Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 1): 132269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744363

RESUMO

Burn wounds (BWs) cause impairment of native skin tissue and may cause significant microbial infections that demand immediate care. Curcumin (Cur) and quercetin (Que) exhibit antimicrobial, hemocompatibility, ROS-scavenging, and anti-inflammatory properties. However, its instability, water insolubility, and low biological fluid absorption render it challenging to sustain local Cur and Que doses at the wound site. Therefore, to combat these limitations, we employed blow-spinning and freeze-drying to develop a multi-layered, Cur/Que-loaded gelatin/chitosan/PCL (GCP-Q/C) nanofibroporous (NFP) matrix. Morphological analysis of the NFP-matrix using SEM revealed a well-formed multi-layered structure. The FTIR and XRD plots demonstrated dual-bioactive incorporation and scaffold polymer interaction. Additionally, the GCP-Q/C matrix displayed high porosity (82.7 ± 2.07 %), adequate pore size (∼121 µm), enhanced water-uptake ability (∼675 % within 24 h), and satisfactory biodegradation. The scaffolds with bioactives had a long-term release, increased antioxidant activity, and were more effective against gram-positive (S. aureus) and gram-negative (E. coli) bacteria than the unloaded scaffolds. The in vitro findings of GCP-Q/C scaffolds showed promoted L929 cell growth and hemocompatibility. Additionally, an in vivo full-thickness BW investigation found that an implanted GCP-Q/C matrix stimulates rapid recuperation and tissue regeneration. In accordance with the findings, the Gel/Ch/PCL-Que/Cur NFP-matrix could represent an effective wound-healing dressing for BWs.


Assuntos
Queimaduras , Curcumina , Nanofibras , Quercetina , Cicatrização , Curcumina/farmacologia , Curcumina/química , Cicatrização/efeitos dos fármacos , Quercetina/farmacologia , Quercetina/química , Animais , Porosidade , Nanofibras/química , Queimaduras/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/química , Ratos , Quitosana/química , Antioxidantes/farmacologia , Antioxidantes/química , Gelatina/química , Camundongos , Alicerces Teciduais/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Liberação Controlada de Fármacos
2.
ScientificWorldJournal ; 2024: 9063936, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371227

RESUMO

Objectives: Flavonoids comprise a huge class of phenolic compounds widely distributed throughout the plant kingdom. Although quercetin and rutin have been studied individually for their therapeutic value, the synergistic effect of combining the two has previously not been measured. The objective of this trial was to evaluate the anti-inflammatory and antioxidant properties of both quercetin and rutin when combined in the form of SophorOx™ (a proprietary preparation of quercetin-rutin) in exercised rats. Methods: Sprague-Dawley rats were orally administered SophorOx™ at 500 mg·kg-1·b.w. and subjected to daily exercise on a fabricated treadmill for 4 weeks. A total of 24 animals were randomly divided into four groups. All the animals were examined for body weight, feed consumption, signs of clinical abnormalities, and morbidity. In addition, serum collected on days 8, 15, 22, and 29 were measured for the liver function test (LFT), random blood sugar (RBS), inflammatory markers C-reactive protein (CRP), oxidative stress markers (8-isoprostane (8-iso-PGF2α), malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), and cytokine levels interleukin-1ß (IL-1ß), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α)) by the ELISA method. Results: Rats that received SophorOx™ showed no signs of adverse effects, and no significant changes were observed in body weight, feed consumption, liver enzymes, and blood glucose levels. The exercise-treated rats administered with SophorOx™ exhibited a significant reduction in oxidative and inflammatory marker levels, viz., CRP (113.32 ng·mL-1) and oxidative stress markers 8-OHdG (19.32 pg·mL-1), MDA (1.06 nmol·mL-1), 8-iso-PGF2α (1.29 ng·mL-1), IL-1ß (0.77 pg·mL-1), and IL-6 (317.14 pg·mL-1) in comparison to those rodents that were exercised without SophorOx™. Conclusion: Oral administration of SophorOx™ significantly reduced oxidative stress and inflammatory marker levels when measured in the rodents subjected to high-intensity exercise.


Assuntos
Antioxidantes , Quercetina , Ratos , Animais , Quercetina/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Rutina/farmacologia , Rutina/uso terapêutico , Interleucina-6/metabolismo , Ratos Sprague-Dawley , Anti-Inflamatórios/farmacologia , Estresse Oxidativo , Proteína C-Reativa/metabolismo , Peso Corporal , Fator de Necrose Tumoral alfa/metabolismo
3.
J Ethnopharmacol ; 325: 117842, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38310987

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acacia nilotica (L.) Wild. Ex Delilie is a shrub with significant ethnomedicinal stature. Therefore, in the undertaken study, its wound healing attributes are determined. AIM OF THE STUDY: The current study provided evidence of the traditional use of A. nilotica species and conferred A. nilotica bark extract as a potent candidate for wound healing agents. MATERIALS & METHODS: A. nilotica leaves extract (ANL-E); A. nilotica bark extract (ANB-E), and A. nilotica stem extract (ANS-E) were prepared using methanol-chloroform (1:1). Phytochemical analysis was performed using gallic acid equivalent (GAE) total phenolic content (TPC), quercetin equivalent (QE) total flavonoid content (TFC) assays and High-performance liquid chromatography (HPLC). In vitro antioxidant potential (free radical scavenging activity (FRSA), total antioxidant capacity (TAC), and ferric reducing antioxidant power (FRAP) assay), antibacterial activity (broth microdilution method) and hemolytic analysis was carried out. Wound healing proficiency of ANB-E was determined by wound excision model followed by estimating hydroxyproline content and endogenous antioxidant markers. RESULTS: Maximum phenolic and flavonoid content were depicted by ANB-E i.e., 50.9 ± 0.34 µg gallic acid equivalent/mg extract and 28.7 ± 0.13 µg quercetin equivalent/mg extract, respectively. HPLC analysis unraveled the presence of a significant amount of catechin in ANL-E, ANB-E and ANS-E (54.66 ± 0.02, 44.9 ± 0.004 and 31.36 ± 0.02 µg/mg extract) respectively. Highest percent free radical scavenging activity, total antioxidant capacity, and ferric reducing action power (i.e., 93.3 ± 0.42 %, 222.10 ± 0.76, and 222.86 ± 0.54 µg ascorbic acid equivalent/mg extract) were exhibited by ANB-E. Maximum antibacterial potential against Staphylococcus aureus was exhibited by ANB-E (MIC 12.5 µg/ml). Two of the extracts i.e., ANL-E and ANB-E were found biocompatible with less than 5 % hemolytic potential. Based upon findings of in vitro analysis, ANB-E (10, 5, and 2.5 % w/w, C1, C2, and C3, respectively) was selected for evaluating its in vivo wound healing potential. Maximum contraction of wound area and fastest epithelization i.e., 98 ± 0.05 % and 11.2 ± 1.00 (day) was exhibited by C1. Maximum hydroxyproline content, glutathione, catalase, and peroxidase were demonstrated by C1 i.e., 15.9 ± 0.52 µg/mg, 9.3 ± 0.17 mmol/mg, 7.2 ± 0.17 and 6.2 ± 0.14 U/mg, respectively. Maximal curbed lipid peroxidation i.e., 0.7 ± 0.15 mmol/mg was also depicted by C1. CONCLUSIONS: In a nutshell, the current investigation endorsed the wound healing potential of ANB-E suggesting it to be an excellent candidate for future studies.


Assuntos
Acacia , Antioxidantes , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/análise , Acacia/química , Quercetina , Hidroxiprolina , Ácido Gálico , Antibacterianos/farmacologia , Flavonoides/farmacologia , Flavonoides/análise , Radicais Livres
4.
Enzyme Microb Technol ; 176: 110412, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402828

RESUMO

Isoquercetin and D-allulose have diverse applications and significant value in antioxidant, antibacterial, antiviral, and lipid metabolism. Isoquercetin can be synthesized from quercetin, while D-allulose is converted from D-fructose. However, their production scale and overall quality are relatively low, leading to high production costs. In this study, we have devised a cost-effective one-pot method for biosynthesizing isoquercetin and D-allulose using a whole-cell biocatalyst derived from quercetin and sucrose. To achieve this, the optimized isoquercetin synthase and D-allulose-3-epimerase were initially identified through isofunctional gene screening. In order to reduce the cost of uridine diphosphate glucose (UDPG) during isoquercetin synthesis and ensure a continuous supply of UDPG, sucrose synthase is introduced to enable the self-circulation of UDPG. At the same time, the inclusion of sucrose permease was utilized to successfully facilitate the catalytic production of D-allulose in whole cells. Finally, the recombinant strain BL21/UGT-SUS+DAE-SUP, which overexpresses MiF3GTMUT, GmSUS, EcSUP, and DAEase, was obtained. This strain co-produced 41±2.4 mg/L of isoquercetin and 5.7±0.8 g/L of D-allulose using 120 mg/L of quercetin and 20 g/L of sucrose as substrates for 5 h after optimization. This is the first green synthesis method that can simultaneously produce flavonoid compounds and rare sugars. These findings provide valuable insights and potential for future industrial production, as well as practical applications in factories.


Assuntos
Quercetina/análogos & derivados , Uridina Difosfato Glucose , Sacarose , Frutose/metabolismo
5.
PeerJ ; 12: e15638, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188145

RESUMO

A novel Artemisinin/Quercetin/Zinc (Art/Q/Zn) mixed ligand complex was synthesized, tested for its antiviral activity against coronavirus (SARS-CoV-2), and investigated for its effect against toxicity and oxidative stress induced by acrylamide (Acy), which develops upon cooking starchy foods at high temperatures. The synthesized complex was chemically characterized by performing elemental analysis, conductance measurements, FT-IR, UV, magnetic measurements, and XRD. The morphological surface of the complex Art/Q/Zn was investigated using scanning and transmission electron microscopy (SEM and TEM) and energy dispersive X-ray analysis (XRD). The in vitro antiviral activity of the complex Art/Q/Zn against SARS-CoV-2 and its in vivo activity against Acy-induced toxicity in hepatic and pulmonary tissues were analyzed. An experimental model was used to evaluate the beneficial effects of the novel Art/Q/Zn novel complex on lung and liver toxicities of Acy. Forty male rats were randomly divided into four groups: control, Acy (500 mg/Kg), Art/Q/Zn (30 mg/kg), and a combination of Acy and Art/Q/Zn. The complex was orally administered for 30 days. Hepatic function and inflammation marker (CRP), tumor necrosis factor, interleukin-6 (IL-6), antioxidant enzyme (CAT, SOD, and GPx), marker of oxidative stress (MDA), and blood pressure levels were investigated. Histological and ultrastructure alterations and caspase-3 variations (immunological marker) were also investigated. FT-IR spectra revealed that Zn (II) is able to chelate through C=O and C-OH (Ring II) which are the carbonyl oxygen atoms of the quercetin ligand and carbonyl oxygen atom C=O of the Art ligand, forming Art/Q/Zn complex with the chemical formula [Zn(Q)(Art)(Cl)(H2O)2]⋅3H2O. The novel complex exhibited a potent anti-SARS-CoV-2 activity even at a low concentration (IC50 = 10.14 µg/ml) and was not cytotoxic to the cellular host (CC50 = 208.5 µg/ml). Art/Q/Zn may inhibit the viral replication and binding to the angiotensin-converting enzyme-2 (ACE2) receptor and the main protease inhibitor (MPro), thereby inhibiting the activity of SARS-CoV-2 and this proved by the molecular dynamics simulation. It alleviated Acy hepatic and pulmonary toxicity by improving all biochemical markers. Therefore, it can be concluded that the novel formula Art/Q/Zn complex is an effective antioxidant agent against the oxidative stress series, and it has high inhibitory effect against SARS-CoV-2.


Assuntos
Artemisininas , COVID-19 , Masculino , Animais , Ratos , Antioxidantes/farmacologia , Quercetina/farmacologia , SARS-CoV-2 , Zinco/farmacologia , Ligantes , Espectroscopia de Infravermelho com Transformada de Fourier , Artemisininas/farmacologia , Antivirais/farmacologia , Acrilamida/toxicidade , Oxigênio
6.
Chem Biodivers ; 21(3): e202301760, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38217459

RESUMO

Byrsonima sericea is a species native to Brazil that is widely used in traditional medicine. The seed ethanol extract (SEE) had the highest content of total phenols (179.35 mg GAE g-1 extract) and flavonoids (10.42 mg QE g-1 extract) and was the most active in relation to antioxidant activity (DPPH: IC50 =4.25 µg mL-1 and ABTS: IC50 =4.82 µg mL-1 ). The peel/pulp ethanol extract (PEE) had the best anticholinesterase activity (IC50 =6.02 µg mL-1 ). Chromatographic investigation identified gallic acid, isoquercitrin, quercetin and amentoflavone in SEE, and gallic acid, isoquercitrin, quercetin and rutin in PEE. Six fatty acid methyl esters and seven triterpenes were identified, highlighting oleic acid in the seed hexane extract (61.85 %) and in the peel/pulp hexane extract (52.61 %), and betulin in the peel/pulp hexane extract (5.25 %). The substances and biological activities identified in B. sericea characterize this fruit as a functional food for future studies.


Assuntos
Antioxidantes , Quercetina , Antioxidantes/química , Frutas/química , Hexanos , Fenóis/química , Flavonoides/química , Etanol , Ácido Gálico , Extratos Vegetais/química
7.
Chem Biol Drug Des ; 102(6): 1534-1552, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806949

RESUMO

Pouzolzia zeylanica (L.) Benn. is a Chinese herbal medicine widely used for its anti-inflammatory and pus-removal properties. To explore its potential anti-inflammatory mechanism, quercetin 3,7-dirhamnoside (QDR), the main flavonoid component of P. zeylanica (L.) Benn., was extracted and purified. The potential anti-inflammatory targets of QDR were predicted using network analysis. These potential targets were verified using molecular docking, molecular dynamics simulations, and in vitro experiments. Consequently, 342 potential anti-inflammatory QDR targets were identified. By analyzing the intersection between the protein-protein interaction and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we identified several potential protein targets of QDR, including RAC-alpha serine/threonine-protein kinase (AKT1), Ras-related C3 botulinum toxin substrate 1 (RAC1), nitric oxide synthase 3 (NOS3), serine/threonine-protein kinase mTOR (mTOR), epidermal growth factor receptor (EGFR), growth factor receptor-bound protein 2 (GRB2), and endothelin-1 receptor (EDNRA). QDR has anti-inflammatory activity and regulates immune responses and apoptosis through chemokines, Phosphatidylinositol 3-kinase 3(PI3K)/AKT, cAMP, T-cell receptor, and Ras signaling pathways. Molecular docking analysis showed that QDR has good binding abilities with AKT1, mTOR, and NOS3. In addition, molecular dynamics simulations demonstrated that the protein-ligand complex systems formed between QDR and AKT1, mTOR, and NOS3 have high dynamic stability, and their protein-ligand complex systems possess strong binding ability. In RAW264.7 macrophages, QDR significantly inhibited lipopolysaccharides (LPS)-induced inducible nitric oxide synthase expression, nitric oxide (NO) release and the generation of proinflammatory cytokines IL-6, IL-1ß, and TNF-α. QDR downregulated the expression of p-AKT1(Ser473)/AKT1 and p-mTOR (Ser2448)/mTOR, and upregulated the expression of NOS3, Rictor, and Raptor. This indicates that the anti-inflammatory mechanisms of QDR involve regulation of AKT1 and mTOR to prevent apoptosis and of NOS3 which leads to the release of endothelial NO. Thus, our study elucidated the potential anti-inflammatory mechanism of QDR, the main flavonoid found in P. zeylanica (L.) Benn.


Assuntos
Medicamentos de Ervas Chinesas , Quercetina , Quercetina/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Flavonoides , Anti-Inflamatórios/farmacologia , Serina-Treonina Quinases TOR , Treonina , Serina , Medicamentos de Ervas Chinesas/farmacologia
8.
Libyan J Med ; 18(1): 2275417, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37905304

RESUMO

This study aimed to evaluate the anti-inflammatory and analgesic properties of the methanolic extract of Opuntia ficus indica L. in small animal (rats and mice model). The current treatment for febrile conditions often involves the use of non-steroidal anti-inflammatory drugs (NSAIDs), which can have adverse effects, particularly gastrointestinal ulcers. Therefore, there is a growing need to explore natural alternatives with fewer side effects. The study utilized various experimental models to assess the effects of the extract. The results demonstrated a significant analgesic effect of the extract, as evidenced by a reduction in pain induced by acetic acid and hot plate tests. Additionally, the extract exhibited anti-inflammatory effects, as indicated by a decrease in carrageenan-induced paw edema and dextran-induced inflammation. To gain insights into the chemical composition of the extract, HPLC analysis was conducted. The analysis successfully identified and quantified 20 compounds, including luteolin, galangin, catechin, thymol, methylated quercetin, quercetin, rutin, acacetin, hesperidin, apigenin, kaempferol, pinocembrin, chrysin, gallic acid, caffeic acid, ascorbic acid, ferulic acid, m-coumaric acid, rosmarinic acid, and trans-cinnamic acid.The findings suggest that Opuntia ficus indica L. extract holds promise as an effective and reasonably priced natural remedy for pain and inflammation in rats and mice model. The comprehensive chemical composition analysis provided valuable insights into the presence of various bioactive compounds, which may contribute to the observed therapeutic effects. Further research and exploration of the extract's mechanisms of action are warranted to fully understand its potential in small animal healthcare.


Assuntos
Opuntia , Camundongos , Ratos , Animais , Opuntia/química , Quercetina/efeitos adversos , Quercetina/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios/efeitos adversos , Analgésicos/efeitos adversos , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Dor/induzido quimicamente
9.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687204

RESUMO

Chemical profiling for quality monitoring and evaluation of medicinal plants is gaining attention. This study aims to develop an HPLC method followed by multivariate analysis to obtain HPLC profiles of five specific flavonoids, including rutin (1), hyperin (2), isoquercitrin (3), quercitrin (4), and quercetin (5) from Houttuynia cordata leaves and powder products and assess the quality of H. cordata samples. Eventually, we successfully established HPLC-based flavonoid profiles and quantified the contents of 32 H. cordata fresh leave samples and four powder products. The study also quantified the contents of those five essential flavonoids using an optimized RP-HPLC method. Peak areas of samples were then investigated with principal component analysis (PCA) and hierarchical cluster analysis (HCA) to evaluate the similarity and variance. Principal components in PCA strongly influenced by hyperin and quercetin showed that the samples were clustered into subgroups, demonstrating H. cordata samples' quality. The results of HCA showed the similarity and divided the samples into seven subgroups. In conclusion, we have successfully developed a practical methodology that combined the HPLC-based flavonoid profiling and multivariate analysis for the quantification and quality control of H. cordata samples from fresh leaves and powder products. For further studies, we will consider various environmental factors, including climate and soil factors, to investigate their effects on the flavonoid contents of H. cordata.


Assuntos
Flavonoides , Houttuynia , Quercetina , Cromatografia Líquida de Alta Pressão , Pós , Folhas de Planta
10.
Bioprocess Biosyst Eng ; 46(9): 1251-1264, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37322185

RESUMO

C-glycosylflavonoids have a number of pharmacological activities. An efficient method for the preparation of C-glycosylflavonoids is through metabolic engineering. Thus, it is important to prevent the degradation of C-glycosylflavonoids for producing C-glycosylflavonoids in the recombinant strain. In this study, two critical factors for the degradation of C-glycosylflavonoids were clarified. The quercetinase (YhhW) gene from Escherichia coli BL21(DE3) was expressed, purified, and characterized. YhhW effectively degraded quercetin 8-C-glucoside, orientin, and isoorientin, while the degradation of vitexin and isovitexin was not significant. Zn2+ can significantly reduce the degradation of C-glycosylflavonoids by inhibiting the activity of YhhW. pH was another key factor causing the degradation of C-glycosylflavonoids, and C-glycosylflavonoids were significantly degraded with pH exceeding 7.5 in vitro or in vivo. On this basis, two strategies, deleting YhhW gene from the genome of E. coli and regulating pH during the bioconversion, were developed to relieve the degradation of C-glycosylflavonoids. Finally, the total degradation rates for orientin and quercetin 8-C-glucoside decreased from 100 to 28% and 65% to 18%, respectively. The maximum yield of orientin reached 3353 mg/L with luteolin as substrate, and the maximum yield of quercetin 8-C-glucoside reached 2236 mg/L with quercetin as substrate. Therefore, the method described herein for relieving the degradation of C-glycosylflavonoids may be widely used for the biosynthesis of C-glycosylflavonoids in recombinant strains.


Assuntos
Escherichia coli , Quercetina , Quercetina/metabolismo , Escherichia coli/metabolismo , Glucosídeos/metabolismo , Engenharia Metabólica , Concentração de Íons de Hidrogênio
11.
Mol Divers ; 27(6): 2867-2885, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36544031

RESUMO

Peroxisome proliferator-activated receptors (PPAR)-α, a ligand-activated transcription factor stands out to be a valuable protein target against cancer. Given that ligand binding is the crucial process for the activation of PPAR-α, fibrate class of synthetic compounds serves as potent agonist for the receptor. However, their serious side effects limit the long-term application in cancer. This emphasizes the dire need to identify new candidates that would exert desired activation by abrogating the adverse effects caused by synthetic agonists. Natural dietary products serve as an important source of drug discovery. Hence, the present study encompasses the investigation of the role of natural plant phenolic compounds: kaempferol, resveratrol, and quercetin and their 8708 derivatives by the means of computational pipeline comprising molecular docking and molecular dynamic (MD) simulation techniques. Docking calculations shortlisted potential candidates, namely 6-cinnamylchrysin (6-CC), resveratrol potassium-4-sulfate (RPS) and 6-[2-(3,4-Dihydroxyphenyl)-5-hydroxy-4-oxochromen-7-yl]oxyhexyl nitrate (DHOON), and derivatives of kaempferol, resveratrol, and quercetin, respectively. 6-CC, RPS, and DHOON manifested better affinities of - 32.83 kcal/mol (Ala333, Lys358, His440), - 27.22 kcal/mol (Tyr314, Met355), and - 30.18 kcal/mol (Ser280, Tyr314, Ala333), respectively, and were found to act as good stimulants for PPAR-α. Among these three compounds, 6-CC caused relatively least deviations and fluctuations analyzed through MD simulation which judiciously held responsible to attain most favorable interaction with PPAR-α. Followed by the binding free energy (ΔG) calculations using MM-GBSA confirmed the key role of 6-CC toward PPAR-α. The compound 6-CC also achieved high drug-likeness and pharmacokinetic properties. Thus, these findings stipulate new drug leads for PPAR-α receptor which abets a way to develop new anti-cancer drugs.


Assuntos
Neoplasias , Quercetina , Simulação de Acoplamento Molecular , Resveratrol/farmacologia , Quercetina/farmacologia , PPAR alfa/agonistas , PPAR alfa/metabolismo , Ligantes , Quempferóis/farmacologia , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico
12.
Molecules ; 27(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36235163

RESUMO

Angelica keiskei contains a variety of bioactive compounds including chalcone, coumarin, and phytochemicals, endowing it with pharmacological effects such as lipid-lowering activity, antitumor activity, liver protection, and nerve protection. This study aims to study the hypoglycemic and hypolipidemic effects of the flavonoid-rich extract from Angelica keiskei (FEAK) in an effort to exploit new applications of FEAK and increase its commercial value. In this paper, flavonoid compounds in Angelica keiskei were extracted using 50% ethanol, and the contents of the flavonoid compounds were analyzed by UPLC-MS/MS. Then, the hypoglycemic and hypolipidemic activities of the FEAK were investigated through in vitro enzyme activity and cell experiments as well as establishing in vivo zebrafish and Caenorhabditis elegans (C. elegans) models. The UPLC-MS/MS results show that the major flavonoid compounds in the FEAK were aureusidin, xanthoangelol, kaempferol, luteolin, and quercetin. The inhibitory rates of the FEAK on the activity of α-amylase and cholesterol esterase were 57.13% and 72.11%, respectively. In cell lipid-lowering experiments, the FEAK significantly reduced the total cholesterol (TC) and total triglyceride (TG) levels in a dose-dependent manner, with 150 µg/mL of FEAK decreasing the intracellular levels of TC and TG by 33.86% and 27.89%, respectively. The fluorescence intensity of the FEAK group was 68.12% higher than that of the control group, indicating that the FEAK exhibited hypoglycemic effects. When the concentration of the FEAK reached 500 µg/mL, the hypoglycemic effect on zebrafish reached up to 57.7%, and the average fluorescence intensity of C. elegans in the FEAK group was 17% lower than that of the control group. The results indicate that the FEAK had hypoglycemic and hypolipidemic activities. The findings of this study provide theoretical references for the high-value utilization of Angelica keiskei and the development of natural functional food with hypoglycemic and hypolipidemic activities.


Assuntos
Angelica , Chalconas , Angelica/química , Animais , Caenorhabditis elegans , Chalconas/química , Colesterol , Cromatografia Líquida , Cumarínicos , Etanol/química , Flavonoides/farmacologia , Hipoglicemiantes/farmacologia , Quempferóis , Lipídeos , Luteolina , Extratos Vegetais/farmacologia , Quercetina , Esterol Esterase , Espectrometria de Massas em Tandem , Triglicerídeos , Peixe-Zebra , alfa-Amilases
13.
Dalton Trans ; 51(44): 17064-17080, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314263

RESUMO

This paper demonstrates the metal ion effects on the quercetin 2,4-dioxygenase (2,4-QD)-like reactivity. For this purpose, a series of five metal(II)-acetato complexes [MII(L)(OAc)] {M = Mn (1OAc), Co (2OAc), Ni (3OAc), Cu (4OAc), Zn (5OAc); OAc = acetate} supported with a newly designed N3O-donor carboxylato ligand L- {L- = 2-((benzyl((6'-methyl-[2,2'-bipyridin]-6-yl)methyl)amino)methyl)benzoate} has been synthesised as models for the active sites of MII-substituted 2,4-QDs. The enzyme-substrate (ES) model complexes [MII(L)(fla)] {M = Mn (1fla), Co (2fla), Ni (3fla), Cu (4fla), Zn (5fla); flaH = flavonol} have been synthesised by reacting flaH with their corresponding acetate-bound complexes in basic conditions. Detailed physicochemical properties of all the compounds are reported. Furthermore, single-crystal X-ray diffractions have been done to determine the structures of the compounds 2OAc·2H2O, 3OAc, 4OAc·CH2Cl2·2H2O, 5OAc·2H2O and 2fla·MeOH. The enzymatic reactivities of complexes 1OAc-5OAc towards the dioxygenation of flavonol have been explored in detail. All the complexes effectively catalyse the oxygenative degradation of flavonol in N,N-dimethylformamide (DMF) medium at 70 °C under multiple-turnover conditions and produce enzyme-type products. Kinetic investigations were performed to see the metal ions' effects on reactivity. The reaction rates vary with the metal ions, showing the order Co > Ni > Zn > Mn > Cu. The studies reveal that the reactivities of the [MII(L)(OAc)] complexes are governed primarily by three factors viz the ES adduct formation constant (Kf), the redox potential (Epa) of the bound fla-/fla˙ couple, and the degree of delocalisation of the fla˙ radical with the metal electrons, which are drastically influenced by the M2+ ions. In the mechanistic interpretation, a single-electron transfer (SET) from the bound-flavonolate to dioxygen has been proposed to generate the catalytically important "M(II)-fla˙" radical and superoxide ion, which react further to bring about the dioxygenation reaction. The identification of the metal(II)-bound flavonoxy radical intermediate for the case of cobalt using EPR spectroscopy and the detection of superoxide ion by NBT2+ test and EPR spin-trapping experiment (DMPO test) are remarkable in envisaging the reaction pathway.


Assuntos
Complexos de Coordenação , Dioxigenases , Dioxigenases/química , Quercetina , Complexos de Coordenação/química , Superóxidos , Modelos Moleculares , Metais , Catálise , Flavonóis/química , Zinco/química , Acetatos
14.
Sci Rep ; 12(1): 18223, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309576

RESUMO

Previously developed fluorophenyl-isoxazole-carboxamides derivatives were re-synthesized and their scavenging activity against DPPH free radical and inhibitory activity against lipase and α-amylase enzymes were evaluated. The inhibition of the tested enzymes was weak while the most potent activities were observed in the DPPH assay. In particular, compounds 2a and 2c demonstrated high antioxidant potency with IC50 values of 0.45 ± 0.21 and 0.47 ± 0.33 µg/ml, respectively, when compared to Trolox, the positive control compound, which has an IC50 value of 3.10 ± 0.92 µg/ml. Based on the in vitro results, the most potent compound 2a was chosen for in vivo evaluation of antioxidant properties using 20 male mice injected intra-peritoneally and divided into four groups. The in vivo results revealed that total antioxidant capacity (TAC) obtained for mice treated with 2a was two folds greater than that of mice treated with the positive control Quercetin. Although further biological and preclinical investigations need to be performed to assess the therapeutic potential of 2a, the results of this study show promising antioxidant activities both in vitro and in vivo.


Assuntos
Antioxidantes , Isoxazóis , Masculino , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , alfa-Amilases , Quercetina , Lipase
15.
Chem Biodivers ; 19(10): e202200143, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36075867

RESUMO

In this current study, Vitex agnus-castus seed ethanol extracts were analyzed for their phytochemical component content, anticholinergic and antioxidant activities, and antibacterial properties. The phenolic compound composition of these seeds was determined by using LC/MS/MS. Antioxidant activity of the seeds was examined by the DPPH, ABTS, Fe3+ -Fe2+ reducing, and CUPRAC. Also, the anticholinergic activity was measured by the inhibition of acetylcholinesterase (AChE). The antibacterial activity was performed by disc diffusion and minimum inhibitory concentration methods. The main phenolic compound was vanillic acid (22812.05 µg/L) and followed by luteolin, fumaric acid, quercetin, caffeic acid, 4-hydroxybenzoic acid, salicylic acid, kaempferol, butein, ellagic acid, resveratrol, catechin hydrate, phloridzin dehydrate, naringenin, respectively. The DPPH free radical scavenging value of ethanol extract of plant seeds was 9.41 %, while the ABTS radical scavenging activity was determined as 12.66 %. The ethanol extract of the seeds exhibited antibacterial activity on Escherichia coli, Staphylococcus aureus, and Salmonella Typhimurium, differently. S. aureus was found to be more susceptible to the extract than other bacteria. Also, the inhibition effect of seed ethanolic extract on the AChE with IC50 values were 36.34±5.6 µg/mL. From the results, V. agnus-castus seed can be suggested as a promising natural antioxidant and antibacterial candidate for the preservation of foods.


Assuntos
Catequina , Vitex , Antioxidantes/farmacologia , Antioxidantes/química , Vitex/química , Quempferóis , Acetilcolinesterase , Quercetina , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antagonistas Colinérgicos , Staphylococcus aureus , Resveratrol , Ácido Elágico , Florizina , Luteolina , Ácido Vanílico , Espectrometria de Massas em Tandem , Compostos Fitoquímicos , Sementes , Antibacterianos/farmacologia , Radicais Livres , Etanol , Ácido Salicílico
16.
J Trace Elem Med Biol ; 74: 127073, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36126542

RESUMO

Boronic acids constitute an important class of synthetic intermediates due to their high chemical stability, ease of use, moderate organic Lewis acid properties, reduced reactivity profiles and numerous biological activities such as antibacterial and antioxidant. The present study documents the synthesis and characterization of a novel boronic ester compound (3,5,7-trihydroxy-2- (2-phenyl benzo [d] [1,3,2] dioxaborol-5-yl) -4H-chromen-4-a) which was derived from phenyl boronic acid and quercetin. The new boron-based compound was used in the cream formulation after evaluating its antioxidant, antibacterial, anti-enzyme, anticancer activities and electrochemical oxidation behaviour. Furthermore, the cream has been dermatologically and microbiologically tested. Also, histological evaluation of the agent was estimated on multiple rat organs by hematoxylin-eosin staining method. Antioxidant potential of the new compound was tested by ABTS cation radical (IC50: 0.11 ± 0.01 µg/mL), DPPH free radical scavenging (IC50: 0.14 ± 0.01 µg/mL), and CUPRAC (A0.5: 1.73 ± 0.16 µg/mL) methods, respectively. The compound determined to have a dominant antioxidant activity. In addition, the synthesized compound had no toxic effect on the healthy cell line (PDF), while having a very high (IC50: 18.76 ± 0.62 µg/mL) cytotoxic effect on the cancerous cell line (MCF-7). In general, the compound showed moderate acetylcholinesterase enzyme activity (IC50: 115.63 ± 1.16 µg/mL), high butyrylcholinesterase (IC50: 3.12 ± 0.04 µg/mL), antiurease (IC50: 1.10 ± 0.06 µg/mL), and antithyrosinase (IC50: 11.52 ± 0.46 µg/mL) enzyme activities. In addition, the compound was found to be effective against Escherichia coli (ATCC 25922) bacteria studied at concentrations of 6.50 mg/mL. Moreover, the test results of the boronic ester compound used in the cream formulation demonstrated that it was microbiologically and dermatologically appropriate. Histologic analysis showed that the control group and experimental group were at similar properties without significant change. The phenyl boronic acid derivative compound synthesized from quercetin may have higher biological activity potential than quercetin. Due to the high biological activity potential of the synthesized compound, it has the potential to be used in food, feed, pharmaceutical and cosmetic industries.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Acetilcolinesterase/metabolismo , Animais , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Boro/farmacologia , Ácidos Borônicos , Butirilcolinesterase/metabolismo , Amarelo de Eosina-(YS) , Ésteres , Radicais Livres , Hematoxilina , Ácidos de Lewis , Quercetina/farmacologia , Ratos , Ratos Endogâmicos Lew
17.
Med Oncol ; 39(11): 176, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999475

RESUMO

In prior studies, Quercetin was revealed to exhibit anti-cancer features in a variety of cancer cell lines. However, the impact of Quercetin on neuroblastoma is unknown. This study looked into the potential cytotoxic effects of Quercetin and Quercetin-loaded chitosan nanoparticles (NPs) on the SH-SY5Y cell line. In this study, NPs containing Quercetin was prepared and characterization studies were performed. The vitality of the cells was measured using the XTT test after 24 h of treatment with various concentrations of Quercetin (0.5, 1, 2, 4, and 8 µg/mL). ELISA kits were used to detect the amounts of cleaved PARP, BCL-2, 8-Hydroxy-deoxyguanosine (8-oxo-dG), cleaved caspase 3, Bax, total oxidant status, and total antioxidant status in the cells. The results of the chitosan NPs characterization investigation revealed that the particle size, encapsulation effectiveness, and drug release profile of NPs were all appropriate for cell culture studies. Quercetin and Quercetin-loaded chitosan NPs significantly reduced cell viability in SH-SY5Y cells at different concentrations (**p < 0.05). 2 µg/mL Quercetin and Quercetin-loaded chitosan NPs significantly enhanced the levels of 8-oxo-dG, cleaved caspase 3, Bax, cleaved PARP, and total oxidant in ELISA testing. However, treatment with 2 µg/mL of Quercetin and Quercetin-loaded chitosan NPs did not affect the amount of BCL-2 protein. Overall, Quercetin and Quercetin-loaded chitosan NPs caused significant cytotoxicity in SH-SY5Y cells via producing oxidative stress, DNA damage, and eventually apoptosis.


Assuntos
Quitosana , Nanopartículas , Neuroblastoma , 8-Hidroxi-2'-Desoxiguanosina , Caspase 3 , Portadores de Fármacos , Humanos , Oxidantes , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas Proto-Oncogênicas c-bcl-2 , Quercetina/metabolismo , Quercetina/farmacologia , Proteína X Associada a bcl-2
18.
Int J Biol Macromol ; 219: 304-311, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35934075

RESUMO

The present work aims at evaluating the in vitro biocompatibility, antibacterial activity and antioxidant capacity of the fabricated and optimized Alginate/Chitosan nanoparticles (ALG/CSNPs) and quercetin loaded Alginate/Chitosan nanoparticles (Q-ALG/CSNPs) with an improved biological efficacy on the hydrophobic flavonoid.The physicochemical properties were determined by TEM and FTIR analysis. The nanoparticles evaluated for the encapsulation of quercetin exerted % encapsulation efficiency (EE) that varied between 76 and 82.4 % and loading capacity (LC) from 31 to 46.5 %. Potential cytotoxicity of the ALG/CSNPs and Q-ALG/CSNPs upon L929 fibroblast cell line was evaluated by MTT reduction Assay and expressed as % cell viability. The in vitro antibacterial property was studied by well diffusion method against gram-positive bacteria Staphylococcus aureus (ATCC 25925) and gram-negative bacteria Escherichia coli (ATCC 25923). The inhibitory efficacy by scavenging free radical intermediates was evaluated by 1,1, diphenyl 2-picrylhydrazyl (DPPH) assay. The results of in vitro cytotoxicity showed biocompatibility towards L929 cells. Quercetin loaded Alginate/Chitosan nanoparticles inhibited the growth of microorganisms than pure quercetin. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging results have shown a high level of antioxidant property for encapsulated Quercetin in Alginate/Chitosan nanoparticles compared to free Quercetin. The findings of our study suggest that the developed ALG/CSNPs and Q-ALG/CSNPs possess the prerequisites and be proposed as a suitable system for delivering quercetin with enhanced therapeutic effectuality.


Assuntos
Quitosana , Nanopartículas , Alginatos/farmacologia , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Compostos de Bifenilo , Quitosana/química , Escherichia coli , Nanopartículas/química , Quercetina/química , Quercetina/farmacologia
19.
Pestic Biochem Physiol ; 184: 105078, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715032

RESUMO

Acetamiprid (ACP) is a neonicotinoid insecticide that is the most effective pesticide for crop protection as well as flea control in agricultural animals and pets in the world. The goal of this study was to look at the in vivo effects of a sublethal dose of ACP on hematotoxicity, oxidative stress, hepatotoxicity, nephrotoxicity, immunotoxicity, and histological alterations, as well as the role of quercetin (QE) in alleviating these effects. Twenty adult male mice were divided into four equal groups orally administered corn oil (control), QE (50 mg kg-1 b.wt.), ACP (1/10 LD50) or ACP plus QE for two weeks. The results showed that ACP significantly lowered the body weight gain, hematological indices, glutathione (GSH), and both cellular and humoral immunity, On the other hand, levels of lipid peroxidation (LPO), glutathione peroxidase (GPx), and liver and kidney marker values were considerably increased in male mice exposed to ACP. In addition, examination under light microscopic showed that ACP induces histological alterations in liver and kidney tissues. The results also revealed that treating intoxicated mice with QE significantly reduced the deleterious effects of ACP. In conclusion, current results show that ACP at the sub lethal dose poses toxic risks to the liver and kidneys, and QE as a natural material enhances antioxidant defenses, which can be used as a potential interventional therapy against negative effects of pesticides like ACP.


Assuntos
Antioxidantes , Quercetina , Animais , Antioxidantes/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos , Fígado , Camundongos , Neonicotinoides/toxicidade , Estresse Oxidativo , Quercetina/toxicidade
20.
Cells ; 11(7)2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35406704

RESUMO

Salt stress is one of the main stressors limiting plant growth and yield. As a result of salt stress, unfavorable changes in the photosynthesis process take place, leading to a decrease in plant productivity. Therefore, it is necessary to use biologically active substances that reduce the effects of this stress. An example of such a substance is quercetin, classified as a flavonoid, which plays an important role in alleviating the effects of salt stress, mainly by the inactivation of reactive oxygen species (ROS) and by improvement of the photosynthesis process. A study was made of the effect of the quercetin-copper complex (Q-Cu (II)), which has a stronger antioxidant effect than pure quercetin. By means of a pot experiment, the influence of solutions of the Q-Cu (II) complex (100 mg∙L-1 [Q1], 500 mg∙L-1 [Q2] and 1000 mg∙L-1 [Q3]) on the physiological and biochemical processes occurring in wheat plants subjected to salt stress was investigated. The plants were given two sprays of Q-Cu (II) solution, and their physiological parameters were examined both 1 and 7 days after each application of this solution. The level of ROS and the activity of antioxidant enzymes (catalase [CAT], superoxide dismutase [SOD] and guaiacol peroxidase [GPOX]) were also determined. It has been shown that spraying with Q2 and Q3 solutions improves the chlorophyll content, the values of chlorophyll fluorescence parameters (the photochemical efficiency of PS II [Fv/Fm], the maximum quantum yield of primary photochemistry [Fv/F0], and the performance index of PS II [PI]), and gas exchange (net photosynthetic rate [Pn], stomatal conductance [gs], transpiration rate [E] and intercellular CO2 concentration [Ci]). As a result of the application of Q2 and Q3 solutions, the level of ROS and the activity of the antioxidant enzymes tested decreased, which means that these concentrations are most effective in counteracting the effects of salt stress.


Assuntos
Quercetina , Triticum , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Clorofila/farmacologia , Cobre/farmacologia , Fotossíntese , Quercetina/farmacologia , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA