Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Agric Food Chem ; 72(20): 11804-11819, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717061

RESUMO

Apples (Malus × domestica Borkh.) and pears (Pyrus communis L.) are valuable crops closely related within the Rosaceae family with reported nutraceutical properties derived from secondary metabolites including phloridzin and arbutin, which are distinctive phenolic metabolites characterizing apples and pears, respectively. Here, we generated a de novo transcriptome assembly of an intergeneric hybrid between apple and pear, accumulating intermediate levels of phloridzin and arbutin. Combining RNA-seq, in silico functional annotation prediction, targeted gene expression analysis, and expression-metabolite correlations, we identified candidate genes for functional characterization, resulting in the identification of active arbutin synthases in the hybrid and parental genotypes. Despite exhibiting an active arbutin synthase in vitro, the natural lack of arbutin in apples is reasoned by the absence of the substrate and broad substrate specificity. Altogether, our study serves as the basis for future assessment of potential physiological roles of identified genes by genome editing of hybrids and pears.


Assuntos
Arbutina , Chalconas , Frutas , Malus , Proteínas de Plantas , Pyrus , Transcriptoma , Malus/genética , Malus/metabolismo , Malus/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Pyrus/genética , Pyrus/metabolismo , Pyrus/química , Arbutina/metabolismo , Arbutina/química , Frutas/genética , Frutas/metabolismo , Frutas/química , Chalconas/metabolismo , Chalconas/química , Regulação da Expressão Gênica de Plantas , Hibridização Genética
2.
Mol Genet Genomics ; 290(1): 225-37, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25216935

RESUMO

Interspecific hybridization has been considered the major mode of evolution in Pyrus (pear), and thus, the genetic relationships within this genus have not been well documented. Retrotransposons are ubiquitous components of plant genomes and 42.4 % of the pear genome was reported to be long terminal repeat (LTR) retrotransposons, implying that retrotransposons might be significant in the evolution of Pyrus. In this study, 1,836 putative full-length LTR retrotransposons were isolated and 196 retrotransposon-based insertion polymorphism (RBIP) primers were developed, of which 24 pairs to the Ppcr1 subfamily of copia retrotransposons were used to analyze genetic diversity among 110 Pyrus accessions from Eurasia. Our results showed that Ppcr1 replicated many times in the development of cultivated Asian pears. The genetic structure analysis and the unweighted pair group method with arithmetic mean (UPGMA) dendrogram indicated that all accessions could be divided into Oriental and Occidental groups. In Oriental pears, wild pea pears clustered separately into independent groups in accordance with their morphological classifications. Cultivars of P. ussuriensis Maxim, P. pyrifolia Nakai, and P. pyrifolia Chinese white pear were mingled together, which inferred that hybridization events occurred during the development of the cultivated Asian pears. In Occidental pears, two clades were obtained in the UPGMA dendrogram in accordance with their geographical distribution; one contained the European species and the other included species from North Africa and West Asia. New findings in this study will be important to further understand the phylogeny of Pyrus and origins of cultivated pears.


Assuntos
Mutagênese Insercional/genética , Polimorfismo Genético , Pyrus/genética , Retroelementos/genética , Sequência de Bases , Teorema de Bayes , Primers do DNA/metabolismo , Ecótipo , Marcadores Genéticos , Genoma de Planta/genética , Dados de Sequência Molecular , Filogenia , Sequências Repetidas Terminais/genética
3.
BMC Genet ; 14: 81, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24028660

RESUMO

BACKGROUND: In cross breeding, it is important to choose a good parental combination that has high probability of generating offspring with desired characteristics. This study examines a method for predicting the segregation of target traits in a progeny population based on genome-wide markers and phenotype data of parental cultivars. RESULTS: The proposed method combines segregation simulation and Bayesian modeling for genomic selection. Marker segregation in a progeny population was simulated based on parental genotypes. Posterior marker effects sampled via Markov Chain Monte Carlo were used to predict the segregation pattern of target traits. The posterior distribution of the proportion of progenies that fulfill selection criteria was calculated and used for determining a promising cross and the necessary size of the progeny population. We applied the proposed method to Japanese pear (Pyrus pyrifolia Nakai) data to demonstrate the method and to show how it works in the selection of a promising cross. Verification using an actual breeding population suggests that the segregation of target traits can be predicted with reasonable accuracy, especially in a highly heritable trait. The uncertainty in predictions was reflected on the posterior distribution of the proportion of progenies that fulfill selection criteria. A simulation study based on the real marker data of Japanese pear cultivars also suggests the potential of the method. CONCLUSIONS: The proposed method is useful to provide objective and quantitative criteria for choosing a parental combination and the breeding population size.


Assuntos
Genoma , Pyrus/genética , Teorema de Bayes , Cruzamento , Genótipo , Humanos , Japão , Cadeias de Markov , Método de Monte Carlo , Fenótipo , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA