Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Anal Bioanal Chem ; 413(18): 4635-4644, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33735408

RESUMO

Pd-Ir nanocubes are promising peroxidase-mimicking nanozymes for immunoassays, enabled by their excellent stability, relatively high catalytic activity, and reproducible performance. A key step involved in the preparation of Pd-Ir nanocubes is the synthesis of Pd nanocubes. However, the traditional method to synthesize Pd nanocubes requires sophisticated and expensive equipment to precisely control the reaction temperature and highly skilled technicians to achieve satisfactory and reproducible product yields. Herein, we report a simple, cost-effective, high-yield (> 99%) and one-pot strategy to synthesize Pd nanocubes with sizes of 7, 18, and 51 nm for the preparation of Pd-Ir nanocubes. The resulting 18 nm Pd-Ir nanocubes display three orders of magnitude higher peroxidase activity compared to horseradish peroxidase, leading to a significantly increased detection sensitivity when applied in the immunoassay of nucleocapsid protein from SARS-CoV-2. Due to the simplicity in both material synthesis and assaying procedures and the excellent detection sensitivity, our method should allow for the generalized application of Pd-Ir nanocube-based immunoassays for the diagnosis of human diseases.


Assuntos
COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/química , Imunoensaio/métodos , Irídio/química , Paládio/química , SARS-CoV-2 , Anticorpos Antivirais , Análise Custo-Benefício , Humanos , Imunoensaio/economia , Estrutura Molecular , Nanoestruturas/química , Nanoestruturas/economia , Fosfoproteínas/química
2.
Anal Chem ; 93(3): 1826-1833, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33370087

RESUMO

Collection of nasopharyngeal samples using swabs followed by the transfer of the virus into a solution and an RNA extraction step to perform reverse transcription polymerase chain reaction (PCR) is the primary method currently used for the diagnosis of COVID-19. However, the need for several reagents and steps and the high cost of PCR hinder its worldwide implementation to contain the outbreak. Here, we report a cotton-tipped electrochemical immunosensor for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus antigen. Unlike the reported approaches, we integrated the sample collection and detection tools into a single platform by coating screen-printed electrodes with absorbing cotton padding. The immunosensor was fabricated by immobilizing the virus nucleocapsid (N) protein on carbon nanofiber-modified screen-printed electrodes which were functionalized by diazonium electrografting. The detection of the virus antigen was achieved via swabbing followed by competitive assay using a fixed amount of N protein antibody in the solution. A square wave voltammetric technique was used for the detection. The limit of detection for our electrochemical biosensor was 0.8 pg/mL for SARS-CoV-2, indicating very good sensitivity for the sensor. The biosensor did not show significant cross-reactivity with other virus antigens such as influenza A and HCoV, indicating high selectivity of the method. Moreover, the biosensor was successfully applied for the detection of the virus antigen in spiked nasal samples showing excellent recovery percentages. Thus, our electrochemical immunosensor is a promising diagnostic tool for the direct rapid detection of the COVID-19 virus that requires no sample transfer or pretreatment.


Assuntos
COVID-19/diagnóstico , Fibra de Algodão , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , SARS-CoV-2/isolamento & purificação , Anticorpos Antivirais/imunologia , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Carbono/química , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Técnicas Eletroquímicas/instrumentação , Eletrodos , Gossypium/química , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/imunologia , Imunoensaio/instrumentação , Limite de Detecção , Nanofibras/química , Fosfoproteínas/química , Fosfoproteínas/imunologia , SARS-CoV-2/imunologia
3.
Bioorg Chem ; 104: 104257, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32927129

RESUMO

BACKGROUND: Oseltamivir is a first-line antiviral drug, especially in primary hospitals. During the ongoing outbreak of coronavirus disease 2019 (COVID-19), most patients with COVID-19 who are symptomatic have used oseltamivir. Considering its popular and important role as an antiviral drug, it is necessary to evaluate oseltamivir in the treatment of COVID-19. OBJECTIVE: To evaluate the effect of oseltamivir against COVID-19. METHODS: Swiss-model was used to construct the structure of the N-terminal RNA-binding domain (NRBD) of the nucleoprotein (NC), papain-like protease (PLpro), and RNA-directed RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). TM-align program was performed to compare the structure of the viral proteins with the structure of the neuraminidase of influenza A. Molecular docking was used to analyze the theoretical possibility of effective binding of oseltamivir with the active centers of the viral proteins. In vitro study was used to evaluate the antiviral efficiency of oseltamivir against SARS-CoV-2. By clinical case analysis, we statistically evaluated whether the history of oseltamivir use influenced the progression of the disease. RESULTS: The structures of NRBD, PLpro, and RdRp were built successfully. The results from TM-align suggested that the S protein, NRBD, 3C-like protease (3CLpro), PLPrO, and RdRp were structurally similar to the influenza A neuraminidase, with TM-scores of 0.30077, 0.19254, 0.28766, 0.30666, and 0.34047, respectively. Interestingly, the active center of 3CL pro was found to be similar to the active center from the neuraminidase of influenza A. Through an analysis of molecular docking, we discovered that oseltamivir carboxylic acid was more favorable to bind to the active site of 3CLpro effectively, but its inhibitory effect was not strong compared with the positive group. Finally, we used in vitro study and retrospective case analysis to verify our speculations. We found that oseltamivir is ineffective against SARS-CoV-2 in vitro study and the clinical use of oseltamivir did not improve the patients' symptoms and signs and did not slow the disease progression. CONCLUSIONS: We consider that oseltamivir isn't suitable for the treatment of COVID-19. During the outbreak of novel coronavirus, when oseltamivir is not effective for the patients after they take it, health workers should be highly vigilant about the possibility of COVID-19.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Oseltamivir/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Adulto , Idoso , Animais , Antivirais/química , Antivirais/metabolismo , Domínio Catalítico , Chlorocebus aethiops , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Cisteína Proteinase/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Oseltamivir/química , Oseltamivir/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Ligação Proteica , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Estudos Retrospectivos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA