Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364347

RESUMO

The SARS-CoV-2 non-structural protein 13 (nsp13) helicase is an essential enzyme for viral replication and has been identified as an attractive target for the development of new antiviral drugs. In detail, the helicase catalyzes the unwinding of double-stranded DNA or RNA in a 5' to 3' direction and acts in concert with the replication-transcription complex (nsp7/nsp8/nsp12). In this work, bioinformatics and computational tools allowed us to perform a detailed conservation analysis of the SARS-CoV-2 helicase genome and to further predict the druggable enzyme's binding pockets. Thus, a structure-based virtual screening was used to identify valuable compounds that are capable of recognizing multiple nsp13 pockets. Starting from a database of around 4000 drugs already approved by the Food and Drug Administration (FDA), we chose 14 shared compounds capable of recognizing three out of four sites. Finally, by means of visual inspection analysis and based on their commercial availability, five promising compounds were submitted to in vitro assays. Among them, PF-03715455 was able to block both the unwinding and NTPase activities of nsp13 in a micromolar range.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Reposicionamento de Medicamentos , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/metabolismo , DNA Helicases/metabolismo , Antivirais/farmacologia
2.
J Phys Chem Lett ; 13(38): 8893-8901, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36126063

RESUMO

Convenient and efficient therapeutic agents are urgently needed to block the continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, the mechanism for the novel orally targeted SARS-CoV-2 main protease (Mpro) inhibitor S-217622 is revealed through a molecular dynamics simulation. The difference in the movement modes of the S-217622-Mpro complex and apo-Mpro suggested S-217622 could inhibit the motility intensity of Mpro, thus maintaining their stable binding. Subsequent energy calculations showed that the P2 pharmacophore possessed the highest energy contribution among the three pharmacophores of S-217622. Additionally, hot-spot residues H41, M165, C145, E166, and H163 have strong interactions with S-217622. To further investigate the resistance of S-217622 to six mainstream variants, the binding modes of S-217622 with these variants were elucidated. The subtle differences in energy compared to that of the wild type implied that the binding patterns of these systems were similar, and S-217622 still inhibited these variants. We hope this work will provide theoretical insights for optimizing novel targeted Mpro drugs.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Proteínas não Estruturais Virais/metabolismo
3.
Sci Rep ; 12(1): 3860, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264667

RESUMO

Non-structural protein 15 (Nsp15) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) forms a homo hexamer and functions as an endoribonuclease. Here, we propose that Nsp15 activity may be inhibited by preventing its hexamerization through drug binding. We first explored the stable conformation of the Nsp15 monomer as the global free energy minimum conformation in the free energy landscape using a combination of parallel cascade selection molecular dynamics (PaCS-MD) and the Markov state model (MSM), and found that the Nsp15 monomer forms a more open conformation with larger druggable pockets on the surface. Targeting the pockets with high druggability scores, we conducted ligand docking and identified compounds that tightly bind to the Nsp15 monomer. The top poses with Nsp15 were subjected to binding free energy calculations by dissociation PaCS-MD and MSM (dPaCS-MD/MSM), indicating the stability of the complexes. One of the identified pockets, which is distinctively bound by inosine analogues, may be an alternative binding site to stabilize viral RNA binding and/or an alternative catalytic site. We constructed a stable RNA structure model bound to both UTP and alternative binding sites, providing a reasonable proposed model of the Nsp15/RNA complex.


Assuntos
Endorribonucleases/metabolismo , RNA Viral/química , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Antivirais/química , Antivirais/metabolismo , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Endorribonucleases/antagonistas & inibidores , Humanos , Cadeias de Markov , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Multimerização Proteica , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Eletricidade Estática , Proteínas não Estruturais Virais/antagonistas & inibidores
4.
Nat Commun ; 12(1): 3399, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099703

RESUMO

Structures of macromolecular assemblies derived from cryo-EM maps often contain errors that become more abundant with decreasing resolution. Despite efforts in the cryo-EM community to develop metrics for map and atomistic model validation, thus far, no specific scoring metrics have been applied systematically to assess the interface between the assembly subunits. Here, we comprehensively assessed protein-protein interfaces in macromolecular assemblies derived by cryo-EM. To this end, we developed Protein Interface-score (PI-score), a density-independent machine learning-based metric, trained using the features of protein-protein interfaces in crystal structures. We evaluated 5873 interfaces in 1053 PDB-deposited cryo-EM models (including SARS-CoV-2 complexes), as well as the models submitted to CASP13 cryo-EM targets and the EM model challenge. We further inspected the interfaces associated with low-scores and found that some of those, especially in intermediate-to-low resolution (worse than 4 Å) structures, were not captured by density-based assessment scores. A combined score incorporating PI-score and fit-to-density score showed discriminatory power, allowing our method to provide a powerful complementary assessment tool for the ever-increasing number of complexes solved by cryo-EM.


Assuntos
Microscopia Crioeletrônica/métodos , Substâncias Macromoleculares/química , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteínas/química , Humanos , Aprendizado de Máquina , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/ultraestrutura , Modelos Moleculares , Redes Neurais de Computação , Conformação Proteica , Multimerização Proteica , Proteínas/metabolismo , Proteínas/ultraestrutura , Máquina de Vetores de Suporte , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/ultraestrutura
5.
PLoS One ; 16(2): e0246181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33596235

RESUMO

The 2019 emergence of, SARS-CoV-2 has tragically taken an immense toll on human life and far reaching impacts on society. There is a need to identify effective antivirals with diverse mechanisms of action in order to accelerate preclinical development. This study focused on five of the most established drug target proteins for direct acting small molecule antivirals: Nsp5 Main Protease, Nsp12 RNA-dependent RNA polymerase, Nsp13 Helicase, Nsp16 2'-O methyltransferase and the S2 subunit of the Spike protein. A workflow of solvent mapping and free energy calculations was used to identify and characterize favorable small-molecule binding sites for an aromatic pharmacophore (benzene). After identifying the most favorable sites, calculated ligand efficiencies were compared utilizing computational fragment screening. The most favorable sites overall were located on Nsp12 and Nsp16, whereas the most favorable sites for Nsp13 and S2 Spike had comparatively lower ligand efficiencies relative to Nsp12 and Nsp16. Utilizing fragment screening on numerous possible sites on Nsp13 helicase, we identified a favorable allosteric site on the N-terminal zinc binding domain (ZBD) that may be amenable to virtual or biophysical fragment screening efforts. Recent structural studies of the Nsp12:Nsp13 replication-transcription complex experimentally corroborates ligand binding at this site, which is revealed to be a functional Nsp8:Nsp13 protein-protein interaction site in the complex. Detailed structural analysis of Nsp13 ZBD conformations show the role of induced-fit flexibility in this ligand binding site and identify which conformational states are associated with efficient ligand binding. We hope that this map of over 200 possible small-molecule binding sites for these drug targets may be of use for ongoing discovery, design, and drug repurposing efforts. This information may be used to prioritize screening efforts or aid in the process of deciphering how a screening hit may bind to a specific target protein.


Assuntos
Antivirais/farmacologia , COVID-19/virologia , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Metiltransferases/metabolismo , RNA Helicases/metabolismo , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Sítio Alostérico , Sítios de Ligação , COVID-19/metabolismo , Biologia Computacional/métodos , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , RNA-Polimerase RNA-Dependente de Coronavírus/química , Humanos , Metiltransferases/antagonistas & inibidores , Metiltransferases/química , Modelos Moleculares , Terapia de Alvo Molecular , Ligação Proteica , RNA Helicases/antagonistas & inibidores , RNA Helicases/química , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
6.
Open Biol ; 10(11): 200237, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33202171

RESUMO

Viral macrodomains possess the ability to counteract host ADP-ribosylation, a post-translational modification implicated in the creation of an antiviral environment via immune response regulation. This brought them into focus as promising therapeutic targets, albeit the close homology to some of the human macrodomains raised concerns regarding potential cross-reactivity and adverse effects for the host. Here, we evaluate the structure and function of the macrodomain of SARS-CoV-2, the causative agent of COVID-19. We show that it can antagonize ADP-ribosylation by PARP14, a cellular (ADP-ribosyl)transferase necessary for the restriction of coronaviral infections. Furthermore, our structural studies together with ligand modelling revealed the structural basis for poly(ADP-ribose) binding and hydrolysis, an emerging new aspect of viral macrodomain biology. These new insights were used in an extensive evolutionary analysis aimed at evaluating the druggability of viral macrodomains not only from the Coronaviridae but also Togaviridae and Iridoviridae genera (causing diseases such as Chikungunya and infectious spleen and kidney necrosis virus disease, respectively). We found that they contain conserved features, distinct from their human counterparts, which may be exploited during drug design.


Assuntos
ADP-Ribosilação , Simulação de Acoplamento Molecular , Poli(ADP-Ribose) Polimerases/química , RNA Polimerase Dependente de RNA/química , Proteínas não Estruturais Virais/química , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/metabolismo , Sítios de Ligação , Evolução Molecular , Humanos , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica , Domínios Proteicos , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
7.
Sci Rep ; 10(1): 19125, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154404

RESUMO

The current outbreak of Covid-19 infection due to SARS-CoV-2, a virus from the coronavirus family, has become a major threat to human healthcare. The virus has already infected more than 44 M people and the number of deaths reported has reached more than 1.1 M which may be attributed to lack of medicine. The traditional drug discovery approach involves many years of rigorous research and development and demands for a huge investment which cannot be adopted for the ongoing pandemic infection. Rather we need a swift and cost-effective approach to inhibit and control the viral infection. With the help of computational screening approaches and by choosing appropriate chemical space, it is possible to identify lead drug-like compounds for Covid-19. In this study, we have used the Drugbank database to screen compounds against the most important viral targets namely 3C-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp) and the spike (S) protein. These targets play a major role in the replication/transcription and host cell recognition, therefore, are vital for the viral reproduction and spread of infection. As the structure based computational screening approaches are more reliable, we used the crystal structures for 3C-like main protease and spike protein. For the remaining targets, we used the structures based on homology modeling. Further, we employed two scoring methods based on binding free energies implemented in AutoDock Vina and molecular mechanics-generalized Born surface area approach. Based on these results, we propose drug cocktails active against the three viral targets namely 3CLpro, PLpro and RdRp. Interestingly, one of the identified compounds in this study i.e. Baloxavir marboxil has been under clinical trial for the treatment of Covid-19 infection. In addition, we have identified a few compounds such as Phthalocyanine, Tadalafil, Lonafarnib, Nilotinib, Dihydroergotamine, R-428 which can bind to all three targets simultaneously and can serve as multi-targeting drugs. Our study also included calculation of binding energies for various compounds currently under drug trials. Among these compounds, it is found that Remdesivir binds to targets, 3CLpro and RdRp with high binding affinity. Moreover, Baricitinib and Umifenovir were found to have superior target-specific binding while Darunavir is found to be a potential multi-targeting drug. As far as we know this is the first study where the compounds from the Drugbank database are screened against four vital targets of SARS-CoV-2 and illustrates that the computational screening using a double scoring approach can yield potential drug-like compounds against Covid-19 infection.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Bases de Dados de Produtos Farmacêuticos , Avaliação Pré-Clínica de Medicamentos/métodos , Terapia de Alvo Molecular , Pneumonia Viral/tratamento farmacológico , COVID-19 , Proteases 3C de Coronavírus , Análise Custo-Benefício , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Avaliação Pré-Clínica de Medicamentos/economia , Humanos , Simulação de Acoplamento Molecular , Pandemias , Conformação Proteica , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
8.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165889, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603829

RESUMO

The novel Coronavirus disease of 2019 (nCOV-19) is a viral outbreak noted first in Wuhan, China. This disease is caused by Severe Acute Respiratory Syndrome (SARS) Coronavirus (CoV)-2. In the past, other members of the coronavirus family, such as SARS and Middle East Respiratory Syndrome (MERS), have made an impact in China and the Arabian peninsula respectively. Both SARS and COVID-19 share similar symptoms such as fever, cough, and difficulty in breathing that can become fatal in later stages. However, SARS and MERS infections were epidemic diseases constrained to limited regions. By March 2020 the SARS-CoV-2 had spread across the globe and on March 11th, 2020 the World Health Organization (WHO) declared COVID-19 as pandemic disease. In severe SARS-CoV-2 infection, many patients succumbed to pneumonia. Higher rates of deaths were seen in older patients who had co-morbidities such as diabetes mellitus, hypertension, cardiovascular disease (CVD), and dementia. In this review paper, we discuss the effect of SARS-CoV-2 on CNS diseases, such as Alzheimer's-like dementia, and diabetes mellitus. We also focus on the virus genome, pathophysiology, theranostics, and autophagy mechanisms. We will assess the multiorgan failure reported in advanced stages of SARS-CoV-2 infection. Our paper will provide mechanistic clues and therapeutic targets for physicians and investigators to combat COVID-19.


Assuntos
Doenças do Sistema Nervoso Central/patologia , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Animais , Antivirais/uso terapêutico , Betacoronavirus/isolamento & purificação , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , COVID-19 , Doenças do Sistema Nervoso Central/complicações , Doenças do Sistema Nervoso Central/virologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Humanos , Pulmão/metabolismo , Pulmão/virologia , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , SARS-CoV-2 , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/antagonistas & inibidores , Proteínas Virais de Fusão/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo
9.
Nature ; 581(7808): 252-255, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32415276

Assuntos
Antivirais/farmacologia , Betacoronavirus/química , Betacoronavirus/imunologia , Desenho de Fármacos , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Vacinas Virais , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Enzima de Conversão de Angiotensina 2 , Animais , Antivirais/química , Azóis/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , Vacinas contra COVID-19 , China , Proteases 3C de Coronavírus , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Proteases Semelhantes à Papaína de Coronavírus , RNA-Polimerase RNA-Dependente de Coronavírus , Microscopia Crioeletrônica , Cristalização , Cristalografia por Raios X , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Avaliação Pré-Clínica de Medicamentos , Alemanha , Ensaios de Triagem em Larga Escala , Humanos , Isoindóis , Camundongos , National Institutes of Health (U.S.)/economia , National Institutes of Health (U.S.)/organização & administração , Compostos Organosselênicos/farmacologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Inibidores de Proteases/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Síncrotrons , Fatores de Tempo , Reino Unido , Estados Unidos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/imunologia
10.
J Chem Inf Model ; 60(6): 3277-3286, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32315171

RESUMO

The recent outbreak of novel coronavirus disease-19 (COVID-19) calls for and welcomes possible treatment strategies using drugs on the market. It is very efficient to apply computer-aided drug design techniques to quickly identify promising drug repurposing candidates, especially after the detailed 3D structures of key viral proteins are resolved. The virus causing COVID-19 is SARS-CoV-2. Taking advantage of a recently released crystal structure of SARS-CoV-2 main protease in complex with a covalently bonded inhibitor, N3 (Liu et al., 10.2210/pdb6LU7/pdb), I conducted virtual docking screening of approved drugs and drug candidates in clinical trials. For the top docking hits, I then performed molecular dynamics simulations followed by binding free energy calculations using an end point method called MM-PBSA-WSAS (molecular mechanics/Poisson-Boltzmann surface area/weighted solvent-accessible surface area; Wang, Chem. Rev. 2019, 119, 9478; Wang, Curr. Comput.-Aided Drug Des. 2006, 2, 287; Wang; ; Hou J. Chem. Inf. Model., 2012, 52, 1199). Several promising known drugs stand out as potential inhibitors of SARS-CoV-2 main protease, including carfilzomib, eravacycline, valrubicin, lopinavir, and elbasvir. Carfilzomib, an approved anticancer drug acting as a proteasome inhibitor, has the best MM-PBSA-WSAS binding free energy, -13.8 kcal/mol. The second-best repurposing drug candidate, eravacycline, is synthetic halogenated tetracycline class antibiotic. Streptomycin, another antibiotic and a charged molecule, also demonstrates some inhibitory effect, even though the predicted binding free energy of the charged form (-3.8 kcal/mol) is not nearly as low as that of the neutral form (-7.9 kcal/mol). One bioactive, PubChem 23727975, has a binding free energy of -12.9 kcal/mol. Detailed receptor-ligand interactions were analyzed and hot spots for the receptor-ligand binding were identified. I found that one hot spot residue, His41, is a conserved residue across many viruses including SARS-CoV, SARS-CoV-2, MERS-CoV, and hepatitis C virus (HCV). The findings of this study can facilitate rational drug design targeting the SARS-CoV-2 main protease.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Reposicionamento de Medicamentos/métodos , Pneumonia Viral/tratamento farmacológico , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antibacterianos/química , Antibacterianos/farmacologia , Betacoronavirus/química , Betacoronavirus/enzimologia , COVID-19 , Proteases 3C de Coronavírus , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Reposicionamento de Medicamentos/economia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Pandemias , Pneumonia Viral/virologia , Inibidores de Proteases/química , SARS-CoV-2 , Tetraciclinas/química , Tetraciclinas/farmacologia , Termodinâmica , Fatores de Tempo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
11.
Value Health ; 23(2): 180-190, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32113623

RESUMO

OBJECTIVES: Direct-acting antivirals containing nonstructural protein 5A (NS5A) inhibitors administered over 8 to 12 weeks are effective in ∼95% of patients with hepatitis C virus. Nevertheless, patients resistant to NS5A inhibitors have lower cure rates over 8 weeks (<85%); for these patients, 12 weeks of treatment produces cure rates greater than 95%. We evaluated the lifetime cost-effectiveness of testing for NS5A resistance at baseline and optimizing treatment duration accordingly in genotype 1 noncirrhotic treatment-naïve patients from the perspective of the UK National Health Service. METHODS: A decision-analytic model compared (1) standard 12-week treatment (no testing), (2) shortened 8-week treatment (no testing), and (3) baseline testing with 12-/8-week treatment for those with/without NS5A polymorphisms. Patients who failed first-line therapy were retreated for 12 weeks. Model inputs were derived from published studies. Costs, quality-adjusted life-years, and the probability of cost-effectiveness were calculated. RESULTS: Baseline testing had an incremental net monetary benefit (INMB) of £11 838 versus standard 12 weeks of therapy (no testing) and low probability (31%) of being the most cost-effective, assuming £30 000 willingness to pay. Shortened 8 weeks of treatment (no testing) had an INMB of £12 294 and the highest probability (69%) of being most cost-effective. Scenario analyses showed baseline testing generally had the highest INMB and probability of being most cost-effective if first- and second-line drug prices were low (<£20k). CONCLUSIONS: Optimizing treatment duration based on NS5A polymorphisms for genotype 1 noncirrhotic treatment-naive patients in the United Kingdom is not cost-effective if the drug costs are high; the strategy is generally most cost-effective when drug prices are low (<£20k).


Assuntos
Antivirais/economia , Antivirais/uso terapêutico , Custos de Medicamentos , Farmacorresistência Viral , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/economia , Técnicas de Diagnóstico Molecular/economia , Polimorfismo Genético , Proteínas não Estruturais Virais/antagonistas & inibidores , Adulto , Antivirais/efeitos adversos , Análise Custo-Benefício , Técnicas de Apoio para a Decisão , Árvores de Decisões , Farmacorresistência Viral/genética , Feminino , Genótipo , Hepacivirus/genética , Hepatite C Crônica/diagnóstico , Hepatite C Crônica/virologia , Humanos , Masculino , Cadeias de Markov , Modelos Econômicos , Terapia de Alvo Molecular/economia , Valor Preditivo dos Testes , Anos de Vida Ajustados por Qualidade de Vida , Medicina Estatal/economia , Fatores de Tempo , Resultado do Tratamento , Reino Unido , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
12.
J Med Chem ; 63(9): 4562-4578, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32045235

RESUMO

The main protease of coronaviruses and the 3C protease of enteroviruses share a similar active-site architecture and a unique requirement for glutamine in the P1 position of the substrate. Because of their unique specificity and essential role in viral polyprotein processing, these proteases are suitable targets for the development of antiviral drugs. In order to obtain near-equipotent, broad-spectrum antivirals against alphacoronaviruses, betacoronaviruses, and enteroviruses, we pursued a structure-based design of peptidomimetic α-ketoamides as inhibitors of main and 3C proteases. Six crystal structures of protease-inhibitor complexes were determined as part of this study. Compounds synthesized were tested against the recombinant proteases as well as in viral replicons and virus-infected cell cultures; most of them were not cell-toxic. Optimization of the P2 substituent of the α-ketoamides proved crucial for achieving near-equipotency against the three virus genera. The best near-equipotent inhibitors, 11u (P2 = cyclopentylmethyl) and 11r (P2 = cyclohexylmethyl), display low-micromolar EC50 values against enteroviruses, alphacoronaviruses, and betacoronaviruses in cell cultures. In Huh7 cells, 11r exhibits three-digit picomolar activity against the Middle East Respiratory Syndrome coronavirus.


Assuntos
Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Enterovirus/efeitos dos fármacos , Lactamas/farmacologia , Peptidomiméticos/farmacologia , Replicação Viral/efeitos dos fármacos , Proteases Virais 3C , Animais , Antivirais/síntese química , Antivirais/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Chlorocebus aethiops , Coronavirus/enzimologia , Proteases 3C de Coronavírus , Cristalografia por Raios X , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Desenho de Fármacos , Enterovirus/enzimologia , Humanos , Lactamas/síntese química , Lactamas/metabolismo , Peptidomiméticos/síntese química , Peptidomiméticos/metabolismo , Inibidores de Proteases/síntese química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Ligação Proteica , Células Vero , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Proteínas Virais/metabolismo
13.
Methods Mol Biol ; 2027: 15-28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31309469

RESUMO

The determination of kinetic information and appropriate binding pairs is fundamental to the proper optimization and selection of ligands used in immunoassays, diagnostics, and therapeutics. However, the ability to estimate such parameters in a multiplexed and inexpensive format remains difficult and modification of the ligand is often necessary. Here, we detail the methods and materials necessary to evaluate hundreds of unlabeled ligands simultaneously using the interferometric reflectance imaging sensor (IRIS). The incorporation of a low-cost fluidic cartridge that integrates on the top of the sensor simplifies reagent handling considerably.


Assuntos
Equipamentos Descartáveis/economia , Imunoensaio/instrumentação , Interferometria/instrumentação , Dispositivos Lab-On-A-Chip/economia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Vírus da Dengue/imunologia , Imunoensaio/economia , Interferometria/economia , Cinética , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
14.
Chin Med J (Engl) ; 132(14): 1645-1653, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31268910

RESUMO

BACKGROUND: Zika virus (ZIKV) has emerged as a global pathogen causing significant public health concerns. China has reported several imported cases where ZIKV were carried by travelers who frequently travel between China and ZIKV-endemic regions. To fully characterize the ZIKV strains isolated from the cases reported in China and assess the risk of ZIKV transmission in China, comprehensive phylogenetic and genetic analyses were performed both on all ZIKV sequences of China and on a group of scientifically selected ZIKV sequences reported in some of the top interested destinations for Chinese travelers. METHODS: ZIKV genomic sequences were retrieved from the National Center for Biotechnology Information database through stratified sampling. Recombination event detection, maximum likelihood (ML) phylogenetic analysis, molecular clock analysis, selection pressure analysis, and amino acid substitution analysis were used to reconstruct the epidemiology and molecular transmission of ZIKV. RESULTS: The present study investigated 18 ZIKV sequences from China and 70 sequences from 16 selected countries. Recombination events rarely happens in all ZIKV Asian lineage. ZIKV genomes were generally undergone episodic positive selection (17 sites), and only one site was under pervasive positive selection. All ZIKV imported into China were Asian lineage and were assigned into two clusters: Venezuela-origin (cluster A) and Samoa-origin cluster (cluster B) with common ancestor from French Polynesia. The time of most recent common ancestors of Cluster A dated to approximately 2013/11 (95% highest posterior density [HPD] 2013/06, 2014/03) and cluster B dated to 2014/08 (95% HPD 2014/02, 2015/01). Cluster B is more variable than Cluster A in comparison with other clusters, but no varied site of biological significance was revealed. ZIKV strains in Southeast Asia countries are independent from strains in America epidemics. CONCLUSIONS: The genetic evolution of ZIKV is conservative. There are two independent introductions of ZIKV into China and China is in danger of autochthonous transmission of ZIKV because of high-risk surrounding areas. Southeast Asia areas have high risk of originating the next large-scale epidemic ZIKV strains.


Assuntos
Proteínas não Estruturais Virais/metabolismo , Infecção por Zika virus/genética , Zika virus/patogenicidade , China , Evolução Molecular , Genoma Viral/genética , Funções Verossimilhança , Filogenia , Estrutura Secundária de Proteína , Medição de Risco , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Zika virus/genética , Infecção por Zika virus/transmissão
15.
J Phys Chem B ; 121(28): 6831-6840, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28635289

RESUMO

Hepatitis C virus (HCV) currently affects several million people across the globe. One of the major classes of drugs against HCV inhibits the NS3/4A protease of the polyprotein chain. Efficacy of these drugs is severely limited due to the high mutation rate that results in several genetically related quasispecies. The molecular mechanism of drug resistance is frequently deduced from structural studies and binding free energies. However, prediction of new mutations requires the evaluation of both binding free energy of the drug as well as the parameters (kcat and KM) for the natural substrate. The vitality values offer a good approach to investigate and predict mutations that render resistance to the inhibitor. A successful mutation should only affect the binding of the drug and not the catalytic activity and binding of the natural substrate. In this article, we have calculated the vitality values for four known drug inhibitors that are either currently in use or in clinical trials, evaluating binding free energies by the relevant PDLD/S-LRA method and activation barriers by the EVB method. The molecular details pertaining to resistance are also discussed. We show that our calculations are able to reproduce the catalytic effects and binding free energies in a good agreement with the corresponding observed values. Importantly, previous computational approaches have not been able to achieve this task. The trend for the vitality values is in accordance with experimental findings. Finally, we calculate the vitality values for mutations that have either not been studied experimentally or reported for some inhibitors.


Assuntos
Antivirais/metabolismo , Hepacivirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Antivirais/química , Método de Monte Carlo , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Termodinâmica , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
16.
Antimicrob Agents Chemother ; 60(9): 5357-67, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27353263

RESUMO

Enterovirus 71 (EV-A71) is a major causative pathogen of hand, foot, and mouth disease (HFMD) epidemics. No antiviral therapies are currently available for treating EV-A71 infections. Here, we selected five reported enterovirus inhibitors (suramin, itraconazole [ITZ], GW5074, rupintrivir, and favipiravir) with different mechanisms of action to test their abilities to inhibit EV-A71 replication alone and in combination. All selected compounds have anti-EV-A71 activities in cell culture. The combination of rupintrivir and ITZ or favipiravir was synergistic, while the combination of rupintrivir and suramin was additive. The combination of suramin and favipiravir exerted a strong synergistic antiviral effect. The observed synergy was not due to cytotoxicity, as there was no significant increase in cytotoxicity when compounds were used in combinations at the tested doses. To investigate the potential inhibitory mechanism of favipiravir against enterovirus, two favipiravir-resistant EV-A71 variants were independently selected, and both of them carried an S121N mutation in the finger subdomain of the 3D polymerase. Reverse engineering of this 3D S121N mutation into an infectious clone of EV-A71 confirmed the resistant phenotype. Moreover, viruses resistant to ITZ or favipiravir remained susceptible to other inhibitors. Most notably, combined with ITZ, rupintrivir prevented the development of ITZ-resistant variants. Taken together, these results provide a rational basis for the design of combination regimens for use in the treatment of EV-A71 infections.


Assuntos
Antivirais/farmacologia , Enterovirus Humano A/efeitos dos fármacos , Isoxazóis/farmacologia , Itraconazol/farmacologia , Pirrolidinonas/farmacologia , Suramina/farmacologia , Proteínas não Estruturais Virais/genética , Amidas/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Chlorocebus aethiops , Combinação de Medicamentos , Farmacorresistência Viral/genética , Sinergismo Farmacológico , Enterovirus Humano A/genética , Enterovirus Humano A/crescimento & desenvolvimento , Humanos , Indóis/farmacologia , Simulação de Acoplamento Molecular , Mutação , Mioblastos/efeitos dos fármacos , Mioblastos/virologia , Fenóis/farmacologia , Fenilalanina/análogos & derivados , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Pirazinas/farmacologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Valina/análogos & derivados , Células Vero , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
17.
Anal Chim Acta ; 886: 98-106, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26320641

RESUMO

Binding affinity of a small molecule drug candidate to a therapeutically relevant biomolecular target is regarded the first determinant of the candidate's efficacy. Although the ultrafiltration-LC/MS (UF-LC/MS) assay enables efficient ligand discovery for a specific target from a mixed pool of compounds, most previous analysis allowed for relative affinity ranking of different ligands. Moreover, the reliability of affinity measurement for multiple ligands with UF-LC/MS has hardly been strictly evaluated. In this study, we examined the accuracy of K(d) determination through UF-LC/MS by comparison with classical ITC measurement. A single-point K(d) calculation method was found to be suitable for affinity measurement of multiple ligands bound to the same target when binding competition is minimized. A second workflow based on analysis of the unbound fraction of compounds was then developed, which simplified sample preparation as well as warranted reliable ligand discovery. The new workflow implemented in a fragment mixture screen afforded rapid and sensitive detection of low-affinity ligands selectively bound to the RNA polymerase NS5B of hepatitis C virus. More importantly, ligand identification and affinity measurement for mixture-based fragment screens by UF-LC/MS were in good accordance with single ligand evaluation by conventional SPR analysis. This new approach is expected to become a valuable addition to the arsenal of high-throughput screening techniques for fragment-based drug discovery.


Assuntos
Antivirais/química , Antivirais/farmacologia , Descoberta de Drogas/métodos , Hepacivirus/metabolismo , Hepatite C/virologia , Proteínas não Estruturais Virais/metabolismo , Cromatografia Líquida/economia , Cromatografia Líquida/métodos , Descoberta de Drogas/economia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Ensaios de Triagem em Larga Escala/economia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ligantes , Espectrometria de Massas/economia , Espectrometria de Massas/métodos , Ligação Proteica , Reprodutibilidade dos Testes , Ultrafiltração/economia , Ultrafiltração/métodos , Fluxo de Trabalho
18.
J Microbiol Immunol Infect ; 47(4): 282-91, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23040046

RESUMO

BACKGROUND: Hepatitis C virus (HCV) is a major cause of acute and chronic liver disease. Numerous screening assays based on the detection of immunoresponses to HCV structural and nonstructural proteins have been designed. Various studies have demonstrated genotype-specific differences in anti-HCV antibody responses to different HCV proteins. METHODS: Full-length NS3 protease and N-terminally truncated NS5A were expressed using pET TOPO 102/D system. Antigenicity of the purified recombinant proteins was assessed by immunoblotting and indirect enzyme-linked immunosorbent assay (ELISA). Furthermore, anti-HCV antibody responses to the recombinant proteins were evaluated in three prevalent genotypes in Iran. RESULTS: We were able to express and purify NS5A and NS3 protease using TOPO cloning system. The HCV NS3 protease and NS5A produced in BL21 Star (DE3) was immunoreactive. Our results demonstrate that NS3 protease and NS5A have good immunoreactivity, but they are not sufficient for detecting all HCV-positive sera. No significant genotype-specific differences were detected in immunoresponses to the recombinant proteins. CONCLUSION: In conclusion, we successfully isolated, expressed, and purified substantial amount of HCV NS3 protease and N-terminally truncated NS5A, and used them as capturing antigens in a screening ELISA assay with high sensitivity, reproducibility, and specificity. Accordingly, it is well confirmed that TOPO cloning system can be used as a dynamic system in order to express higher amount of immunoreactive viral proteins.


Assuntos
Expressão Gênica , Vetores Genéticos/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Sequência de Aminoácidos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Clonagem Molecular , Ordem dos Genes , Genótipo , Hepacivirus/classificação , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C/imunologia , Hepatite C/microbiologia , Humanos , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
19.
Vector Borne Zoonotic Dis ; 10(7): 665-71, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20854019

RESUMO

Outbreaks of West Nile virus (WNV) have occurred intermittently in regions around the Mediterranean coast, and the virus may have become established in Northern Italy and Romania, with reported intermittent outbreaks in Spain, Hungary, and France. WNV has also spread rapidly throughout the Americas since its introduction into New York in 1999. This capacity to emerge in new geographical locations and to spread rapidly together with the current increase in incidence of other flaviviruses such as tick-borne encephalitis virus, dengue virus, and Usutu virus has prompted us to design a novel pan-flavivirus RT-polymerase chain reaction for the purpose of surveillance for a range of flaviviruses. The assay utilizes degenerate primers targeting the flavivirus NS5 gene (RNA-dependent RNA polymerase) and detects a range of flaviviruses, including WNV. A small panel of WNV bird samples obtained from the United States has been shown to be detected using this assay. The amplicon generated is of sufficient size to provide sequence data to confirm the identity of the virus detected and undertake limited phylogenetic analysis. Testing using this assay has shown its ability to detect a range of tick-borne flaviviruses, particularly louping ill virus that is endemic in areas of the United Kingdom. The assay has been used to survey 160 bird samples and 1000 mosquito samples from the United Kingdom and found no evidence for WNV.


Assuntos
Doenças das Aves/virologia , Flavivirus/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Sequência de Bases , Doenças das Aves/sangue , Doenças das Aves/epidemiologia , Aves , Culicidae/virologia , RNA Viral/genética , Reino Unido/epidemiologia , Estados Unidos/epidemiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
20.
J Immunol Methods ; 352(1-2): 81-8, 2010 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-19913020

RESUMO

Differentiating foot-and-mouth disease virus (FMDV) antibodies generated during a natural infection from those due to vaccination (DIVA) is crucial for proving freedom from disease after an outbreak and allowing resumption of trade in livestock products. The World Organisation for Animal Health (OIE) recommends that FMDV vaccines are composed of inactivated virus that has been purified to remove non-structural viral proteins. Such purified vaccines primarily induce antibodies to viral structural proteins, whereas replicating virus stimulates host antibodies specific for both structural and non-structural proteins. The current preferred FMDV DIVA test is a competitive ELISA (C-ELISA) designed to detect antibodies to the non-structural protein 3ABC. Previously, we described the development of an FMDV DIVA test based entirely on recombinant proteins (the recombinant detecting antibody and the 3ABC coating antigen) produced in Escherichia coli. In this study, we have determined the precise binding site of the recombinant detecting antibody to a conserved sequence within the 3B region of the 3ABC protein, replaced the original E-tag of the detecting antibody with two in-house tags and engineered a direct antibody-reporting enzyme (alkaline phosphatase) fusion protein. These modifications have further improved the DIVA test, providing great potential for large scale production and uptake due to its simplicity, reproducibility and low cost.


Assuntos
Anticorpos Antivirais/metabolismo , Ensaio de Imunoadsorção Enzimática , Vírus da Febre Aftosa/imunologia , Febre Aftosa/diagnóstico , Proteínas Recombinantes de Fusão/metabolismo , Proteínas não Estruturais Virais/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/imunologia , Fosfatase Alcalina/metabolismo , Animais , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Sítios de Ligação de Anticorpos , Ligação Competitiva , Análise Custo-Benefício , Febre Aftosa/imunologia , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Reprodutibilidade dos Testes , Testes Sorológicos/métodos , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/imunologia , Vacinas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA