Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
ChemMedChem ; 19(13): e202400025, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38581280

RESUMO

Identification and assessment of novel targets is essential to combat drug resistance in the treatment of HIV/AIDS. HIV Capsid (HIV-CA), the protein playing a major role in both the early and late stages of the viral life cycle, has emerged as an important target. We have applied an NMR fragment screening platform and identified molecules that bind to the N-terminal domain (NTD) of HIV-CA at a site close to the interface with the C-terminal domain (CTD). Using X-ray crystallography, we have been able to obtain crystal structures to identify the binding mode of these compounds. This allowed for rapid progression of the initial, weak binding, fragment starting points to compounds 37 and 38, which have 19F-pKi values of 5.3 and 5.4 respectively.


Assuntos
Fármacos Anti-HIV , Cristalografia por Raios X , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/síntese química , Sítios de Ligação , Descoberta de Drogas , HIV-1/efeitos dos fármacos , Ligação Proteica , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/antagonistas & inibidores , Humanos , Estrutura Molecular , Modelos Moleculares , Espectroscopia de Ressonância Magnética , Relação Estrutura-Atividade
2.
Hum Gene Ther ; 34(7-8): 273-288, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36927149

RESUMO

The liver is a prime target for in vivo gene therapies using recombinant adeno-associated viral vectors. Multiple clinical trials have been undertaken for this target in the past 15 years; however, we are still to see market approval of the first liver-targeted adeno-associated virus (AAV)-based gene therapy. Inefficient expression of the therapeutic transgene, vector-induced liver toxicity and capsid, and/or transgene-mediated immune responses reported at high vector doses are the main challenges to date. One of the contributing factors to the insufficient clinical outcomes, despite highly encouraging preclinical data, is the lack of robust, biologically and clinically predictive preclinical models. To this end, this study reports findings of a functional evaluation of 6 AAV vectors in 12 preclinical models of the human liver, with the aim to uncover which combination of models is the most relevant for the identification of AAV capsid variant for safe and efficient transgene delivery to primary human hepatocytes. The results, generated by studies in models ranging from immortalized cells, iPSC-derived and primary hepatocytes, and primary human hepatic organoids to in vivo models, increased our understanding of the strengths and weaknesses of each system. This should allow the development of novel gene therapies targeting the human liver.


Assuntos
Dependovirus , Fígado , Humanos , Dependovirus/genética , Fígado/metabolismo , Terapia Genética/métodos , Hepatócitos/metabolismo , Proteínas do Capsídeo/metabolismo , Tropismo , Vetores Genéticos/genética
3.
Microbiol Spectr ; 9(2): e0100021, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34523975

RESUMO

Grass carp reovirus (GCRV), the most virulent aquareovirus, causes epidemic hemorrhagic disease and tremendous economic loss in freshwater aquaculture industry. VP56, a putative fibrin inlaying the outer surface of GCRV-II and GCRV-III, is involved in cell attachment. In the present study, we found that VP56 localizes at the early endosome, lysosome, and endoplasmic reticulum, recruits the cytoplasmic viral RNA sensor retinoic acid-inducible gene I (RIG-I) and binds to it. The interaction between VP56 and RIG-I was detected by endogenous coimmunoprecipitation (co-IP), glutathione S-transferase (GST) pulldown, and subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) and was then confirmed by traditional co-IPs and a novel far-red mNeptune-based bimolecular fluorescence complementation system. VP56 binds to the helicase domain of RIG-I. VP56 enhances K48-linked ubiquitination of RIG-I to degrade it by the proteasomal pathway. Thus, VP56 impedes the initial immune function of RIG-I by dual mechanisms (blockade and degradation) and attenuates signaling from RIG-I recognizing viral RNA, subsequently weakening downstream signaling transduction and interferon (IFN) responses. Accordingly, host antiviral effectors are reduced, and cytopathic effects are increased. These findings were corroborated by RNA sequencing (RNA-seq) and VP56 knockdown. Finally, we found that VP56 and the major outer capsid protein VP4 bind together in the cytosol to enhance the degradation of RIG-I and more efficiently facilitate viral replication. Collectively, the results indicated that VP56 allies VP4, recruits, blocks, and degrades RIG-I, thereby attenuating IFNs and antiviral effectors to facilitate viral evasion more effectively. This study reveals a virus attacking target and an escaping strategy from host antiviral immunity for GCRV and will help understand mechanisms of infection of reoviruses. IMPORTANCE Grass carp reovirus (GCRV) fibrin VP56 and major outer capsid protein VP4 inlay and locate on the outer surface of GCRV-II and GCRV-III, which causes tremendous loss in grass carp and black carp industries. Fibrin is involved in cell attachment and plays an important role in reovirus infection. The present study identified the interaction proteins of VP56 and found that VP56 and VP4 bind to the different domains of the viral RNA sensor retinoic acid-inducible gene I (RIG-I) in grass carp to block RIG-I sensing of viral RNA and induce RIG-I degradation by the proteasomal pathway to attenuate signaling transduction, thereby suppressing interferons (IFNs) and antiviral effectors, facilitating viral replication. VP56 and VP4 bind together in the cytosol to more efficiently facilitate viral evasion. This study reveals a virus attacking a target and an escaping strategy from host antiviral immunity for GCRV and will be helpful in understanding the mechanisms of infection of reoviruses.


Assuntos
Proteínas do Capsídeo/metabolismo , Carpas/virologia , Proteína DEAD-box 58/metabolismo , Interferons/imunologia , Reoviridae/imunologia , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Doenças dos Peixes/virologia , Pesqueiros/economia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Viral/genética , RNA-Seq , Reoviridae/metabolismo , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Espectrometria de Massas em Tandem , Ubiquitinação
4.
Virology ; 516: 102-107, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29331865

RESUMO

The exterior minor protein IX of adenoviruses (AdVs) is a frequent target of attachment of antigens and the modified AdVs are being used as potent vaccine platforms. The organization of protein IX is disticntly different between human adenoviruses (HAdVs) and non-HAdVs. The analysis of solvent accessibility, based on the near atomic resolution structures, suggests that the C-terminal residues of IX are more accessible in non-HAdVs (e.g., bovine adenovirus) than in HAdVs. Although the C-terminal fusions of IX are displayed on the capsid surface, they could disrupt the formation of tetrameric coiled-coils (4-HLXB) in HAdVs due to steric hinderance, thereby potentially affecting the capsid stability. Importantly, the parallel-antiparallel arrangement of helices seen in the 4-HLXB is not condusive for IX C-terminal fusions in HAdVs. In contrast, the parallel trimeric C-terminal coiled-coils in non-HAdVs are unlikely to be affected by the attachment of antigens and more efficiently displayed on the AdV surface.


Assuntos
Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Adenovírus Humanos/química , Adenovírus Humanos/genética , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Humanos , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína
5.
J Chem Inf Model ; 57(5): 1134-1141, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28426204

RESUMO

HIV-1 capsid proteins (CAs) assemble into a capsid that encloses the viral RNA. The binding between a pair of C-terminal domains (CTDs) constitutes a major interface in both the CA dimers and the large CA assemblies. Here, we attempt to use a general residue-level coarse-grained model to describe the interaction between two isolated CTDs in Monte Carlo simulations. With the standard parameters that depend only on the residue types, the model predicts a much weaker binding in comparison to the experiments. Detailed analysis reveals that some Lennard-Jones parameters are not compatible with the experimental CTD dimer structure, thus resulting in an unfavorable interaction energy. To improve the model for the CTD binding, we introduce ad hoc modifications to a small number of Lennard-Jones parameters for some specific pairs of residues at the binding interface. Through a series of extensive Monte Carlo simulations, we identify the optimal parameters for the CTD-CTD interactions. With the refined model parameters, both the binding affinity (with a dissociation constant of 13 ± 2 µM) and the binding mode are in good agreement with the experimental data. This study demonstrates that the general interaction model based on the Lennard-Jones potential, with some modest adjustment of the parameters for key residues, could correctly reproduce the reversible protein binding, thus potentially applicable for simulating the thermodynamics of the CA assemblies.


Assuntos
Proteínas do Capsídeo/metabolismo , HIV-1/metabolismo , Proteínas do Capsídeo/química , Simulação por Computador , HIV-1/química , Modelos Químicos , Método de Monte Carlo , Ligação Proteica , Domínios Proteicos , Termodinâmica
6.
Phys Rev E ; 96(1-1): 012407, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347131

RESUMO

In this work we study conformational changes of viral capsids using techniques of large deviations theory for stochastic differential equations. The viral capsid is a model of a complex system in which many units-the proteins forming the capsomers-interact by weak forces to form a structure with exceptional mechanical resistance. The destabilization of such a structure is interesting both, per se, since it is related either to infection or maturation processes and because it yields insights into the stability of complex structures in which the constitutive elements interact by weak attractive forces. We focus here on a simplified model of a dodecahedral viral capsid and assume that the capsomers are rigid plaquettes with one degree of freedom each. We compute the most probable transition path from the closed capsid to the final configuration using minimum energy paths and discuss the stability of intermediate states.


Assuntos
Capsídeo/química , Modelos Biológicos , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Cadeias de Markov , Processos Estocásticos
7.
J Phys Chem B ; 119(44): 13991-4002, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26435053

RESUMO

To optimize binding-and packaging-by their capsid proteins (CP), single-stranded (ss) RNA viral genomes often have local secondary/tertiary structures with high CP affinity, with these "packaging signals" serving as heterogeneous nucleation sites for the formation of capsids. Under typical in vitro self-assembly conditions, however, and in particular for the case of many ssRNA viruses whose CP have cationic N-termini, the adsorption of CP by RNA is nonspecific because the CP concentration exceeds the largest dissociation constant for CP-RNA binding. Consequently, the RNA is saturated by bound protein before lateral interactions between CP drive the homogeneous nucleation of capsids. But, before capsids are formed, the binding of protein remains reversible and introduction of another RNA species-with a different length and/or sequence-is found experimentally to result in significant redistribution of protein. Here we argue that, for a given RNA mass, the sequence with the highest affinity for protein is the one with the most compact secondary structure arising from self-complementarity; similarly, a long RNA steals protein from an equal mass of shorter ones. In both cases, it is the lateral attractions between bound proteins that determines the relative CP affinities of the RNA templates, even though the individual binding sites are identical. We demonstrate this with Monte Carlo simulations, generalizing the Rosenbluth method for excluded-volume polymers to include branching of the polymers and their reversible binding by protein.


Assuntos
Proteínas do Capsídeo/química , Vírus de RNA/química , Vírus de RNA/metabolismo , RNA Viral/química , Proteínas do Capsídeo/metabolismo , Cinética , Simulação de Dinâmica Molecular , Método de Monte Carlo , Vírus de RNA/genética , RNA Viral/metabolismo , Termodinâmica
8.
Sci Rep ; 5: 8185, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25640899

RESUMO

Human rhinovirus species C (HRV-C) was recently discovered, and this virus has been associated with various acute respiratory illnesses (ARI). However, the molecular evolution of the major antigens of this virus, including VP1, VP2, and VP3, is unknown. Thus, we performed complete VP1, VP2, and VP3 gene analyses of 139 clinical HRV-C strains using RT-PCR with newly designed primer sets and next-generation sequencing. We assessed the time-scale evolution and evolutionary rate of these genes using the Bayesian Markov chain Monte Carlo method. In addition, we calculated the pairwise distance and confirmed the positive/negative selection sites in these genes. The phylogenetic trees showed that the HRV-C strains analyzed using these genes could be dated back approximately 400 to 900 years, and these strains exhibited high evolutionary rates (1.35 to 3.74 × 10(-3) substitutions/site/year). Many genotypes (>40) were confirmed in the phylogenetic trees. Furthermore, no positively selected site was found in the VP1, VP2, and VP3 protein. Molecular modeling analysis combined with variation analysis suggested that the exterior surfaces of the VP1, VP2 and VP3 proteins are rich in loops and are highly variable. These results suggested that HRV-C may have an old history and unique antigenicity as an agent of various ARI.


Assuntos
Evolução Molecular , Rhinovirus/genética , Proteínas Virais/genética , Sequência de Bases , Teorema de Bayes , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Genótipo , Cadeias de Markov , Dados de Sequência Molecular , Método de Monte Carlo , Filogenia , Rhinovirus/classificação , Rhinovirus/metabolismo , Análise de Sequência de RNA , Proteínas Virais/metabolismo
9.
PLoS One ; 8(6): e66065, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23785468

RESUMO

The recently available x-ray crystal structure of HIV-1 capsid hexamers has provided insight into the molecular interactions crucial for the virus's mature capsid formation. Amino acid changes at these interaction points are likely to have a strong impact on capsid functionality and, hence, viral infectivity and replication fitness. To test this hypothesis, we introduced the most frequently observed single amino acid substitution at 30 sites: 12 at the capsid hexamerization interface and 18 at non-interface sites. Mutations at the interface sites were more likely to be lethal (Fisher's exact test p = 0.027) and had greater negative impact on viral replication fitness (Wilcoxon rank sum test p = 0.040). Among the interface mutations studied, those located in the cluster of hydrophobic contacts at NTD-NTD interface and those that disrupted NTD-CTD inter-domain helix capping hydrogen bonds were the most detrimental, indicating that these interactions are particularly important for maintaining capsid structure and/or function. These functionally constrained sites provide potential targets for novel HIV drug development and vaccine immunogen design.


Assuntos
Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Aptidão Genética , HIV-1/genética , HIV-1/metabolismo , Mutação , Multimerização Proteica , Substituição de Aminoácidos , Proteínas do Capsídeo/química , Linhagem Celular , HIV-1/fisiologia , Humanos , Modelos Moleculares , Conformação Proteica , Recombinação Genética , Replicação Viral
10.
Antiviral Res ; 98(2): 186-91, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23499651

RESUMO

The National Research Council has recommended that at least one, preferably two, polio antiviral drugs be developed as a supplement to the tools currently available for control of polio outbreaks post-eradication. The primary application of such drugs is expected to be the resolution of chronic poliovirus excretion in persons with primary immunodeficiency disorders. We have assessed the in vitro activity of AG-7404 (also known as "compound 1"), an inhibitor of picornaviral 3C protease, against a large panel of programmatically important poliovirus strains and its activity in combination with two poliovirus capsid inhibitors, V-073 and BTA798. AG-7404 was active against all viruses in this panel, with EC50 values ranging from 0.080 to 0.674 µM. Similarly, BTA798 was active against all viruses in this panel, with EC50 values ranging from 0.003 to 0.591µM. By comparison, values for V-073 were 0.003-0.126 µM. BTA798 was active against V-073-resistant variants with an alanine to valine change in VP3 at position 24. However, BTA798 was inactive against the V-073-resistant strains with amino acid substitutions at VP1 amino acids 194 (equivalent to 192 in type 3) and 236. As expected from its different mechanism of action, AG-7404 was fully active against all V-073-resistant variants, with EC50 values ranging from 0.218 to 0.819 µM, compared to values of 0.202-0.407 µM for the V-073-susceptible parental strains. In vitro drug combination experiments demonstrated synergy between AG-7404 and either V-073 or BTA798, whereas the combination of the two capsid inhibitors acted additively.


Assuntos
Antivirais/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , Poliomielite/virologia , Poliovirus/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Quimioterapia Combinada , Humanos , Poliomielite/tratamento farmacológico , Poliovirus/enzimologia , Poliovirus/genética , Poliovirus/metabolismo
11.
Plant Cell Rep ; 31(3): 573-84, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22134876

RESUMO

Despite the success in expressing a variety of subunit vaccine proteins in plants and the recent stride in improving vaccine accumulation levels by transient expression systems, there is still no plant-derived vaccine that has been licensed for human use. The lack of commercial success of plant-made vaccines lies in several technical and regulatory barriers that remain to be overcome. These challenges include the lack of scalable downstream processing procedures, the uncertainty of regulatory compliance of production processes, and the lack of demonstration of plant-derived products that meet the required standards of regulatory agencies in identity, purity, potency and safety. In this study, we addressed these remaining challenges and successfully demonstrate the ability of using plants to produce a pharmaceutical grade Norwalk virus (NV) vaccine under current Good Manufacture Practice (cGMP) guidelines at multiple gram scales. Our results demonstrate that an efficient and scalable extraction and purification scheme can be established for processing virus-like particles (VLPs) of NV capsid protein (NVCP). We successfully operated the upstream and downstream NVCP production processes under cGMP regulations. Furthermore, plant-derived NVCP VLP demonstrates the identity, purity, potency and safety that meet the preset release specifications. This material is being tested in a Phase I human clinical trial. This research provides the first report of producing a plant-derived vaccine at scale under cGMP regulations in an academic setting and an important step for plant-produced vaccines to become a commercial reality.


Assuntos
Biotecnologia/métodos , Proteínas do Capsídeo/metabolismo , Indústria Farmacêutica/normas , Nicotiana/metabolismo , Vírus Norwalk/imunologia , Virossomos/biossíntese , Biomassa , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/isolamento & purificação , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Vacinas Virais , Virossomos/genética , Virossomos/isolamento & purificação , Virossomos/normas
12.
Transgenic Res ; 21(5): 967-82, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22200984

RESUMO

Solanum tuberosum ssp. tuberosum (cv. Spunta) was transformed with a chimeric transgene containing the Potato virus Y (PVY) coat protein (CP) sequence. Screening for PVY resistance under greenhouse conditions yielded over 100 independent candidate lines. Successive field testing of selected lines allowed the identification of two genetically stable PVY-resistant lines, SY230 and SY233, which were further evaluated in field trials at different potato-producing regions in Argentina. In total, more than 2,000 individuals from each line were tested along a 6-year period. While no or negligible PVY infection was observed in the transgenic lines, infection rates of control plants were consistently high and reached levels of up to 70-80%. Parallel field studies were performed in virus-free environments to assess the agronomical performance of the selected lines. Tubers collected from these assays exhibited agronomical traits and biochemical compositions indistinguishable from those of the non-transformed Spunta cultivar. In addition, an interspecific out-crossing trial to determine the magnitude of possible natural gene flow between transgenic line SY233 and its wild relative Solanum chacoense was performed. This trial yielded negative results, suggesting an extremely low probability for such an event to occur.


Assuntos
Resistência à Doença , Fluxo Gênico , Plantas Geneticamente Modificadas/genética , Potyvirus/patogenicidade , Solanum tuberosum/genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Argentina , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Produtos Agrícolas/virologia , Cruzamentos Genéticos , Vetores Genéticos , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/virologia , Potyvirus/genética , Potyvirus/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alcaloides de Solanáceas/análise , Alcaloides de Solanáceas/metabolismo , Solanum tuberosum/imunologia , Solanum tuberosum/virologia , Transformação Genética , Transgenes
13.
J Comput Chem ; 32(13): 2865-77, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21732392

RESUMO

Fast determination of neighboring atoms is an essential step in molecular dynamics simulations or Monte Carlo computations, and there exists a variety of algorithms to efficiently compute neighbor lists. However, most of these algorithms are general, and not specifically designed for a given type of application. As a result, although their average performance is satisfactory, they might be inappropriate in some specific application domains. In this article, we study the case of detecting neighbors between large rigid molecules, which has applications in, e.g., rigid body molecular docking, Monte Carlo simulations of molecular self-assembly or diffusion, and rigid body molecular dynamics simulations. More precisely, we compare the traditional grid-based algorithm to a series of hierarchy-based algorithms that use bounding volumes to rapidly eliminate large groups of irrelevant pairs of atoms during the neighbor search. We compare the performance of these algorithms based on several parameters: the size of the molecules, the average distance between them, the cutoff distance, as well as the type of bounding volume used in the culling hierarchy (AABB, OBB, wrapped, or layered spheres). We demonstrate that for relatively large systems (> 100,000 atoms) the algorithm based on the hierarchy of wrapped spheres shows the best results and the traditional grid-based algorithm gives the worst timings. For small systems, however, the grid-based algorithm and the one based on the wrapped sphere hierarchy are beneficial.


Assuntos
Algoritmos , Simulação de Dinâmica Molecular , Proteínas/metabolismo , Animais , Apoferritinas/química , Apoferritinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Vírus Bluetongue/química , Vírus Bluetongue/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Difusão , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Cavalos , Método de Monte Carlo , Ligação Proteica , Proteínas/química , Ribonucleases/química , Ribonucleases/metabolismo , Streptomyces/química , Streptomyces/enzimologia
14.
Vaccine ; 29(41): 7154-62, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21651936

RESUMO

Studies on a platform technology able to deliver low-cost viral capsomeres and virus-like particles are described. The technology involves expression of the VP1 structural protein from murine polyomavirus (MuPyV) in Escherichia coli, followed by purification using scaleable units and optional cell-free VLP assembly. Two insertion sites on the surface of MuPyV VP1 are exploited for the presentation of the M2e antigen from influenza and the J8 peptide from Group A Streptococcus (GAS). Results from testing on mice following subcutaneous administration demonstrate that VLPs are self adjuvating, that adding adjuvant to VLPs provides no significant benefit in terms of antibody titre, and that adjuvanted capsomeres induce an antibody titre comparable to VLPs but superior to unadjuvanted capsomere formulations. Antibodies raised against GAS J8 peptide following immunization with chimeric J8-VP1 VLPs are bactericidal against a GAS reference strain. E. coli is easily and widely cultivated, and well understood, and delivers unparalleled volumetric productivity in industrial bioreactors. Indeed, recent results demonstrate that MuPyV VP1 can be produced in bioreactors at multi-gram-per-litre levels. The platform technology described here therefore has the potential to deliver safe and efficacious vaccine, quickly and cost effectively, at distributed manufacturing sites including those in less developed countries. Additionally, the unique advantages of VLPs including their stability on freeze drying, and the potential for intradermal and intranasal administration, suggest this technology may be suited to numerous diseases where adequate response requires large-scale and low-cost vaccine manufacture, in a way that is rapidly adaptable to temporal or geographical variation in pathogen molecular composition.


Assuntos
Biotecnologia/métodos , Proteínas do Capsídeo/metabolismo , Tecnologia Farmacêutica/métodos , Virossomos/metabolismo , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antivirais/sangue , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas do Capsídeo/genética , Escherichia coli/genética , Feminino , Expressão Gênica , Engenharia Genética/métodos , Camundongos , Polyomavirus/genética , Polyomavirus/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus pyogenes/genética , Streptococcus pyogenes/imunologia , Vacinas Virossomais/administração & dosagem , Vacinas Virossomais/genética , Vacinas Virossomais/imunologia , Vacinas Virossomais/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/metabolismo , Virossomos/genética
15.
Structure ; 19(5): 652-61, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21565700

RESUMO

Unlike the multishelled viruses in the Reoviridae, cytoplasmic polyhedrosis virus (CPV) is single shelled, yet stable and fully capable of carrying out functions conserved within Reoviridae. Here, we report a 3.1 Å resolution cryo electron microscopy structure of CPV and derive its atomic model, consisting of 60 turret proteins (TPs), 120 each of capsid shell proteins (CSPs) and large protrusion proteins (LPPs). Two unique segments of CSP contribute to CPV's stability: an inserted protrusion domain interacting with neighboring proteins, and an N-anchor tying up CSPs together through strong interactions such as ß sheet augmentation. Without the need to interact with outer shell proteins, LPP retains only the N-terminal two-third region containing a conserved helix-barrel core and interacts exclusively with CSP. TP is also simplified, containing only domains involved in RNA capping. Our results illustrate how CPV proteins have evolved in a coordinative manner to economically carry out their conserved functions.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , RNA Viral/metabolismo , Reoviridae , Sequência de Aminoácidos , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Evolução Molecular , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estabilidade Proteica , Reoviridae/química , Reoviridae/metabolismo , Infecções por Reoviridae/virologia
16.
Transgenic Res ; 20(2): 271-82, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20563641

RESUMO

Certain types of human papillomaviruses (HPV) are causatively associated with cervical carcinoma, the second most common cancer in women worldwide. Due to limitations in the availability of currently used virus-like particle (VLP)-based vaccines against HPV to women of developing countries, where most cases of cervical cancer occur, the development of a cost-effective second-generation vaccine is a necessity. Capsomeres have recently been demonstrated to be highly immunogenic and to have a number of advantages as a potential cost-effective alternative to VLP-based HPV vaccines. We have expressed a mutated HPV-16 L1 (L1_2xCysM) gene that retained the ability to assemble L1 protein to capsomeres in tobacco chloroplasts. The recombinant protein yielded up to 1.5% of total soluble protein. The assembly of capsomeres was examined and verified by cesium chloride density gradient centrifugation and sucrose sedimentation analysis. An antigen capture enzyme-linked immunosorbent assay confirmed the formation of capsomeres by using a conformation-specific monoclonal antibody which recognized the conformational epitopes. Transplastomic tobacco plants exhibited normal growth and morphology, but all such lines showed male sterility in the T0, T1 and T2 generations. Taken together, these results indicate the possibility of producing a low-cost capsomere-based vaccine by plastids.


Assuntos
Proteínas do Capsídeo , Capsídeo/metabolismo , Cloroplastos/metabolismo , Nicotiana/metabolismo , Proteínas Oncogênicas Virais , Vacinas contra Papillomavirus/economia , Plantas Geneticamente Modificadas/genética , Montagem de Vírus , Capsídeo/imunologia , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Cloroplastos/virologia , Feminino , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Mutação , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/genética , Vacinas contra Papillomavirus/imunologia , Plantas Geneticamente Modificadas/imunologia , Nicotiana/genética , Nicotiana/virologia , Transgenes , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/metabolismo , Vírion/metabolismo
17.
Rapid Commun Mass Spectrom ; 24(20): 3033-3042, 2010 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-20872636

RESUMO

We have combined ion mobility spectrometry-mass spectrometry with tandem mass spectrometry to characterise large, non-covalently bound macromolecular complexes in terms of mass, shape (cross-sectional area) and stability (dissociation) in a single experiment. The results indicate that the quaternary architecture of a complex influences its residual shape following removal of a single subunit by collision-induced dissociation tandem mass spectrometry. Complexes whose subunits are bound to several neighbouring subunits to create a ring-like three-dimensional (3D) architecture undergo significant collapse upon dissociation. In contrast, subunits which have only a single neighbouring subunit within a complex retain much of their original shape upon complex dissociation. Specifically, we have determined the architecture of two transient, on-pathway intermediates observed during in vitro viral capsid assembly. Knowledge of the mass, stoichiometry and cross-sectional area of each viral assembly intermediate allowed us to model a range of potential structures based on the known X-ray structure of the coat protein building blocks. Comparing the cross-sectional areas of these potential architectures before and after dissociation provided tangible evidence for the assignment of the topologies of the complexes, which have been found to encompass both the 3-fold and the 5-fold symmetry axes of the final icosahedral viral shell. Such insights provide unique information about virus assembly pathways that could allow the design of anti-viral therapeutics directed at the assembly step. This methodology can be readily applied to the structural characterisation of many other non-covalently bound macromolecular complexes and their assembly pathways.


Assuntos
Proteínas do Capsídeo/química , Modelos Moleculares , Complexos Multiproteicos/química , Multimerização Proteica , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Proteínas do Capsídeo/metabolismo , Bovinos , Cristalografia por Raios X , Cavalos , Humanos , Levivirus , Conformação Molecular , Método de Monte Carlo , Complexos Multiproteicos/metabolismo , Proteínas/química , Proteínas/metabolismo
18.
J Gen Virol ; 90(Pt 3): 640-647, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19218209

RESUMO

Beak and feather disease virus (BFDV) is a significant pathogen of wild Australasian and African psittacine birds. We assessed the immunogenicity of recombinant BFDV capsid (recBFDVcap) to protect against the development of psittacine beak and feather disease (PBFD). Long-billed corellas (Cacatua tenuirostris) (n=13) received (by injection) 1 ml vaccine containing 10 microg recBFDVcap on day 0 and 0.4 ml vaccine containing 66.8 microg recBFDVcap on day 11. All vaccinated corellas and five non-vaccinated control corellas were given 0.4 ml BFDV suspension [titre=log(2) 12 haemagglutination units (HAU) 50 microl(-1)] intramuscularly and 0.1 ml orally 16 days after booster vaccination. Blood was collected during the vaccination period and blood and feathers were collected after BFDV administration. Testing of blood samples included BFDV DNA detection by PCR and quantitative PCR (qPCR) as well as antibody detection by haemagglutination inhibition (HI) and on feather samples, BFDV DNA and antigen was detected by haemagglutination (HA) and qPCR. Four of 97 blood samples collected from vaccinated birds after virus challenge tested positive by PCR, whereas 17 of 35 samples taken from non-vaccinated control corellas tested positive. Vaccinated birds did not develop feather lesions, had only transient PCR-detectable viraemia and had no evidence of persistent infection 270 days post-challenge using PCR, histopathology and immunohistochemistry. Non-vaccinated control corellas developed transient feather lesions and had PCR, HI and HA test results consistent with PBFD. They were BFDV PCR-positive for up to 41 days post-challenge and qPCR demonstrated reduced virus replication in vaccinated birds compared with non-vaccinated control birds.


Assuntos
Doenças das Aves/prevenção & controle , Proteínas do Capsídeo/imunologia , Infecções por Circoviridae/veterinária , Circovirus/imunologia , Cacatuas/virologia , Vacinas Sintéticas , Vacinas Virais , Animais , Anticorpos Antivirais/sangue , Baculoviridae/genética , Baculoviridae/metabolismo , Doenças das Aves/imunologia , Doenças das Aves/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/virologia , Circovirus/genética , Circovirus/isolamento & purificação , Circovirus/patogenicidade , DNA Viral/análise , DNA Viral/isolamento & purificação , Plumas/virologia , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Resultado do Tratamento , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologia , Replicação Viral
19.
Biophys J ; 90(9): 3029-42, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16473916

RESUMO

We present a generic computational framework for the simulation of viral capsid assembly which is quantitative and specific. Starting from PDB files containing atomic coordinates, the algorithm builds a coarse-grained description of protein oligomers based on graph rigidity. These reduced protein descriptions are used in an extended Gillespie algorithm to investigate the stochastic kinetics of the assembly process. The association rates are obtained from a diffusive Smoluchowski equation for rapid coagulation, modified to account for water shielding and protein structure. The dissociation rates are derived by interpreting the splitting of oligomers as a process of graph partitioning akin to the escape from a multidimensional well. This modular framework is quantitative yet computationally tractable, with a small number of physically motivated parameters. The methodology is illustrated using two different viruses which are shown to follow quantitatively different assembly pathways. We also show how in this model the quasi-stationary kinetics of assembly can be described as a Markovian cascading process, in which only a few intermediates and a small proportion of pathways are present. The observed pathways and intermediates can be related a posteriori to structural and energetic properties of the capsid oligomers.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Montagem de Vírus/fisiologia , Algoritmos , Capsídeo/fisiologia , Proteínas do Capsídeo/fisiologia , Biologia Computacional , Simulação por Computador , Cinética , Cadeias de Markov , Modelos Moleculares , Processos Estocásticos
20.
Transgenic Res ; 13(2): 165-79, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15198204

RESUMO

One of the major environmental safety issues over transgenic crops containing virus-derived genes relates to the outcome of recombination events between viral transgene transcripts and RNAs from indigenous virus populations. We addressed this issue by assessing the emergence of viable Grapevine fanleaf virus (GFLV) recombinants in transgenic grapevines expressing the GFLV coat protein (CP) gene. Test plants consisted of nontransgenic scions grafted onto transgenic and nontransgenic rootstocks that were exposed over 3 years to nematode-mediated GFLV infection in two distinct vineyard sites. The CP gene of challenging GFLV isolates was amplified from scions by IC-RT-PCR, and characterized by RFLP and nucleotide sequencing using strain F13 as reference since it provided the CP transgene. Analysis of EcoRI and StyI RFLP banding patterns from 347 challenging GFLV isolates and sequence data from 85 variants revealed no characteristics similar to strain F13 and no difference in the molecular variability among isolates from 190 transgenic and 157 nontransgenic plants, or from plants within (253 individuals) or outside (94 individuals) of the two sites. Interestingly, five GFLV recombinants were identified in three nontransgenic plants located outside of the two field settings. This survey indicates that transgenic grapevines did not assist the emergence of viable GFLV recombinants to detectable levels nor did they affect the molecular diversity of indigenous GFLV populations during the trial period. This is the first report on safety assessment of recombination with a transgenic crop expressing a CP gene under field conditions of heavy disease pressure but low, if any, selection pressure against recombinant viruses.


Assuntos
Proteínas do Capsídeo/genética , Vírus de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , Recombinação Genética , Vitis/genética , Vitis/virologia , Animais , Sequência de Bases , Proteínas do Capsídeo/metabolismo , Dados de Sequência Molecular , Nematoides/parasitologia , Doenças das Plantas/parasitologia , Polimorfismo de Fragmento de Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA