PAGE, where three extracts were confirmed to have high protein contents. Plants with high protein contents underwent C18 column fractionation using methanol gradients followed by membrane ultrafiltration to isolate protein fractions with molecular weights of <3 kDa, 3-30 kDa, and >30 kDa. It was found that the 3-30 kDa and >30 kDa fractions had high activity in the PBMC cytotoxicity assay. The 3-30 kDa ultrafiltrates from the top two hits, seeds from Raphanus sativus and Brassica juncea, were then selected for protein identification by mass spectrometry. The majority of the proteins in the fractions were found to be seed storage proteins, with a low abundance of proteins involved in plant defense and stress response. These findings suggest that Raphanus sativus or Brassica juncea extracts could be considered for further characterization and immune functional exploration with a possibility of supplemental use to bolster recipients' immune response.


Assuntos
Proteínas de Plantas , Raphanus , Humanos , Proteínas de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Leucócitos Mononucleares/metabolismo , Fator de Transferência , Plantas/metabolismo , Mostardeira/metabolismo
9.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003550

RESUMO

AP2/ERF transcription factors play crucial roles in various biological activities, including plant growth, development, and responses to biotic and abiotic stressors. However, limited research has been conducted on the AP2/ERF genes of Melastoma dodecandrum for breeding of this potential fruit crop. Leveraging the recently published whole genome sequence, we conducted a comprehensive assessment of this superfamily and explored the expression patterns of AP2/ERF genes at a genome-wide level. A significant number of genes, totaling 218, were discovered to possess the AP2 domain sequence and displayed notable structural variations among five subfamilies. An uneven distribution of these genes was observed on 12 pseudochromosomes as the result of gene expansion facilitated by segmental duplications. Analysis of cis-acting elements within promoter sites and 87.6% miRNA splicing genes predicted their involvement in multiple hormone responses and abiotic stresses through transcriptional and post-transcriptional regulations. Transcriptome analysis combined with qRT-PCR results indicated that certain candidate genes are involved in tissue formation and the response to developmental changes induced by IAA hormones. Overall, our study provides valuable insights into the evolution of ERF genes in angiosperms and lays a solid foundation for future breeding investigations aimed at improving fruit quality and enhancing adaptation to barren land environments.


Assuntos
Melhoramento Vegetal , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genoma de Planta , Família Multigênica , Perfilação da Expressão Gênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
10.
BMC Plant Biol ; 23(1): 552, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940862

RESUMO

In this study, we investigated the intricate interplay between Trichoderma and the tomato genome, focusing on the transcriptional and metabolic changes triggered during the late colonization event. Microarray probe set (GSE76332) was utilized to analyze the gene expression profiles changes of the un-inoculated control (tomato) and Trichoderma-tomato interactions for identification of the differentially expressed significant genes. Based on principal component analysis and R-based correlation, we observed a positive correlation between the two cross-comaparable groups, corroborating the existence of transcriptional responses in the host triggered by Trichoderma priming. The statistically significant genes based on different p-value cut-off scores [(padj-values or q-value); padj-value < 0.05], [(pcal-values); pcal-value < 0.05; pcal < 0.01; pcal < 0.001)] were cross compared. Through cross-comparison, we identified 156 common genes that were consistently significant across all probability thresholds, and showing a strong positive corelation between p-value and q-value in the selected probe sets. We reported TD2, CPT1, pectin synthase, EXT-3 (extensin-3), Lox C, and pyruvate kinase (PK), which exhibited upregulated expression, and Glb1 and nitrate reductase (nii), which demonstrated downregulated expression during Trichoderma-tomato interaction. In addition, microbial priming with Trichoderma resulted into differential expression of transcription factors related to systemic defense and flowering including MYB13, MYB78, ERF2, ERF3, ERF5, ERF-1B, NAC, MADS box, ZF3, ZAT10, A20/AN1, polyol sugar transporter like zinc finger proteins, and a novel plant defensin protein. The potential bottleneck and hub genes involved in this dynamic response were also identified. The protein-protein interaction (PPI) network analysis based on 25 topmost DEGS (pcal-value < 0.05) and the Weighted Correlation Gene Network Analysis (WGCNA) of the 1786 significant DEGs (pcal-value < 0.05) we reported the hits associated with carbohydrate metabolism, secondary metabolite biosynthesis, and the nitrogen metabolism. We conclude that the Trichoderma-induced microbial priming re-programmed the host genome for transcriptional response during the late colonization event and were characterized by metabolic shifting and biochemical changes specific to plant growth and development. The work also highlights the relevance of statistical parameters in understanding the gene regulatory dynamics and complex regulatory networks based on differential expression, co-expression, and protein interaction networks orchestrating the host responses to beneficial microbial interactions.


Assuntos
Hypocreales , Solanum lycopersicum , Transcriptoma , Solanum lycopersicum/genética , Perfilação da Expressão Gênica , Proteínas de Plantas/genética
11.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1502-1516, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431590

RESUMO

A feeding trial for 90 days was conducted on Nile tilapia (Oreochromis niloticus) (average weight: 25.50 ± 0.05 g) to evaluate the effect of dietary inclusion of Azadirachta indica seed protein hydrolysate (AIPH). The evaluation included the impact on the growth metrics, economic efficiency, antioxidant potential, hemato-biochemical indices, immune response, and histological architectures. A total of 250 fish were randomly distributed in five treatments (n = 50) and received diets included with five levels of AIPH (%): 0 (control diet, AIPH0), 2 (AIPH2), 4 (AIPH4), 6 (AIPH6) or 8 (AIPH8), where AIPH partially replace fish meal by 0, 8.7%, 17.4%, 26.1%, and 34.8%, respectively. After the feeding trial, a pathogenic bacterium (Streptococcus agalactiae, 1.5 × 108 CFU/mL) was intraperitoneally injected into the fish and the survival rate was recorded. The results elucidated that AIPH-included diets significantly (p < 0.05) enhanced the growth indices (final body weight, total feed intake, total body weight gain, and specific growth rate) and intestinal morpho-metrics (villous width, length, muscular coat thickness, and goblet cells count) in comparison to the control diet, with the AIPH8 diet recording the highest values. Dietary AIPH inclusion significantly improved (p < 0.05) the economic efficacy indicated by reduced feed cost/kg gain and increased performance index. The fish fed on the AIPH diets had noticeably significantly higher (p < 0.05) protein profile variables (total proteins and globulin) and antioxidant capabilities (superoxide dismutase and total antioxidant capacity) than the AIPH0 group. The dietary inclusion of AIPH significantly (p < 0.05) boosted the haematological parameters (haemoglobin, packed cell volume %, and counts of red blood cells and white blood cells) and immune indices (serum bactericidal activity %, antiprotease activity, and immunoglobulin M level) in a concentration-dependent manner. The blood glucose and malondialdehyde levels were significantly (p < 0.05) lowered by dietary AIPH (2%-8%). The albumin level and hepatorenal functioning parameters (aspartate aminotransferase, alanine aminotransferase, and creatinine) were not significantly (p > 0.05) altered by AIPH diets. Additionally, AIPH diets did not adversely alter the histology of the hepatic, renal or splenic tissues with moderately activated melano-macrophage centres. The mortality rate among S. agalactiae-infected fish declined as dietary AIPH levels rose, where the highest survival rate (86.67%) was found in the AIPH8 group (p < 0.05). Based on the broken line regression model, our study suggests using dietary AIPH at the optimal level of 6%. Overall, dietary AIPH inclusion enhanced the growth rate, economic efficiency, health status, and resistance of Nile tilapia to the S. agalactiae challenge. These beneficial impacts can help the aquaculture sector to be more sustainable.


Assuntos
Azadirachta , Ciclídeos , Doenças dos Peixes , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Ciclídeos/fisiologia , Hidrolisados de Proteína , Streptococcus agalactiae/metabolismo , Azadirachta/metabolismo , Proteínas de Plantas , Desenvolvimento Econômico , Resistência à Doença , Dieta/veterinária , Peso Corporal , Ração Animal/análise , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia
12.
Physiol Plant ; 175(1): e13863, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36688582

RESUMO

Salt stress has become one of the main factors limiting crop yield in recent years. The post-germinative growth is most sensitive to salt stress in soybean. In this study, cultivated and wild soybeans were used for an integrated metabonomics and transcriptomics analysis to determine whether wild soybean can resist salt stress by maintaining the mobilization of stored substances in cotyledons and the balance of carbon and nitrogen in the hypocotyl/root axis (HRA). Compared with wild soybean, the growth of cultivated soybean was significantly inhibited during the post-germinative growth period under salt stress. Integrating analysis found that the breakdown products of proteins, such as glutamate, glutamic acid, aspartic acid, and asparagine, increased significantly in wild soybean cotyledons. Asparagine synthase and fumarate hydratase genes and genes encoding HSP20 family proteins were specifically upregulated. In wild soybean HRA, levels of glutamic acid, aspartic acid, asparagine, citric acid, and succinic acid increased significantly, and the glutamate decarboxylase gene and the gene encoding carbonic anhydrase in nitrogen metabolism were significantly upregulated. The metabolic model indicated that wild soybean enhanced the decomposition of stored proteins and the transport of amino acids to the HRA in cotyledons and the GABA shunt to maintain carbon and nitrogen balance in the HRA to resist salt stress. This study provided a theoretical basis for cultivating salt-tolerant soybean varieties and opened opportunities for the development of sustainable agricultural practices.


Assuntos
Fabaceae , Glycine max , Glycine max/metabolismo , Hipocótilo/metabolismo , Cotilédone/metabolismo , Tolerância ao Sal/genética , Asparagina/genética , Asparagina/metabolismo , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Fabaceae/metabolismo , Ácido Glutâmico , Nitrogênio/metabolismo , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
13.
Protoplasma ; 260(3): 839-851, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36318315

RESUMO

Limited studies have been conducted on the role of microRNAs (miRs) and transcription factors in regulating plant cell responses to nanoparticles. This study attempted to address whether the foliar application of zinc oxide nanoparticles (ZnONPs; 0, 10, 25, and 50 mgL-1) can affect miRs, gene expression, and wheat grain quality. The seedlings were sprayed with ZnONPs (0, 10, 25, and 50 mgL-1) or bulk counterpart (BZnO) five times at 72 h intervals. The application of ZnONPs at 10 mgL-1 increased the number of spikelets and seed weight, while the nano-supplement at 50 mgL-1 was accompanied by severe restriction on developing spikes and grains. ZnONPs, in a dose-dependent manner, transcriptionally influenced miR156 and miR171. The expression of miR171 showed a similar trend to that of miR156. The ZnONPs at optimum concentration upregulated the NAM transcription factor and sucrose transporter (SUT) at transcriptional levels. However, the transcription of both NAM and SUT genes displayed a downward trend in response to the toxic dose of ZnONPs (50 mgL-1). Utilization of ZnONPs increased proline and total soluble phenolic content. Monitoring the accumulation of carbohydrates, including fructan, glucose, fructose, and sucrose, revealed that ZnONPs at 10 mgL-1 modified the source/sink communication and nutrient remobilization. The molecular and physiological data revealed that the expression of miR156 and miR171 is tightly linked to seed grain development, remobilization of carbohydrates, and genes involved in nutrient transportation. This study establishes a novel strategy for obtaining higher yields in crops. This biological risk assessment investigation also displays the potential hazard of applying ZnONPs at the flowering developmental phase.


Assuntos
MicroRNAs , Óxido de Zinco , Carboidratos , Grão Comestível , MicroRNAs/metabolismo , Sementes , Sacarose/metabolismo , Triticum/metabolismo , Óxido de Zinco/metabolismo , Nanopartículas Metálicas , Proteínas Repressoras/metabolismo , Proteínas de Plantas/metabolismo
14.
Pediatr Allergy Immunol ; 33(12): e13889, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36564874

RESUMO

BACKGROUND: Novel protein sources can represent a risk for allergic consumers. The aim of this study was to evaluate the allergenicity of cowpea (Vigna unguiculata), an increasingly consumed legume and potential new industrial food ingredient which may put legume-allergic patients at risk. METHODS: Children with allergy to legumes associated to peanut (LP group: n = 13) or without peanut allergy (L group: n = 14) were recruited and sensitization to several legumes including cowpea was assessed by prick tests and detection of specific IgE (sIgE). Cowpea protein extract was analyzed by SDS-PAGE and immunoblotting, IgE-reactive spots were subjected to mass spectrometry. IgE-cross-reactivity between cowpea, pea, and peanut was determined using ELISA inhibition assays. Basophil activation tests were performed to evaluate sensitivity and reactivity of patient basophils toward legumes. RESULTS: Prick tests and sIgE levels to cowpea were positive in 8/14 and 4/13 patients of the L group and in 9/13 and 10/13 patients of the LP group, respectively. Four major IgE-binding proteins were identified as vicilins and seed albumin. Cowpea extract and its vicilin fraction strongly inhibited IgE-binding to pea and peanut extract. Peanut, lentil, and pea were the strongest activators of basophils, followed by cowpea, soybean, mung bean, and lupin. CONCLUSION: A majority of patients with legume allergy were sensitized to cowpea proteins. Four novel allergens were identified in cowpea, among which storage proteins were playing an important role in IgE-cross-reactivity, exposing legume-allergic patients to the risk of clinical cross-reactivity to cowpea and thus adding cowpea to the group of nonpriority legumes that are not subjected to allergen labeling such as chickpea, pea, and lentil.


Assuntos
Hipersensibilidade Alimentar , Lens (Planta) , Lupinus , Hipersensibilidade a Amendoim , Vigna , Criança , Humanos , Arachis , Pisum sativum , Alérgenos , Hipersensibilidade Alimentar/diagnóstico , Imunoglobulina E , Hipersensibilidade a Amendoim/diagnóstico , Verduras , Medição de Risco , Reações Cruzadas , Proteínas de Plantas
15.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077350

RESUMO

Iris laevigata is ideal for gardening and landscaping in northeast China because of its beautiful flowers and strong cold resistance. However, the short length of flowering time (2 days for individual flowers) greatly limits its applications. Molecular breeding and engineering hold high potential for producing I. laevigata of desirable flowering properties. A prerequisite is to identify and characterize key flowering control genes, the identity of which remains largely unknown in I. laevigata due to the lack of genome information. To fill this knowledge gap, we used sequencing data of the I. laevigata transcriptome to identify MADS-box gene-encoding transcription factors that have been shown to play key roles in developmental processes, including flowering. Our data revealed 41 putative MADS-box genes, which consisted of 8 type I (5 Mα and 3 Mß, respectively) and 33 type II members (2 MIKC* and 31 MIKCC, respectively). We then selected IlSEP3 and IlSVP for functional studies and found that both are localized to the nucleus and that they interact physically in vitro. Ectopic expression of IlSEP3 in Arabidopsis resulted in early flowering (32 days) compared to that of control plants (36 days), which could be mediated by modulating the expression of FT, SOC1, AP1, SVP, SPL3, VRN1, and GA20OX. By contrast, plants overexpressing IlSVP were phenotypically similar to that of wild type. Our functional validation of IlSEP3 was consistent with the notion that SEP3 promotes flowering in multiple plant species and indicated that IlSEP3 regulates flowering in I. laevigata. Taken together, this work provided a systematic identification of MADS-box genes in I. laevigata and demonstrated that the flowering time of I. laevigata can be genetically controlled by altering the expression of key MADS-box genes.


Assuntos
Arabidopsis , Gênero Iris , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Gênero Iris/genética , Gênero Iris/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Genomics ; 114(4): 110398, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675878

RESUMO

Ca2+ is an essential nutrient for plants and animals which plays an important role in plant signal transduction. Although the function and regulation of mechanism of Ca2+ in alleviating various biotic and abiotic stresses in plants have been studied deeply, the molecular mechanism to adapt high Ca2+ stress is still unclear in cotton. In this study, 103 cotton accessions were germinated under 200 mM CaCl2 stress, and two extremely Ca2+-resistant (Zhong 9807, R) and Ca2+-sensitive (CRI 50, S) genotypes were selected from 103 cotton accessions. The two accessions were then germinated for 5 days in 0 mM CaCl2 and 200 mM CaCl2 respectively, after which they were sampled for transcriptome sequencing. Morphological and physiological analyses suggested that PLR2 specifically expressed in R may enhance the ability of cotton to scavenge ROS by promoting the synthesis of SDG. In conclusion, this study proposed the adaptation mechanisms to response to the high Ca2+ stress in cotton which can contribute to improve the stress resistance of cotton.


Assuntos
Regulação da Expressão Gênica de Plantas , Desenvolvimento Sustentável , Butileno Glicóis , Cloreto de Cálcio/metabolismo , Gossypium/genética , Gossypium/metabolismo , Lignanas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética
17.
Int J Toxicol ; 41(2_suppl): 5S-20S, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35604030

RESUMO

The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of 19 plant-derived proteins and peptides, which function mainly as skin and/or hair conditioning agents in personal care products. The Panel concluded that 18 plant-derived proteins and peptides are safe as used in the present practices of use and concentration as described in this safety assessment, while the data on Hydrolyzed Maple Sycamore Protein are insufficient to determine safety.


Assuntos
Qualidade de Produtos para o Consumidor , Cosméticos , Cosméticos/toxicidade , Peptídeos/toxicidade , Extratos Vegetais , Proteínas de Plantas , Medição de Risco
18.
Nutrients ; 14(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35215523

RESUMO

Hazelnut is a widespread nut species, especially present in Europe, that can be consumed raw or roasted thanks to its pleasant taste and nutritional properties. In addition to renowned beneficial properties hazelnuts contain several proteins capable of inducing food allergy in sensitized individuals, including Cor a 2 (a profilin), Cor a 8 (a lipid transfer protein), Cor a 9 (an 11S seed storage globulin, legumin-like), and Cor a 11 (a 7S seed storage globulin, vicilin-like). In the present paper we investigated the effectiveness of autoclave-based treatments in decreasing the allergic potential of hazelnut as assessed by submitting the treated material to an in vivo skin prick test and an in vitro immunoblot analysis, with sera of allergic individuals exposed to the treated food material. This preliminary analysis showed that autoclave treatment preceded by hydration and/or followed by drying seems to be a promising approach and appears to be effective in reducing the allergenicity of hazelnuts in most patients, probably due to the denaturation of most major and minor allergenic proteins. This work opens up the opportunity to produce hypoallergenic hazelnut derivatives that can be tolerated by allergic subjects.


Assuntos
Corylus , Hipersensibilidade a Noz , Alérgenos , Humanos , Imunoglobulina E , Hipersensibilidade a Noz/prevenção & controle , Proteínas de Plantas , Proteômica
19.
Protoplasma ; 259(6): 1455-1466, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35195768

RESUMO

The drug development process is one of the important aspects of medical biology. The classical lead identification strategy in the way of drug development based on animal cell is time-consuming, expensive and involving ethical issues. The following study aims to develop a novel plant-based screening of drugs. Study shows the efficacy of certain anti-cancerous drugs (Pemetrexed, 5-Fluorouracil, Methotrexate, Topotecan and Etoposide) on a plant-based (Lathyrus sativus L.) system. Two important characteristics of cancer cells were observed in the colchicine-treated polyploid cell and the callus, where the chromosome numbers were unusual and the division of cells were uncontrolled respectively. With increasing concentration, the drugs significantly reduced the mitotic index, ploidy level and callus growth. Increasing Pemetrexed concentration decreased the plant DHFR activity. A decrease in total RNA content was observed in 5-FU and Methotrexate with increasing concentrations of the drugs. Etoposide and Topotecan inhibited plant topoisomerase II and topoisomerase I activities, which was justified through plasmid nicking and comet assay, respectively. Molecular and biochemical study revealed similar results to the animal system. The in silico study had been done, and the structural similarity of drug binding domains of L. sativus and human beings had also been established. The binding site of the selected drugs to the domains of plant target proteins was also determined. Experimental results are significant in terms of the efficacy of known anti-cancerous drugs on the plant-based system. The proposed assay system is a cost-effective, convenient and less time-consuming process for primary screening of anti-cancerous lead molecules.


Assuntos
Lathyrus , Colchicina/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Etoposídeo/farmacologia , Fluoruracila/metabolismo , Humanos , Lathyrus/química , Lathyrus/genética , Lathyrus/metabolismo , Metotrexato/metabolismo , Metotrexato/farmacologia , Pemetrexede/metabolismo , Proteínas de Plantas/metabolismo , RNA/metabolismo , Topotecan/metabolismo
20.
Mol Biotechnol ; 64(3): 263-277, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34595725

RESUMO

Coffea arabica is the most economically important coffee species worldwide. However, its production is severely limited by diseases such as rust. The mechanisms underlying constitutive defense responses in coffee are still poorly understood, compared with induced defense mechanisms. We aimed to characterize constitutive defense responses of thirteen cultivars of C. arabica. Cultivars were classified under field conditions according to the level of resistance to rust: resistant (R), moderately resistant (MR), and susceptible (S). Based on this classification, the stability of eight reference genes (RGs) was evaluated. The most stable RGs were EF1α, APT1, and 24S. We also evaluated the expression of CaWRKY1, CaPAL1, CaCAD1, and CaPOX1, and activities of PAL, CAD, and POX, which are involved in lignin biosynthesis, and leaf content of total phenolic compounds and lignin. Gene expression and enzymatic activity were not correlated with defense metabolites in the R cultivar group but showed a negative correlation with phenolic compounds in MR cultivars. Cultivar S showed positive correlations of gene expression and enzyme activity with phenolic compounds. These results may assist coffee breeding programs regarding selection of genotypes and in optimization of rust resistance.


Assuntos
Café/crescimento & desenvolvimento , Resistência à Doença , Proteínas de Plantas/genética , Café/classificação , Café/genética , Café/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lignina/biossíntese , Fenóis/metabolismo , Folhas de Planta/classificação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA