Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Comput Biol ; 6(8)2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20711349

RESUMO

Cell migration in the absence of external cues is well described by a correlated random walk. Most single cells move by extending protrusions called pseudopodia. To deduce how cells walk, we have analyzed the formation of pseudopodia by Dictyostelium cells. We have observed that the formation of pseudopodia is highly ordered with two types of pseudopodia: First, de novo formation of pseudopodia at random positions on the cell body, and therefore in random directions. Second, pseudopod splitting near the tip of the current pseudopod in alternating right/left directions, leading to a persistent zig-zag trajectory. Here we analyzed the probability frequency distributions of the angles between pseudopodia and used this information to design a stochastic model for cell movement. Monte Carlo simulations show that the critical elements are the ratio of persistent splitting pseudopodia relative to random de novo pseudopodia, the Left/Right alternation, the angle between pseudopodia and the variance of this angle. Experiments confirm predictions of the model, showing reduced persistence in mutants that are defective in pseudopod splitting and in mutants with an irregular cell surface.


Assuntos
Dictyostelium/fisiologia , Modelos Biológicos , Modelos Estatísticos , Pseudópodes/fisiologia , Simulação por Computador , Método de Monte Carlo , Movimento
2.
Science ; 300(5616): 142-5, 2003 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-12677069

RESUMO

Transformed rat fibroblasts expressing two variants of green fluorescent protein, each fused to beta-actin, were used to study actin dynamics during cell protrusion. The recently developed FLAP (fluorescence localization after photobleaching) method permits the tracking of one fluorophore after localized photobleaching by using the other as a colocalized reference. Here, by visualizing the ratio of bleached to total molecules, we found that actin was delivered to protruding zones of the leading edge of the cell at speeds that exceeded 5 micrometers per second. Monte Carlo modeling confirmed that this flow cannot be explained by diffusion and may involve active transport.


Assuntos
Actinas/metabolismo , Depsipeptídeos , Pseudópodes/fisiologia , Pseudópodes/ultraestrutura , Amidas/farmacologia , Animais , Azepinas/farmacologia , Proteínas de Bactérias/metabolismo , Transporte Biológico Ativo , Biopolímeros , Linhagem Celular Transformada , Movimento Celular , Difusão , Inibidores Enzimáticos/farmacologia , Fluorescência , Recuperação de Fluorescência Após Fotodegradação , Fluorometria , Proteínas de Fluorescência Verde , Processamento de Imagem Assistida por Computador , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Método de Monte Carlo , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Quinase de Cadeia Leve de Miosina/metabolismo , Naftalenos/farmacologia , Nocodazol/farmacologia , Peptídeos Cíclicos/farmacologia , Fotodegradação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Piridinas/farmacologia , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Células Tumorais Cultivadas , Quinases Associadas a rho
3.
J Cell Biol ; 153(4): 881-8, 2001 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-11352946

RESUMO

Fibroblast migration involves complex mechanical interactions with the underlying substrate. Although tight substrate contact at focal adhesions has been studied for decades, the role of focal adhesions in force transduction remains unclear. To address this question, we have mapped traction stress generated by fibroblasts expressing green fluorescent protein (GFP)-zyxin. Surprisingly, the overall distribution of focal adhesions only partially resembles the distribution of traction stress. In addition, detailed analysis reveals that the faint, small adhesions near the leading edge transmit strong propulsive tractions, whereas large, bright, mature focal adhesions exert weaker forces. This inverse relationship is unique to the leading edge of motile cells, and is not observed in the trailing edge or in stationary cells. Furthermore, time-lapse analysis indicates that traction forces decrease soon after the appearance of focal adhesions, whereas the size and zyxin concentration increase. As focal adhesions mature, changes in structure, protein content, or phosphorylation may cause the focal adhesion to change its function from the transmission of strong propulsive forces, to a passive anchorage device for maintaining a spread cell morphology.


Assuntos
Movimento Celular/fisiologia , Adesões Focais/fisiologia , Actomiosina/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Simulação por Computador , Fibroblastos/citologia , Fibroblastos/fisiologia , Carpa Dourada , Proteínas de Fluorescência Verde , Indicadores e Reagentes/metabolismo , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Método de Monte Carlo , Pseudópodes/fisiologia , Estresse Mecânico , Transfecção
4.
J Neurosurg ; 82(4): 615-22, 1995 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-7897524

RESUMO

Brain tumor dispersal far from bulk tumor contributes to and, in some instances, dominates disease progression. Three methods were used to characterize brain tumor cell motility in vivo and in vitro: 1) 2 weeks after implantation in rat cerebral cortex, single C6 cells labeled with a fluorescent tag had migrated to brain sites greater than 16 mm distant from bulk tumor; 2) time-lapse videomicroscopy of human brain tumor cells revealed motility of 12.5 microns/hr. Ruffling leading edges and pseudopod formation were most elaborate in more malignant cells; 3) an in vitro assay was devised to quantitatively evaluate motility from a region of high cell density to one of lower cell density. Human brain tumor cells were plated in the center of a petri dish, washed, and refed, establishing a 2-cm circular zone of cells in the dish center. Motility was determined by counting cells daily at predetermined distances from the central zone perimeter. Cells were found 1 cm from the perimeter by 24 hours and 3 cm from the perimeter by 4 days. Increasing serum concentration increased motility; however, neither fibronectin nor arrest of cells in the G0 phase by hydroxyurea altered motility. The addition of cytochalasin B to block cytoskeletal assembly prevented cell motility. Motility increased with increased malignancy. Subpopulations of cells were created by clonal amplification of cells that had migrated most rapidly to the dish periphery. Although morphologically indistinguishable when compared to the original cell line from which they were derived, these subpopulations demonstrated significantly increased motility.


Assuntos
Astrocitoma/fisiopatologia , Neoplasias Encefálicas/fisiopatologia , Glioma/fisiopatologia , Amidinas/análise , Animais , Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Clonais , Citocalasina B/farmacologia , Fibronectinas/farmacologia , Corantes Fluorescentes/análise , Glioma/patologia , Humanos , Hidroxiureia/farmacologia , Processamento de Imagem Assistida por Computador , Interfase/efeitos dos fármacos , Microscopia de Vídeo/instrumentação , Transplante de Neoplasias , Pseudópodes/fisiologia , Ratos , Ratos Sprague-Dawley , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA