RESUMO
PURPOSE: Here, we evaluate a PET displacement model with a Single-step and Numerical solution in healthy individuals using the synaptic vesicle glycoprotein (SV2A) PET-tracer [11C]UCB-J and the anti-seizure medication levetiracetam (LEV). We aimed to (1) validate the displacement model by comparing the brain LEV-SV2A occupancy from a single PET scan with the occupancy derived from two PET scans and the Lassen plot and (2) determine the plasma LEV concentration-SV2A occupancy curve in healthy individuals. METHODS: Eleven healthy individuals (five females, mean age 35.5 [range: 25-47] years) underwent two 120-min [11C]UCB-J PET scans where an LEV dose (5-30 mg/kg) was administered intravenously halfway through the first PET scan to partially displace radioligand binding to SV2A. Five individuals were scanned twice on the same day; the remaining six were scanned once on two separate days, receiving two identical LEV doses. Arterial blood samples were acquired to determine the arterial input function and plasma LEV concentrations. Using the displacement model, the SV2A-LEV target engagement was calculated and compared with the Lassen plot method. The resulting data were fitted with a single-site binding model. RESULTS: SV2A occupancies and VND estimates derived from the displacement model were not significantly different from the Lassen plot (p = 0.55 and 0.13, respectively). The coefficient of variation was 14.6% vs. 17.3% for the Numerical and the Single-step solution in Bland-Altman comparisons with the Lassen plot. The average half maximal inhibitory concentration (IC50), as estimated from the area under the curve of the plasma LEV concentration, was 12.5 µg/mL (95% CI: 5-25) for the Single-Step solution, 11.8 µg/mL (95% CI: 4-25) for the Numerical solution, and 6.3 µg/mL (95% CI: 0.08-21) for the Lassen plot. Constraining Emax to 100% did not significantly improve model fits. CONCLUSION: Plasma LEV concentration vs. SV2A occupancy can be determined in humans using a single PET scan displacement model. The average concentration of the three computed IC50 values ranges between 6.3 and 12.5 µg/mL. The next step is to use the displacement model to evaluate LEV occupancy and corresponding plasma concentrations in relation to treatment efficacy. CLINICAL TRIAL REGISTRATION: NCT05450822. Retrospectively registered 5 July 2022 https://clinicaltrials.gov/ct2/results? term=NCT05450822&Search=Search.
Assuntos
Encéfalo , Levetiracetam , Tomografia por Emissão de Pósitrons , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Levetiracetam/administração & dosagem , Levetiracetam/farmacocinética , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Piridinas/administração & dosagem , Piridinas/farmacocinética , Pirrolidinonas/administração & dosagem , Pirrolidinonas/farmacocinética , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Estudos ProspectivosRESUMO
Assessing and responding to threats is vital in everyday life. Unfortunately, many mental illnesses involve impaired risk assessment, affecting patients, families, and society. The brain processes behind these behaviors are not well understood. We developed a transgenic mouse model (disrupted-in-schizophrenia 1 [DISC1]-N) with a disrupted avoidance response in risky settings. Our study utilized single-nucleus RNA sequencing and path-clamp coupling with real-time RT-PCR to uncover a previously undescribed group of glutamatergic neurons in the basolateral amygdala (BLA) marked by Wolfram syndrome 1 (WFS1) expression, whose activity is modulated by adjacent astrocytes. These neurons in DISC1-N mice exhibited diminished firing ability and impaired communication with the astrocytes. Remarkably, optogenetic activation of these astrocytes reinstated neuronal excitability via D-serine acting on BLAWFS1 neurons' NMDA receptors, leading to improved risk-assessment behavior in the DISC1-N mice. Our findings point to BLA astrocytes as a promising target for treating risk-assessment dysfunctions in mental disorders.
Assuntos
Astrócitos , Complexo Nuclear Basolateral da Amígdala , Camundongos Transgênicos , Proteínas do Tecido Nervoso , Neurônios , Animais , Astrócitos/metabolismo , Camundongos , Neurônios/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Optogenética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Masculino , Assunção de Riscos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BLRESUMO
OBJECTIVE: Multimodal imaging techniques have furthered our understanding of how different aspects of Alzheimer's disease (AD) pathology relate to one another. Diffusion tensor imaging (DTI) measures such as mean diffusivity (MD) may be a surrogate measure of the changes in gray matter structure associated with AD. Positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) has been used to quantify synaptic loss, which is the major pathological correlate of cognitive impairment in AD. In this study, we investigated the relationship between gray matter microstructure and synaptic density. METHODS: DTI was used to measure MD and [11C]UCB-J PET to measure synaptic density in 33 amyloid-positive participants with AD and 17 amyloid-negative cognitively normal (CN) participants aged 50-83. Univariate regression analyses were used to assess the association between synaptic density and MD in both the AD and CN groups. RESULTS: Hippocampal MD was inversely associated with hippocampal synaptic density in participants with AD (r = -0.55, p <0.001, df = 31) but not CN (r = 0.13, p = 0.62, df = 15). Exploratory analyses across other regions known to be affected in AD suggested widespread inverse associations between synaptic density and MD in the AD group. CONCLUSION: In the setting of AD, an increase in gray matter MD is inversely associated with synaptic density. These co-occurring changes may suggest a link between synaptic loss and gray matter microstructural changes in AD. Imaging studies of gray matter microstructure and synaptic density may allow important insights into AD-related neuropathology.
Assuntos
Doença de Alzheimer , Substância Branca , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Imagem de Tensor de Difusão , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Tomografia por Emissão de Pósitrons/métodos , Imagem Multimodal , Encéfalo/metabolismo , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso/metabolismoRESUMO
BACKGROUND: Cerebral glucose hypometabolism is consistently observed in individuals with Alzheimer's disease (AD), as well as in young cognitively normal carriers of the Ε4 allele of Apolipoprotein E (APOE), the strongest genetic predictor of late-onset AD. While this clinical feature has been described for over two decades, the mechanism underlying these changes in cerebral glucose metabolism remains a critical knowledge gap in the field. METHODS: Here, we undertook a multi-omic approach by combining single-cell RNA sequencing (scRNAseq) and stable isotope resolved metabolomics (SIRM) to define a metabolic rewiring across astrocytes, brain tissue, mice, and human subjects expressing APOE4. RESULTS: Single-cell analysis of brain tissue from mice expressing human APOE revealed E4-associated decreases in genes related to oxidative phosphorylation, particularly in astrocytes. This shift was confirmed on a metabolic level with isotopic tracing of 13C-glucose in E4 mice and astrocytes, which showed decreased pyruvate entry into the TCA cycle and increased lactate synthesis. Metabolic phenotyping of E4 astrocytes showed elevated glycolytic activity, decreased oxygen consumption, blunted oxidative flexibility, and a lower rate of glucose oxidation in the presence of lactate. Together, these cellular findings suggest an E4-associated increase in aerobic glycolysis (i.e. the Warburg effect). To test whether this phenomenon translated to APOE4 humans, we analyzed the plasma metabolome of young and middle-aged human participants with and without the Ε4 allele, and used indirect calorimetry to measure whole body oxygen consumption and energy expenditure. In line with data from E4-expressing female mice, a subgroup analysis revealed that young female E4 carriers showed a striking decrease in energy expenditure compared to non-carriers. This decrease in energy expenditure was primarily driven by a lower rate of oxygen consumption, and was exaggerated following a dietary glucose challenge. Further, the stunted oxygen consumption was accompanied by markedly increased lactate in the plasma of E4 carriers, and a pathway analysis of the plasma metabolome suggested an increase in aerobic glycolysis. CONCLUSIONS: Together, these results suggest astrocyte, brain and system-level metabolic reprogramming in the presence of APOE4, a 'Warburg like' endophenotype that is observable in young females decades prior to clinically manifest AD.
Assuntos
Aerobiose , Apolipoproteína E4/fisiologia , Glucose/metabolismo , Glicólise , Sintomas Prodrômicos , Adolescente , Adulto , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Apolipoproteína E4/genética , Astrócitos/metabolismo , Sequência de Bases , Química Encefálica , Células Cultivadas , Diagnóstico Precoce , Metabolismo Energético , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Técnicas de Introdução de Genes , Humanos , Metabolômica , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oxirredução , Fosforilação Oxidativa , Consumo de Oxigênio/genética , Caracteres Sexuais , Análise de Célula Única , Adulto JovemRESUMO
MUSASHI (MSI) family plays the main role in the spermatogenesis process. The purpose of this study was the assessment of sperm MSI1 and MSI2, and sperm functional tests in infertile men (n = 30) with varicocele and fertile men (n = 30). Furthermore, MSI1 and MSI2 proteins were assessed in testicular tissue of azoospermic men (n = 9) as well as epididymal spermatozoa and testis of mice. Expression of MSI1 and MSI2 was assessed at RNA and protein levels in human spermatozoa. Sperm concentration and motility were significantly lower, while abnormal sperm morphology, lipid peroxidation, DNA fragmentation and protamine deficiency were significantly higher in men with varicocele compared to fertile individuals. Any significant difference was not observed in the expression of MSI1 and MSI2 mRNA between the two groups. Unlike MSI1 protein that was not detectable in humans, the relative expression of MSI2 protein was similar in varicocele and fertile individuals. The expression level of both Msi1 and Msi2 proteins was also observable in mouse spermatozoa. No significant relationship was observed between sperm functional parameters with expression of these genes. The data of this study demonstrated that although MSI1 and MSI2 play important roles during spermatogenesis, their relative expression in spermatozoa was not affected by varicocele.
Assuntos
Infertilidade Masculina , Varicocele , Animais , Humanos , Infertilidade Masculina/genética , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/genética , Espermatogênese , Espermatozoides/metabolismo , Testículo/metabolismo , Varicocele/genéticaRESUMO
Although mammograms play a key role in early breast cancer detection, the test is not applicable to all women, for example, women under the age of 40. The development of a noninvasive blood test with high sensitivity and accessibility will improve the effectiveness of breast cancer screening programmes. Secretory factors released from cancer cells can induce the expression of certain genes in a large number of white blood cells (WBCs). Therefore, cancer-dependent proteins in WBCs can be used as tumour markers with high sensitivity. Five proteins (LMAN1, AZI2, STAU2, MMP9 and PLOD1) from a systemic analysis of a variety of array data of breast cancer patients were subjected to immunofluorescence staining to evaluate the presence of fixed WBCs on 96-well plates from 363 healthy females and 358 female breast cancer patients. The results revealed that the average fluorescence intensity of anti-STAU2 and the percentage of STAU2-positive T and B lymphocytes in breast cancer patients (110.50 ± 23.38 and 61.87 ± 12.44, respectively) were significantly increased compared with those in healthy females (56.47 ± 32.03 and 33.02 ± 18.10, respectively) (p = 3.56 × 10-71, odds ratio = 24.59, 95% CI = 16.64-36.34). The effect of secreted molecules from breast cancer cells was proven by the increase in STAU2 intensity in PBMCs cocultured with MCF-7 and T47D cells at 48 h (p = 0.0289). The test demonstrated 98.32%, 82.96%, and 48.32% sensitivity and 56.47%, 83.47%, and 98.62% specificity in correlation with the percentage of STAU2-positive cells at 40, 53.34 and 63.38, respectively. We also demonstrated how to use the STAU2 test for the assessment of risk in women under the age of 40. STAU2 is a novel breast cancer marker that can be assessed by quantitative immunofluorescence staining of fixed WBCs that are transportable at room temperature via mail, representing a useful risk assessment tool for women without access to mammograms.
Assuntos
Neoplasias da Mama/metabolismo , Proteínas do Tecido Nervoso/análise , Proteínas de Ligação a RNA/análise , Medição de Risco/métodos , Adulto , Biomarcadores Tumorais/sangue , Neoplasias da Mama/fisiopatologia , Feminino , Células HeLa , Humanos , Linfócitos/metabolismo , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de RiscoRESUMO
Intratumor heterogeneity of colorectal cancers (CRCs) is manifested both at the genomic and epigenomic levels. Early genetic aberrations in carcinogenesis are clonal and present throughout the tumors, but less is known about the heterogeneity of the epigenetic CpG island methylator phenotype (CIMP). CIMP characterizes a subgroup of CRCs thought to originate from specific precursor lesions, and it is defined by widespread DNA methylation within promoter regions. In this work, we investigated CIMP in two to four multiregional samples from 30 primary tumors (n = 86 samples) using the consensus Weisenberger gene panel (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1). Twenty-nine of 30 tumors (97%) showed concordant CIMP status in all samples, and percent methylated reference (PMR) values of all five markers had higher intertumor than intratumor variation (P value = 1.5e-09). However, a third of the CIMP+ tumors exhibited discrepancies in methylation status in at least one of the five gene markers. To conclude, CIMP status was consistent within primary CRCs, and it is likely a clonal phenotype. However, spatial discordances of the individual genes suggest that large-scale analysis of multiregional samples could be of interest for identifying CIMP markers that are robust to intratumor heterogeneity.
Assuntos
Biomarcadores Tumorais/metabolismo , Ilhas de CpG/genética , Metilação de DNA , Idoso , Idoso de 80 Anos ou mais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores Tumorais/genética , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Neoplasias Colorretais/patologia , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Feminino , Humanos , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismoRESUMO
Injury of the tooth pulp is excruciatingly painful and yet the receptors and neural circuit mechanisms that transmit this form of pain remain poorly defined in both the clinic and preclinical rodent models. Easily quantifiable behavioral assessment in the mouse orofacial area remains a major bottleneck in uncovering molecular mechanisms that govern inflammatory pain in the tooth. In this study we sought to address this problem using the Mouse Grimace Scale and a novel approach to the application of mechanical Von Frey hair stimuli. We use a dental pulp injury model that exposes the pulp to the outside environment, a procedure we have previously shown produces inflammation. Using RNAscope technology, we demonstrate an upregulation of genes that contribute to the pain state in the trigeminal ganglia of injured mice. We found that mice with dental pulp injury have greater Mouse Grimace Scores than sham within 24 hours of injury, suggestive of spontaneous pain. We developed a scoring system of mouse refusal to determine thresholds for mechanical stimulation of the face with Von Frey filaments. This method revealed that mice with a unilateral dental injury develop bilateral mechanical allodynia that is delayed relative to the onset of spontaneous pain. This work demonstrates that tooth pain can be quantified in freely behaving mice using approaches common for other types of pain assessment. Harnessing these assays in the orofacial area during gene manipulation should assist in uncovering mechanisms for tooth pulp inflammatory pain and other forms of trigeminal pain.
Assuntos
Polpa Dentária/fisiopatologia , Hiperalgesia/diagnóstico , Proteínas do Tecido Nervoso/genética , Medição da Dor/métodos , Dor/diagnóstico , Traumatismos Dentários/diagnóstico , Animais , Comportamento Animal , Polpa Dentária/lesões , Polpa Dentária/inervação , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Dor/genética , Dor/fisiopatologia , Índice de Gravidade de Doença , Traumatismos Dentários/genética , Traumatismos Dentários/fisiopatologia , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/fisiopatologiaRESUMO
Energy metabolism and bone homeostasis share several neuronal regulatory pathways. Within the ventral hypothalamus (VHT), the orexigenic neurons co-express Agouti-related peptide (AgRP) and neuropeptide Y (NPY) and the anorexigenic neurons co-express, α-melanocyte stimulating hormone derived from proopiomelanocortin (POMC), and cocaine and amphetamine-regulated transcript (CART). These neurons regulate both processes, yet their relative contribution is unknown. Previously, using genetically targeted activator protein (AP1) alterations as a tool, we showed in adult mice that AgRP or POMC neurons are capable of inducing whole-body energy catabolism and bone accrual, with different effects on bone resorption. Here, we investigated whether co-residing neurons exert similar regulatory effects. We show that AP1 antagonists targeted to NPY-producing or CART-producing neurons in adult mice stimulate energy expenditure, reduce body weight gain and adiposity and promote trabecular bone formation and mass, yet again via different effects on bone resorption, as measured by serum level of carboxy-terminal collagen type I crosslinks (CTX). In addition, AP1 antagonists promote neurite expansion, increasing neurite number, length, and surface area in primary hypothalamic neuronal cultures. Overall, our data demonstrate that the orexigenic NPY and anorexigenic CART neurons both have the capacity to stimulate energy burning state and increase bone mass. © 2020 American Society for Bone and Mineral Research.
Assuntos
Reabsorção Óssea , Proteínas do Tecido Nervoso , Neuropeptídeo Y , Fator de Transcrição AP-1/antagonistas & inibidores , Proteína Relacionada com Agouti/metabolismo , Animais , Osso Esponjoso/metabolismo , Metabolismo Energético , Hipotálamo/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismoRESUMO
Molecular subtyping of medulloblastoma (MB) has become increasingly important for prognosis and management. Typically this involves detailed molecular genetic testing which may not be available in all centers. The purpose of the present study was to find a simplified approach to assign molecular subtypes of MB for routine use in centers with more limited resources. The molecular subtypes of MBs from 32 Thai patients, aged 0.5 to 35 years, were first determined by NanoString. These results were then compared with those obtained using a combination of limited immunohistochemistry (IHC) (ß-catenin, GAB-1, YAP-1, p75-NGFR, OTX2) and CTNNTB exon 3 mutation analysis. By NanoString assay, there were 6 MBs (19%) in the wingless (WNT) group, 8 (25%) in the sonic hedgehog (SHH) group, 7 (22%) in group 3, and 11 (34%) in group 4. Although ß-catenin immunostaining missed 4/6 WNT MBs, CTNNTB mutation analysis confirmed all WNT MB cases with amplifiable DNA. The IHC panel correctly assigned all the other molecular subtypes, except for 1 MB in group 4. Thus, our protocol was able to correctly categorized 31/32 cases or 97% of cases. Our study is the first to report molecular subtypes of MB in Southeast Asia. We found that molecular subgroups of MBs can be reliably assigned using a limited IHC panel of ß-catenin, GAB-1, YAP-1, p75-NGFR, OTX2, together with CTNNTB exon 3 mutation analysis. This simplified approach incurs lower cost and faster turnaround time compared with more elaborate molecular methodologies and should be beneficial to centers with reduced laboratory resources.
Assuntos
Neoplasias Cerebelares/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/metabolismo , Criança , Pré-Escolar , Éxons , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Proteínas Hedgehog/genética , Humanos , Imuno-Histoquímica , Lactente , Masculino , Meduloblastoma/diagnóstico , Meduloblastoma/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Reação em Cadeia da Polimerase , Prognóstico , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Tailândia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Wnt/genética , Proteínas de Sinalização YAP , beta Catenina/metabolismoRESUMO
11C-UCB-J is a positron emission tomography (PET) radioligand that has been used in humans for synaptic vesicle glycoprotein 2A (SV2A) imaging and as a potential synaptic density marker. The centrum semiovale (CS) is a proposed reference region for noninvasive quantification of 11C-UCB-J, due to negligible concentrations of SV2A in this region in baboon brain assessed by in vitro methods. However, in displacement scans with SV2A-specific drug levetiracetam in humans, a decrease in 11C-UCB-J concentration was observed in the CS, consistent with some degree of specific binding. The current study aims to validate the CS as a reference region by (1) optimizing CS region of interest (ROI) to minimize spill-in from gray matter with high radioactivity concentrations; (2) investigating convergence of CS ROI values using ordered subset expectation maximization (OS-EM) reconstruction, and (3) comparing baseline CS volume of distribution (VT) to nondisplaceable uptake in gray matter, VND. Improving ROI definition and increasing OS-EM iterations during reconstruction decreased the difference between CS VT and VND. However, even with these corrections, CS VT overestimated VND by â¼35-40%. These measures showed significant correlation, suggesting that, though biased, the CS may be a useful estimate of nondisplaceable uptake, allowing for noninvasive quantification for SV2A PET.
Assuntos
Substância Branca/diagnóstico por imagem , Adulto , Idoso , Algoritmos , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Levetiracetam/farmacologia , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Padrões de Referência , Substância Branca/efeitos dos fármacosRESUMO
Alzheimer's disease is a major neurodegenerative illness whose prevalence is increasing worldwide but the molecular mechanism remains unclear. There is some scientific evidence that the molecular complexity of Alzheimer's pathophysiology is associated with the formation of extracellular amyloid-beta plaques in the brain. A novel cross- phenotype association analysis of imaging genetics reported a brain atrophy susceptibility gene, namely FAM222A and the protein Aggregatin encoded by FAM222A interacts with amyloid-beta (A?)-peptide (1-42) through its N-terminal A? binding domain and facilitates A? aggregation. The function of Aggregatin protein is unknown, and its three-dimensional structure has not been analyzed experimentally yet. Our goal was to investigate the interaction of Aggregatin with A? in detail by in silico analysis, including the 3D structure prediction analysis of Aggregatin protein by homology modeling. Our analysis verified the interaction of the C-terminal domain of model protein with the N-terminal domain of A?. This is the first attempt to demonstrate the interaction of Aggregatin with the A?. These results confirmed in vitro and in vivo study reports claiming FAM222A helping to ease the aggregating of the A?-peptide.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Proteínas Amiloidogênicas/química , Humanos , Simulação de Acoplamento Molecular , Proteínas do Tecido Nervoso/química , Ligação Proteica , Domínios ProteicosRESUMO
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system. Nearly 85% of MS patients are recognized with relapsing-remitting MS (RRMS), a typical clinical course of disease which is distinguished by several episodes of relapses, separated by remissions of neurological impairment. Failure of repair mechanisms is a main factor in progression of neurological dysfunction in MS. Several lines of evidence suggest that Reelin (RELN) signaling pathway can contribute in the regulation of repair mechanisms in MS patients. In the present study, we assessed expression levels of RELN and Disabled-1 (DAB1), two key genes in RELN signaling pathway, in peripheral blood of 50 RRMS patients and 50 matched healthy subjects. RELN was significantly down-regulated in total MS patients, and total female patients compared with the matched controls. However, no statistically significant difference was found in DAB1 mRNA expression between MS patients and controls. Furthermore, considerable correlations were detected between expression levels of RELN and DAB1 in the patients group. There were no significant correlations between expression levels of genes and EDSS, disease duration or age at onset. Our study provides evidences for the role of RELN signaling pathway in the pathogenesis of MS. Further studies are required to clarify the exact clinical significance of this pathway in MS patients.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Esclerose Múltipla Recidivante-Remitente/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Estudos de Casos e Controles , Moléculas de Adesão Celular Neuronais/genética , Regulação para Baixo , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/genética , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , Proteína Reelina , Serina Endopeptidases/genética , Transdução de SinaisRESUMO
Cocaine- and amphetamine-regulated transcript (CART) is widely expressed in the hypothalamus and an important regulator of energy homeostasis; however, the specific contributions of different CART neuronal populations to this process are not known. Here, we show that depolarization of mouse arcuate nucleus (Arc) CART neurons via DREADD technology decreases energy expenditure and physical activity, while it exerts the opposite effects in CART neurons in the lateral hypothalamus (LHA). Importantly, when stimulating these neuronal populations in the absence of CART, the effects were attenuated. In contrast, while activation of CART neurons in the LHA stimulated feeding in the presence of CART, endogenous CART inhibited food intake in response to Arc CART neuron activation. Taken together, these results demonstrate anorexigenic but anabolic effects of CART upon Arc neuron activation, and orexigenic but catabolic effects upon LHA-neuron activation, highlighting the complex and nuclei-specific functions of CART in controlling feeding and energy homeostasis.
Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético , Região Hipotalâmica Lateral/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Comportamento Animal , Temperatura Corporal/efeitos dos fármacos , Clozapina/análogos & derivados , Clozapina/farmacologia , Dependovirus/metabolismo , Ingestão de Alimentos , Metabolismo Energético/efeitos dos fármacos , Injeções , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurotransmissores/metabolismo , Condicionamento Físico Animal , Reprodutibilidade dos Testes , Aumento de Peso/efeitos dos fármacosRESUMO
Early life inadequate nutrition triggers developmental adaptations and adult chronic disease. Maternal high-fat (HF) diet promotes visceral obesity and hypothalamic leptin resistance in male rat offspring at weaning and adulthood. Obesity is related to over active endocannabinoid system (ECS). The ECS consists mainly of endogenous ligands, cannabinoid receptors (CB1 and CB2), and the enzymes fatty acid anandamide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). We hypothesized that perinatal maternal HF diet would regulate offspring ECS in hypothalamus and brown adipose tissue (BAT) at birth, prior to visceral obesity development, and program food preference and energy expenditure of adult offspring. Female rats received control diet (C, 9% fat) or isocaloric high-fat diet (HF, 28% fat) for 8 weeks before mating, and throughout gestation and lactation. We evaluated C and HF offspring at birth and adulthood. At birth, maternal HF diet decreased leptinemia and increased hypothalamic CB1, orexin-A, and proopiomelanocortin while it decreased thyrotropin-releasing hormone (Trh) in male pups. Differentially, maternal HF diet increased hypothalamic CB2 in female pups. In BAT, maternal HF diet decreased CB1 and increased CB2 in male and female pups, respectively. Besides presenting different molecular ECS profile at birth, HF adult offspring developed overweight, higher adiposity and high-fat diet preference, independently of the sex, but only males presented hyperleptinemia and higher energy expenditure. In conclusion, maternal HF diet alters ECS components and energy metabolism targets in hypothalamus and BAT of offspring at birth, in a sex-specific manner, which may contribute for hyperphagia, food preference and higher adiposity later in life.
Assuntos
Tecido Adiposo Marrom/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/patologia , Adiposidade , Animais , Animais Recém-Nascidos , Comportamento Animal , Metabolismo Energético , Feminino , Desenvolvimento Fetal , Preferências Alimentares , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/patologia , Lactação , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Gravidez , Distribuição Aleatória , Ratos Wistar , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Caracteres SexuaisRESUMO
The distribution of DARPP-32 (a phosphoprotein related to the dopamine D1 receptor) has been widely used as a means to clarify the brain regions with dopaminoceptive cells, primarily in representative species of tetrapods. The relationship between dopaminergic and dopaminoceptive elements is frequently analyzed using the catecholamine marker tyrosine hydroxylase (TH). In the present study, by means of combined immunohistochemistry, we have analyzed these relationships in lungfishes, the only group of sarcopterygian fishes represented by 6 extant species that are the phylogenetically closest living relatives of tetrapods. We used the Australian lungfish Neoceratodus forsteri and the African lungfish Protopterus dolloi. The DARPP-32 antibody yields a distinct and consistent pattern of neuronal staining in brain areas that, in general, coincide with areas that are densely innervated by TH-immunoreactive fibers. The striatum, thalamus, optic tectum, and torus semicircularis contain intensely DARPP-32-immunoreactive cell bodies and fibers. Cells are also located in the olfactory bulbs, amygdaloid complex, lateral septum, pallidum, preoptic area, suprachiasmatic nucleus, tuberal hypothalamic region, rostral rhombencephalic reticular formation, superior raphe nucleus, octavolateral area, solitary tract nucleus, and spinal cord. Remarkably, DARPP-32-immunoreactive fibers originating in the striatum reach the region of the dopaminergic cells in the mesencephalic tegmentum and represent a well-established striatonigral pathway in lungfishes. Double immunolabeling reveals that DARPP-32 is present in neurons that most likely receive TH input, but it is absent from the catecholaminergic neurons themselves, with the only exception of a few cells in the suprachiasmatic nucleus of Neoceratodus and the solitary tract nucleus of Protopterus. In addition, some species differences exist in the localization of DARPP-32 cells in the pallium, lateral amygdala, thalamus, prethalamus, and octavolateral area. In general, the present study demonstrates that the distribution pattern of DARPP-32, and its relationship with TH, is largely comparable to those reported for tetrapods, highlighting a shared situation among all sarcopterygians.
Assuntos
Fosfoproteína 32 Regulada por cAMP e Dopamina/fisiologia , Peixes/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Química Encefálica , Catecolaminas/metabolismo , Dopamina/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Peixes/genética , Hipotálamo/metabolismo , Imuno-Histoquímica/métodos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fosfoproteínas , Medula Espinal , Tálamo/metabolismoRESUMO
BACKGROUND: Primary culture of postnatal central neurons is a widely used methodology for applications such as the investigation of neuronal development, protein trafficking/distribution and cellular signalling. However, successful production and maintenance of such cultures, particularly from postnatal animals, can be challenging. In attempting to surmount these difficulties, several disparate culturing methodologies have been developed. Such methodologies are centred on the identification and optimisation of critical steps and, as such, the protocols and reagents utilised can differ quite markedly from protocol to protocol, often with the suggestion that the use of a (usually expensive) proprietary reagent(s), lengthy substrate preparation and/or cell isolation techniques is/are necessary for successful culture preparation. NEW METHOD: Herein, we present a simple and inexpensive protocol for the preparation of primary hippocampal neurons from postnatal (2-5 day old) mice, which remain viable for experimental use for over one month. RESULTS: Neurons cultured using this method follow well established developmental norms and display typical responses to standard physiological stimuli such as depolarisation and certain pharmacological agents. COMPARISON WITH EXISTING METHODS/CONCLUSION: By using a novel trituration technique, simplified methodology and non-proprietary reagents, we have developed a reliable protocol that enables the cost effective and efficient production of high quality postnatal mouse hippocampal cultures. This method, if required, can also be utilised to prepare neurons both from other regions of the brain as well as from other species such as rat.
Assuntos
Técnicas de Cultura de Células/métodos , Hipocampo/citologia , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/fisiologia , Sinapsinas/metabolismo , Fatores de TempoRESUMO
Tissue macrophages provide immunological defense and contribute to the establishment and maintenance of tissue homeostasis. Here we used constitutive and inducible mutagenesis to delete the nuclear transcription regulator Mecp2 in macrophages. Mice that lacked the gene encoding Mecp2, which is associated with Rett syndrome, in macrophages did not show signs of neurodevelopmental disorder but displayed spontaneous obesity, which was linked to impaired function of brown adipose tissue (BAT). Specifically, mutagenesis of a BAT-resident Cx3Cr1+ macrophage subpopulation compromised homeostatic thermogenesis but not acute, cold-induced thermogenesis. Mechanistically, malfunction of BAT in pre-obese mice with mutant macrophages was associated with diminished sympathetic innervation and local titers of norepinephrine, which resulted in lower expression of thermogenic factors by adipocytes. Mutant macrophages overexpressed the signaling receptor and ligand PlexinA4, which might contribute to the phenotype by repulsion of sympathetic axons expressing the transmembrane semaphorin Sema6A. Collectively, we report a previously unappreciated homeostatic role for macrophages in the control of tissue innervation. Disruption of this circuit in BAT resulted in metabolic imbalance.
Assuntos
Tecido Adiposo Marrom/imunologia , Macrófagos/imunologia , Proteína 2 de Ligação a Metil-CpG/genética , Sistema Nervoso Simpático/metabolismo , Termogênese/imunologia , Adipócitos Marrons , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Animais , Axônios/metabolismo , Receptor 1 de Quimiocina CX3C , Metabolismo Energético/imunologia , Citometria de Fluxo , Homeostase , Immunoblotting , Macrófagos/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/metabolismo , Norepinefrina/metabolismo , Obesidade/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/metabolismo , Receptores de Quimiocinas/metabolismo , Semaforinas/metabolismoRESUMO
Estrogen receptors (ERs) α and ß are distributed in most tissues of women and men. ERs are bound by estradiol (E2), a natural hormone, and mediate the pleiotropic and tissue-specific effects of E2, such as proliferation of breast epithelial cells or protection and differentiation of neuronal cells. Numerous environmental molecules, called endocrine disrupting compounds, also interact with ERs. Phytoestrogens belong to this large family and are considered potent therapeutic molecules that act through their selective estrogen receptor modulator (SERM) activity. Using breast cancer cell lines as a model of estrogen-dependent proliferation and a stably ER-expressing PC12 cell line as a model of neuronal differentiating cells, we studied the SERM activity of major dietary compounds, such as apigenin, liquiritigenin, daidzein, genistein, coumestrol, resveratrol and zearalenone. The ability of these compounds to induce ER-transactivation and breast cancer cell proliferation and enhance Nerve Growth Factor (NGF) -induced neuritogenesis was assessed. Surprisingly, although all compounds were able to activate the ER through an estrogen responsive element reporter gene, they showed differential activity toward proliferation or differentiation. Apigenin and resveratrol showed a partial or no proliferative effect on breast cancer cells but fully contributed to the neuritogenesis effect of NGF. However, daidzein and zearalenone showed full effects on cellular proliferation but did not induce cellular differentiation. In summary, our results suggest that the therapeutic potential of phytoestrogens can diverge depending on the molecule and the phenotype considered. Hence, apigenin and resveratrol might be used in the development of therapeutics for breast cancer and brain diseases.
Assuntos
Neoplasias das Glândulas Suprarrenais/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Dieta , Neurogênese/efeitos dos fármacos , Feocromocitoma/tratamento farmacológico , Fitoestrógenos/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/patologia , Animais , Apigenina/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Isoflavonas/farmacologia , Células MCF-7 , Proteínas do Tecido Nervoso/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neuritos/patologia , Células PC12 , Feocromocitoma/genética , Feocromocitoma/metabolismo , Feocromocitoma/patologia , Ratos , Elementos de Resposta , Resveratrol , Estilbenos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transfecção , Zearalenona/farmacologiaRESUMO
The computational peptide screening method is a Monte Carlo-based procedure to systematically characterize the specificity of a peptide-binding site. The method is based on a generalized-ensemble algorithm in which the peptide sequence has become a dynamic variable, i.e., molecular simulations with ordinary conformational moves are enhanced with a type of "mutational" move such that proper statistics are achieved for multiple sequences in a single run. The peptide screening method has two main steps. In the first, reference simulations of the unbound state are performed and used to parametrize a linear model of the unbound state free energy, determined by requiring that the marginal distribution of peptide sequences is approximately flat. In the second step, simulations of the bound state are performed. By using the linear model as a free energy reference point, the marginal distribution of peptide sequences becomes skewed towards sequences with higher binding free energies. From analyses of the sequences generated in the second step and their conformational ensembles, information on peptide binding specificity, relative binding affinities, and the molecular basis of specificity can be achieved. Here we demonstrate how the algorithm can be implemented and applied to determine the peptide binding specificity of a PDZ domain from the protein GRIP1.