Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 17(9): e1009821, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34570751

RESUMO

RNA sequencing techniques have enabled the systematic elucidation of gene expression (RNA-Seq), transcription start sites (differential RNA-Seq), transcript 3' ends (Term-Seq), and post-transcriptional processes (ribosome profiling). The main challenge of transcriptomic studies is to remove ribosomal RNAs (rRNAs), which comprise more than 90% of the total RNA in a cell. Here, we report a low-cost and robust bacterial rRNA depletion method, RiboRid, based on the enzymatic degradation of rRNA by thermostable RNase H. This method implemented experimental considerations to minimize nonspecific degradation of mRNA and is capable of depleting pre-rRNAs that often comprise a large portion of RNA, even after rRNA depletion. We demonstrated the highly efficient removal of rRNA up to a removal efficiency of 99.99% for various transcriptome studies, including RNA-Seq, Term-Seq, and ribosome profiling, with a cost of approximately $10 per sample. This method is expected to be a robust method for large-scale high-throughput bacterial transcriptomic studies.


Assuntos
Bactérias/genética , Custos e Análise de Custo , RNA Bacteriano/isolamento & purificação , RNA Ribossômico/isolamento & purificação , Transcriptoma , RNA Bacteriano/genética , RNA Ribossômico/genética , Análise de Sequência de RNA/métodos
2.
BMC Genomics ; 21(1): 717, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33066726

RESUMO

BACKGROUND: RNA sequencing is a powerful approach to quantify the genome-wide distribution of mRNA molecules in a population to gain deeper understanding of cellular functions and phenotypes. However, unlike eukaryotic cells, mRNA sequencing of bacterial samples is more challenging due to the absence of a poly-A tail that typically enables efficient capture and enrichment of mRNA from the abundant rRNA molecules in a cell. Moreover, bacterial cells frequently contain 100-fold lower quantities of RNA compared to mammalian cells, which further complicates mRNA sequencing from non-cultivable and non-model bacterial species. To overcome these limitations, we report EMBR-seq (Enrichment of mRNA by Blocked rRNA), a method that efficiently depletes 5S, 16S and 23S rRNA using blocking primers to prevent their amplification. RESULTS: EMBR-seq results in 90% of the sequenced RNA molecules from an E. coli culture deriving from mRNA. We demonstrate that this increased efficiency provides a deeper view of the transcriptome without introducing technical amplification-induced biases. Moreover, compared to recent methods that employ a large array of oligonucleotides to deplete rRNA, EMBR-seq uses a single or a few oligonucleotides per rRNA, thereby making this new technology significantly more cost-effective, especially when applied to varied bacterial species. Finally, compared to existing commercial kits for bacterial rRNA depletion, we show that EMBR-seq can be used to successfully quantify the transcriptome from more than 500-fold lower starting total RNA. CONCLUSIONS: EMBR-seq provides an efficient and cost-effective approach to quantify global gene expression profiles from low input bacterial samples.


Assuntos
Escherichia coli , RNA Ribossômico , Animais , Análise Custo-Benefício , Escherichia coli/genética , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA Ribossômico/genética , RNA Ribossômico 16S/genética , Análise de Sequência de RNA
3.
BMC Infect Dis ; 20(1): 242, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209054

RESUMO

BACKGROUND: Tuberculous pleurisy (TBP) is the most common form of extrapulmonary tuberculosis (TB). However, rapid diagnostic methods with high accuracy for tuberculous pleurisy are urgently needed. In the present study, we evaluated the diagnostic accuracy of Xpert MTB/RIF, LAMP and SAT-TB assay with pleural fluids from culture-positive TBP patients. METHODS: We prospectively enrolled 300 patients with exudative pleural effusions used as the samples for Xpert MTB/RIF, LAMP and SAT-TB assay. Of these, 265 including 223 patients diagnosed with TBP and 42 non-TBP patients used as controls were analyzed. RESULTS: The sensitivities of Xpert MTB/RIF (27.4%), LAMP (26.5%) and SAT-TB assay (32.3%) were significantly higher than that of pleural effusion smear (14.3%, X2 = 20.65, P <  0.001), whereas they were much lower than expected for the analysis of pleural effusion samples. Both SAT-TB assay and Xpert MTB/RIF demonstrated high specificities (100%) and PPVs (100%), but the NPVs of all of the tests were < 22%. The area under ROC curve of pleural effusion smear, LAMP, Xpert MTB/RIF and SAT-TB assays was 0.524 (95% CI 0.431-0.617), 0.632 (95% CI 0.553-0.71), 0.637 (95% CI 0.56-0.714) and 0.673 (95% CI 0.6-0.745). SAT-TB assays had the highest AUC. CONCLUSION: Nucleic acid amplification tests are not the first choice in the diagnosis of tuberculous pleurisy. In this type of test, SAT-TB is recommended because of its low cost, relatively more accurate compared with the other two tests. This prospective study was approved by The Ethics Committee of the Shanghai Pulmonary Hospital (approval number: K19-148). TRIAL REGISTRATION: ClinicalTrials.gov identifier: ChiCTR1900026234 (Retrospectively registered). The registration date is September 28, 2019.


Assuntos
Mycobacterium tuberculosis/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Tuberculose Pleural/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , China , DNA Bacteriano/genética , Confiabilidade dos Dados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/economia , Derrame Pleural/microbiologia , Estudos Prospectivos , RNA Bacteriano/genética , Curva ROC , Sensibilidade e Especificidade , Tuberculose Pleural/microbiologia , Adulto Jovem
4.
BMC Bioinformatics ; 21(1): 15, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931703

RESUMO

BACKGROUND: Seed and accessibility constraints are core features to enable highly accurate sRNA target screens based on RNA-RNA interaction prediction. Currently, available tools provide different (sets of) constraints and default parameter sets. Thus, it is hard to impossible for users to estimate the influence of individual restrictions on the prediction results. RESULTS: Here, we present a systematic assessment of the impact of established and new constraints on sRNA target prediction both on a qualitative as well as computational level. This is done exemplarily based on the performance of IntaRNA, one of the most exact sRNA target prediction tools. IntaRNA provides various ways to constrain considered seed interactions, e.g. based on seed length, its accessibility, minimal unpaired probabilities, or energy thresholds, beside analogous constraints for the overall interaction. Thus, our results reveal the impact of individual constraints and their combinations. CONCLUSIONS: This provides both a guide for users what is important and recommendations for existing and upcoming sRNA target prediction approaches.We show on a large sRNA target screen benchmark data set that only by altering the parameter set, IntaRNA recovers 30% more verified interactions while becoming 5-times faster. This exemplifies the potential of seed, accessibility and interaction constraints for sRNA target prediction.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Bactérias/química , Bactérias/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/metabolismo
5.
Nucleic Acids Res ; 48(4): e20, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31879761

RESUMO

Bacterial RNA sequencing (RNA-seq) is a powerful approach for quantitatively delineating the global transcriptional profiles of microbes in order to gain deeper understanding of their physiology and function. Cost-effective bacterial RNA-seq requires efficient physical removal of ribosomal RNA (rRNA), which otherwise dominates transcriptomic reads. However, current methods to effectively deplete rRNA of diverse non-model bacterial species are lacking. Here, we describe a probe and ribonuclease based strategy for bacterial rRNA removal. We implemented the method using either chemically synthesized oligonucleotides or amplicon-based single-stranded DNA probes and validated the technique on three novel gut microbiota isolates from three distinct phyla. We further showed that different probe sets can be used on closely related species. We provide a detailed methods protocol, probe sets for >5000 common microbes from RefSeq, and an online tool to generate custom probe libraries. This approach lays the groundwork for large-scale and cost-effective bacterial transcriptomics studies.


Assuntos
RNA Ribossômico/genética , RNA-Seq/métodos , Ribonucleases/genética , Transcriptoma/genética , Bactérias/classificação , Bactérias/genética , Perfilação da Expressão Gênica/economia , RNA Bacteriano/genética , RNA-Seq/economia
6.
PLoS One ; 14(12): e0220091, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31851676

RESUMO

Point-of-care testing (POCT) in low-resource settings requires tools that can operate independently of typical laboratory infrastructure. Due to its favorable signal-to-background ratio, a wide variety of biomedical tests utilize fluorescence as a readout. However, fluorescence techniques often require expensive or complex instrumentation and can be difficult to adapt for POCT. To address this issue, we developed a pocket-sized fluorescence detector costing less than $15 that is easy to manufacture and can operate in low-resource settings. It is built from standard electronic components, including an LED and a light dependent resistor, filter foils and 3D printed parts, and reliably reaches a lower limit of detection (LOD) of ≈ 6.8 nM fluorescein, which is sufficient to follow typical biochemical reactions used in POCT applications. All assays are conducted on filter paper, which allows for a flat detector architecture to improve signal collection. We validate the device by quantifying in vitro RNA transcription and also demonstrate sequence-specific detection of target RNAs with an LOD of 3.7 nM using a Cas13a-based fluorescence assay. Cas13a is an RNA-guided, RNA-targeting CRISPR effector with promiscuous RNase activity upon recognition of its RNA target. Cas13a sensing is highly specific and adaptable and in combination with our detector represents a promising approach for nucleic acid POCT. Furthermore, our open-source device may be used in educational settings, through providing low cost instrumentation for quantitative assays or as a platform to integrate hardware, software and biochemistry concepts in the future.


Assuntos
Proteínas de Bactérias/genética , Técnicas Biossensoriais/instrumentação , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Fluorescência , RNA Bacteriano/análise , RNA Bacteriano/genética , Proteínas de Fluorescência Verde , Técnicas In Vitro , Limite de Detecção , Transcrição Gênica
7.
Food Microbiol ; 79: 41-47, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30621874

RESUMO

Quantitative Polymerase Chain Reaction (qPCR) is a molecular method commonly used to detect and quantify bacterial DNA on food but is limited by its inability to distinguish between live and dead cell DNA. To overcome this obstacle, propidium monoazide (PMA) alone or with deoxycholate (DC) was used to prevent dead cell detection in qPCR. qPCR methods were used to detect strains of Escherichia coli O157, which can cause infection in humans with an infectious dose of less than 10 cells. A 5 strain E. coli O157:H7 cocktail was inoculated onto beef steaks and treated with interventions used in meat facilities (lactic acid (5%), peroxyacetic acid (200 ppm) or hot water (80 °C for 10 s)). Treatment of PMA or PMA + DC was applied to samples followed by DNA extraction and quantification in qPCR. RNA was also quantified in addition to conventional plating. For lactic acid intervention, qPCR DNA quantification of E. coli O157:H7 yielded 6.59 ±â€¯0.21 and 6.30 ±â€¯0.11 log gene copy #/cm2 for control and lactic acid samples, respectively and after treatment with PMA or PMA + DC this was further reduced to 6.31 ± 0.21 and 5.58 ± 0.38, respectively. This trend was also observed for peroxyacetic acid and hot water interventions. In comparison, RNA quantification yielded 7.65 ± 0.13 and 7.02 ± 0.38 log reverse transcript/cm2 for rRNA control and lactic acid samples, respectively, and for plating (LB), 7.51 ±â€¯0.06 and 6.86 ±â€¯0.32 log CFU/cm2, respectively. Our research determined that treatment of PMA + DC in conjunction with qPCR prevented dead cell DNA detection. However, it also killed cells injured from intervention that may have otherwise recovered. RNA quantification was more laborious and results had higher variability. Overall, quantification with conventional plating proved to be the most robust and reliable method for live EHEC detection on beef.


Assuntos
Escherichia coli O157/isolamento & purificação , Microbiologia de Alimentos/métodos , Viabilidade Microbiana , Reação em Cadeia da Polimerase/normas , Carne Vermelha/microbiologia , Animais , Azidas/química , Azidas/farmacologia , Bovinos , Contagem de Colônia Microbiana/normas , DNA Bacteriano/química , DNA Bacteriano/genética , Ácido Desoxicólico/química , Ácido Desoxicólico/farmacologia , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/genética , Manipulação de Alimentos , Temperatura Alta , Ácido Láctico/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Ácido Peracético/farmacocinética , Propídio/análogos & derivados , Propídio/química , Propídio/farmacologia , RNA Bacteriano/genética
8.
J Mater Sci Mater Med ; 29(7): 90, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29938364

RESUMO

Recent research was conducted to evaluate the healing efficiency of bacterial cellulose (BC) as a wound dressing in different pHs and its possibility of being a smart wound dressing that can indicate pHs. BC was produced by environmentally isolated bacterial strains. After washing the best achieved BC, it was floated in normal saline with different pHs with phenol red used as a pH indicator. Finally the wound healing effects of the acidic, neutral and alkaline BC membranes were evaluated in rat cutaneous wounds. Results showed that one of the isolates which its partial 16srRNA genome had 95% similarity with Gluconacetobacter intermedius, had the thickest layer. The microscopic and macroscopic evaluations showed that the acidic BC had the best healing activity. Although the color of the films remained unchanged during the experiments because they were transparent and thin, these changes could not be easily seen. This suggests the use of thicker films such as the ones which are cross linked with some materials (e.g., sterile gauze). In conclusion the pH can affect the healing ability of natural BC and acidic pH had the best wound healing efficiency. In future it is better to use the acidic BC instead of natural one for different wound healing purposes.


Assuntos
Bandagens , Celulose/química , Cicatrização , Animais , Materiais Biocompatíveis/química , Celulose/biossíntese , Celulose/genética , Reagentes de Ligações Cruzadas , Feminino , Gluconacetobacter/genética , Gluconacetobacter/isolamento & purificação , Gluconacetobacter/metabolismo , Concentração de Íons de Hidrogênio , Teste de Materiais , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Ratos , Ratos Wistar , Pele/lesões , Pele/patologia
9.
J Chem Inf Model ; 58(8): 1638-1651, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-29939019

RESUMO

Thiamine pyrophosphate (TPP) riboswitch is a cis-regulatory element in the noncoding region of mRNA. The aptamer domain of TPP riboswitch detects the high abundance of coenzyme thiamine pyrophosphate (TPP) and modulates the gene expression for thiamine synthetic gene. The mechanistic understanding in recognition of TPP in aptamer domain and ligand-induced compactness for folding of expression platform are most important to designing novel modulators. To understand the dynamic behavior of TPP riboswitch upon TPP binding, molecular dynamics simulations were performed for 400 ns in both apo and TPP bound forms of thiM riboswitch from E. coli and analyzed in terms of eRMSD-based Markov state modeling and residual fluctuation network. Markov state models show good correlations in transition probability among metastable states from simulated trajectory and generated models. Structural compactness in TPP bound form is observed which is correlated with SAXS experiment. The importance of junction of P4 and P5 is evident during dynamics, which correlates with FRET analysis. The dynamic nature of two sensor forearms is due to the flexible P1 helix, which is its intrinsic property. The transient state in TPP-bound form was observed in the Markov state model, along with stable states. We believe that this transient state is responsible to assist the influx and outflux of ligand molecule by creating a solvent channel around the junction region of P4 and P5 and such a structure was anticipated in FRET analysis. The dynamic nature of riboswitch is dependent on the interaction between residues on distal loops L3 and L5/P3 and junction P4 and P5, J3/2 which stabilize the J2/4. It helps in the transfer of allosteric information between J2/4 and P3/L5 tertiary docking region through the active site residues. Understanding such information flow will benefit in highlighting crucial residues in highly dynamic and kinetic systems. Here, we report the residues and segments in riboswitch that play vital roles in providing stability and this can be exploited in designing inhibitors to regulate the functioning of riboswitches.


Assuntos
Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/metabolismo , Riboswitch , Tiamina Pirofosfato/metabolismo , Escherichia coli/química , Escherichia coli/genética , Cadeias de Markov , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , Tiamina/genética
10.
Methods Mol Biol ; 1737: 89-98, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29484589

RESUMO

RNase P is a ribozyme consisting of a catalytic RNA molecule and, depending on the organism, one or more cofactor proteins. It was initially identified as the enzyme that mediates cleavage of precursor tRNAs at the 5'-end termini to generate the mature tRNAs. An important characteristic of RNase P is that its specificity depends on the structure rather than the sequence of the RNA substrate. Any RNA species that interacts with an antisense molecule (called external guide sequence, EGS) and forms the appropriate structure can be cleaved by RNase P. This property is the basis for EGS technology, an antisense methodology for inhibiting gene expression by eliciting RNase P-mediated cleavage of a target mRNA molecule. EGS technology is being developed to design therapies against a large variety of diseases. An essential milestone in developing EGSs as therapies is the assessment of the efficiency of antisense molecules to induce cleavage of the target mRNA and evaluate their effect in vivo. Here, we describe simple protocols to test the ability of EGSs to induce cleavage of a target mRNA in vitro and to induce a phenotypic change in growing cells.


Assuntos
Bactérias/genética , Peptídeos Penetradores de Células/farmacologia , Oligorribonucleotídeos Antissenso/metabolismo , RNA Bacteriano/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , RNA Mensageiro/metabolismo , Ribonuclease P/metabolismo , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Oligorribonucleotídeos Antissenso/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Bacteriano/genética , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/genética
11.
Poult Sci ; 97(5): 1519-1525, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29471426

RESUMO

Gallibacterium anatis biovar haemolytica constitutes a part of the normal microflora in the upper respiratory and genital tracts of healthy chickens, but it is also associated with different pathological conditions. In the current study, 102 commercial chicken flocks suffering from respiratory disease and/or drop in egg production were investigated for the presence of G. anatis during 2013 and 2015. These flocks comprised 8 breeder, 32 layer, and 62 broiler flocks. By culture method, 20 flocks were found positive: one isolate derived from broiler breeders, 6 isolates from layers, and 13 isolates from broilers. G. anatis biovar haemolytica was identified by phenotyping and PCR. Additionally, partial genome sequencing of 11 isolates (5 layer isolates of 2013 and 6 broiler isolates of 2015) based on 16S rRNA and 23S rRNA gene sequences was performed and revealed 96.5% to 100% genetic relatedness. Antibiotic sensitivity of these isolates revealed that the 2013 isolates were highly susceptible to florfenicol while the isolates of 2015 were highly susceptible to cefotaxime. Gallibacterium anatis biovar haemolytica is a newly introduced bacteria in Egypt causing salpingitis, peritonitis, drop in egg production, and/or respiratory signs.


Assuntos
Antibacterianos/farmacologia , Galinhas , Farmacorresistência Bacteriana , Infecções por Pasteurellaceae/veterinária , Pasteurellaceae/isolamento & purificação , Doenças das Aves Domésticas/microbiologia , Animais , Egito , Óvulo/microbiologia , Pasteurellaceae/classificação , Infecções por Pasteurellaceae/microbiologia , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Análise de Sequência de RNA/veterinária
12.
Nutrients ; 10(2)2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29415499

RESUMO

Resistant starch (RS) is the digestion resistant fraction of complex polysaccharide starch. By reaching the large bowel, RS can function as a prebiotic carbohydrate, i.e., it can shape the structure and activity of bowel bacterial communities towards a profile that confers health benefits. However, knowledge about the fate of RS in complex intestinal communities and the microbial members involved in its degradation is limited. In this study, 16S ribosomal RNA (rRNA)-based stable isotope probing (RNA-SIP) was used to identify mouse bowel bacteria involved in the assimilation of RS or its derivatives directly in their natural gut habitat. Stable-isotope [U13C]-labeled native potato starch was administrated to mice, and caecal contents were collected before 0 h and 2 h and 4 h after administration. 'Heavy', isotope-labeled [13C]RNA species, presumably derived from bacteria that have metabolized the labeled starch, were separated from 'light', unlabeled [12C]RNA species by fractionation of isolated total RNA in isopycnic-density gradients. Inspection of different density gradients showed a continuous increase in 'heavy' 16S rRNA in caecal samples over the course of the experiment. Sequencing analyses of unlabeled and labeled 16S amplicons particularly suggested a group of unclassified Clostridiales, Dorea, and a few other taxa (Bacteroides, Turicibacter) to be most actively involved in starch assimilation in vivo. In addition, metabolic product analyses revealed that the predominant 13C-labeled short chain fatty acid (SCFA) in caecal contents produced from the [U13C] starch was butyrate. For the first time, this study provides insights into the metabolic transformation of RS by intestinal bacterial communities directly within a gut ecosystem, which will finally help to better understand its prebiotic potential and possible applications in human health.


Assuntos
Bactérias/metabolismo , Ceco/microbiologia , Microbioma Gastrointestinal/fisiologia , RNA Bacteriano/genética , Amido/metabolismo , Animais , Bactérias/genética , Feminino , Masculino , Camundongos , RNA Ribossômico 16S/genética , Distribuição Aleatória , Organismos Livres de Patógenos Específicos
13.
PLoS One ; 12(8): e0182084, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28763494

RESUMO

Many strains of Acinetobacter baumannii have been described as being able to form biofilm. Small non-coding RNAs (sRNAs) control gene expression in many regulatory circuits in bacteria. The aim of the present work was to provide a global description of the sRNAs produced both by planktonic and biofilm-associated (sessile) cells of A. baumannii ATCC 17978, and to compare the corresponding gene expression profiles to identify sRNAs molecules associated to biofilm formation and virulence. sRNA was extracted from both planktonic and sessile cells and reverse transcribed. cDNA was subjected to 454-pyrosequencing using the GS-FLX Titanium chemistry. The global analysis of the small RNA transcriptome revealed different sRNA expression patterns in planktonic and biofilm associated cells, with some of the transcripts only expressed or repressed in sessile bacteria. A total of 255 sRNAs were detected, with 185 of them differentially expressed in the different types of cells. A total of 9 sRNAs were expressed only in biofilm cells, while the expression of other 21 coding regions were repressed only in biofilm cells. Strikingly, the expression level of the sRNA 13573 was 120 times higher in biofilms than in planktonic cells, an observation that prompted us to further investigate the biological role of this non-coding transcript. Analyses of an isogenic mutant and over-expressing strains revealed that the sRNA 13573 gene is involved in biofilm formation and attachment to A549 human alveolar epithelial cells. The present work serves as a basis for future studies examining the complex regulatory network that regulate biofilm biogenesis and attachment to eukaryotic cells in A. baumannii ATCC 17978.


Assuntos
Acinetobacter baumannii/genética , Biofilmes , Perfilação da Expressão Gênica , Pequeno RNA não Traduzido/genética , Células A549 , Acinetobacter baumannii/fisiologia , Linhagem Celular Tumoral , DNA Complementar/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Microscopia Eletrônica de Varredura , RNA Bacteriano/genética , Virulência
14.
Ticks Tick Borne Dis ; 8(4): 646-656, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28457822

RESUMO

New genotypes of Anaplasmataceae agents have been detected in wild carnivores, birds and deer in Brazil. The present work aimed to investigate the presence of Ehrlichia and Anaplasma species in rodents sampled in Brazil. Additionally, a newly designed quantitative 5' nuclease real-time multiplex PCR for Ehrlichia and Anaplasma spp. detection based on groEL gene amplification was designed, showing high specificity and sensitivity (10 groEL fragment copy/µL). Between 2000 and 2011, different rodent species [n=60] were trapped in 5 Brazilian biomes. Among 458 rodent spleen samples, 0.4% (2/458) and 2.4% (11/458) were positive for Ehrlichia and Anaplasma spp., respectively. Of 458 samples, 2.0% (9/458) and 1.1% (5/458) were positive for Anaplasma sp. and Ehrlichia sp., respectively, using conventional 16S rRNA PCR assays. Maximum Likelihood phylogenetic analyse based on a small region of 16S rRNA genes positioned the Anaplasma genotypes in rodents near Anaplasma phagocytophilum or Anaplasma marginale and Anaplasma odocoilei isolates. Ehrlichia genotypes were closely related to E. canis. There was a low occurrence of Anaplasma and Ehrlichia in wild and synanthropic rodents in Brazil, suggesting the circulation of new genotypes of these agents in rodents in the studied areas.


Assuntos
Anaplasma/isolamento & purificação , Proteínas de Bactérias/genética , Chaperonina 60/genética , Ehrlichia/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Doenças dos Roedores/epidemiologia , Roedores , Anaplasma/genética , Anaplasmose/epidemiologia , Anaplasmose/microbiologia , Animais , Brasil/epidemiologia , Ehrlichia/genética , Ehrlichiose/epidemiologia , Ehrlichiose/microbiologia , Ehrlichiose/veterinária , Prevalência , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Doenças dos Roedores/microbiologia
15.
Environ Monit Assess ; 189(4): 201, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28364327

RESUMO

This present study assessed the chlorine tolerance of some Citrobacter species recovered from secondary effluents from the clarifiers of two wastewater treatment plants in the Eastern Cape, South Africa. The bacterial survival, chlorine lethal dose and inactivation kinetics at lethal doses were examined. Inactivation of the test bacteria (n = 20) at the recommended dose of 0.5 mg/l for 30 min exposure showed a progressive reduction in bacterial population from 4 to 5 log reduction and residuals ranged between 0.12 and 0.46 mg/l. The bactericidal activity of chlorine increased at higher dosages with a substantial reduction in viability of the bacteria and complete inactivation of the bacterial population at a lethal dose of 0.75 and 1.0 mg/l in 30 min. For the inactivation kinetics, bactericidal activity of chlorine increased with time showing a 3.67-5.4 log reduction in 10 min, 4.0-5.6 log reduction in 20 min and above 6.3 log reductions to complete sterilization of bacterial population over 30 min for all the entire test Citrobacter isolates used in this study. Furthermore, there was a strong correlation (R 2 > 0.84) between bacteria inactivation and increase in contact time. This study appears to have provided support for laboratory evidence of bacterial tolerance to chlorine disinfection at current recommended dose (0.5 mg/l for 30 min), and chlorine concentration between 0.75 and 1.0 mg/l was found to have a better disinfecting capacity to check tolerance of Citrobacter species.


Assuntos
Cloro/farmacologia , Citrobacter/fisiologia , Desinfetantes/farmacologia , Viabilidade Microbiana , Águas Residuárias/análise , Desinfecção , Monitoramento Ambiental , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , África do Sul
16.
Insect Sci ; 24(1): 93-102, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26477889

RESUMO

Paratransgenesis targeting the gut protozoa is being developed as an alternative method for the control of the Formosan subterranean termite (FST). This method involves killing the cellulose-digesting gut protozoa using a previously developed antiprotozoal peptide consisting of a target specific ligand coupled to an antimicrobial peptide (Hecate). In the future, we intend to genetically engineer termite gut bacteria as "Trojan Horses" to express and spread ligand-Hecate in the termite colony. The aim of this study was to assess the usefulness of bacteria strains isolated from the gut of FST as "Trojan Horses." We isolated 135 bacteria from the guts of workers from 3 termite colonies. Sequencing of the 16S rRNA gene identified 20 species. We tested 5 bacteria species that were previously described as part of the termite gut community for their tolerance against Hecate and ligand-Hecate. Results showed that the minimum concentration required to inhibit bacteria growth was always higher than the concentration required to kill the gut protozoa. Out of the 5 bacteria tested, we engineered Trabulsiella odontotermitis, a termite specific bacterium, to express green fluorescent protein as a proof of concept that the bacteria can be engineered to express foreign proteins. Engineered T. odontotermitis was fed to FST to study if the bacteria are ingested. This feeding experiment confirmed that engineered T. odontotermitis is ingested by termites and can survive in the gut for at least 48 h. Here we report that T. odontotermitis is a suitable delivery and expression system for paratransgenesis in a termite species.


Assuntos
Bactérias/isolamento & purificação , Trato Gastrointestinal/microbiologia , Isópteros/microbiologia , Animais , Antibacterianos/farmacologia , Antiprotozoários/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/genética , Testes de Sensibilidade Microbiana , Organismos Geneticamente Modificados , Peptídeos/farmacologia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
17.
ISME J ; 11(3): 821-824, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27834945

RESUMO

Bacterial genome sizes have previously been shown to exhibit a bimodal distribution. This phenomenon has prompted discussion regarding the evolutionary forces driving genome size in bacteria and its ecological significance. We investigated the level of inherent redundancy in the public database and the effect it has on the shape of the apparent bimodal distribution. Our study reveals that there is a significant bias in the genome sequencing efforts towards a certain group of species, and that correcting the bias using species nomenclature and clustering of the 16S rRNA gene, results in a unimodal rather than the previously published bimodal distribution. The true genome size distribution and its wider ecological implications will soon emerge as we are currently witnessing rapid growth in the number of sequenced genomes from diverse environmental niches across a range of habitats at an unprecedented rate.


Assuntos
Bactérias/genética , Tamanho do Genoma , Genoma Bacteriano , RNA Bacteriano/genética , Sequência de Bases , Evolução Biológica , Ecossistema , Regulação Bacteriana da Expressão Gênica/fisiologia , RNA Ribossômico 16S/genética
18.
J Dairy Sci ; 99(11): 8614-8621, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27638256

RESUMO

This study aimed to develop an in vivo screening platform using Caenorhabditis elegans to identify a novel bacteriocin for controlling the mastitis-causing pathogen Staphylococcus aureus strain RF122 in dairy cows. Using Bacillus spp. isolated from traditional Korean foods, we developed a direct in vivo screening platform that uses 96-well plates and fluorescence image analysis. We identified a novel bacteriocin produced by Bacillus licheniformis strain 146 (lichenicin 146) with a high in vivo antimicrobial activity using our liquid C. elegans-Staph. aureus assay. We also determined the characteristics of lichenicin 146 using liquid chromatography-mass spectrometry and confirmed that it shared homologous sequences with bacteriocin family proteins. In addition, RNA-sequencing analysis revealed genes encoding cell surface or membrane proteins (SAB0993c, SAB0150, SAB0994c, and SAB2375c) that are involved in the bactericidal activity of lichenicin 146 against Staph. aureus strain RF122 infection as well as those encoding transcriptional regulators (SAB0844c and SAB0133). Thus, our direct in vivo screening platform facilitates simple, convenient, cost-effective, and reliable screening of potential antimicrobial compounds with applications in the dairy field.


Assuntos
Bacteriocinas/farmacologia , Caenorhabditis elegans/microbiologia , Mastite Bovina/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Bacillus licheniformis/metabolismo , Bovinos , Cloranfenicol/farmacologia , Análise Custo-Benefício , Feminino , Genes Bacterianos , RNA Bacteriano/genética , Análise de Sequência de RNA , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/isolamento & purificação
19.
Environ Pollut ; 214: 202-210, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27086076

RESUMO

Recently, inhalable particulate matter has been reported to carry microorganisms responsible for human allergy and respiratory disease. The unique geographical environment and adverse weather conditions of Urumqi cause double pollution of dust and smog, but research on the microbial content of the atmosphere has not been commenced. In this study, 16S and 18S rRNA gene sequencing were conducted to investigate the microbial composition of Urumqi's PM1 and PM10 pollutants in winter. Results showed that the bacterial community is mainly composed of Proteobacteria, Firmicutes and Actinobacteria, Proteobacteria accounted for the most proportion which was significant difference in some aforementioned studies. Ascomycota and Basidiomycota constitute the main part of the fungal microbial community. The difference of bacterial relative abundance in sample point is greater than in particle sizes. The sequences of several pathogenic bacteria and opportunistic pathogens were also detected, such as Acinetobacter, Delftia, Serratia, Chryseobacterium, which may impact on immunocompromised populations (elderly, children and postoperative convalescence patients), and some fungal genera may cause several plant diseases. Our findings may serve an important reference value in the global air microbial propagation and air microbial research in desert.


Assuntos
Microbiologia do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Bactérias/genética , Bactérias/isolamento & purificação , China , Cidades , Monitoramento Ambiental , Fungos/genética , Fungos/isolamento & purificação , Tamanho da Partícula , RNA Bacteriano/genética , RNA Fúngico/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Estações do Ano
20.
J Econ Entomol ; 109(4): 1887-96, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27122496

RESUMO

House dust mites (HDMs) and stored-product mites (SPMs) of various species inhabit human homes and stored agricultural products. These mites are carriers and hosts of microorganisms that enable their survival. The bacteriome from 13 species of SPMs and HDMs was analyzed and compared by 454 pyrosequencing of partial 16S rRNA gene amplicons. Altogether 128,052 sequences were obtained and assigned to 71 operational taxonomic units (OTUs) at the 97% identity level. The number of sequences in the OTUs between species of mites ranged from 6 to 31 in the individual mite species. We did not find any significant effect of diet or evolutionary origin of mites or their interaction on the composition of the mite bacteriome. In mite species with low bacterial diversity, the bacterial communities were dominated by potential symbiotic or parasitic bacteria, i.e., Cardinium in Dermatophagoides farinae (Hughes, 1961) and Aeroglyphus robustus (Banks 1906) and the enteric bacteria Erwinia in Blomia tropicalis Van Bronswijk, de Cock & Oshima, 1974 and Xenorhabdus in Tyroborus lini (Oudemans, 1924). Among the bacterial species identified, Staphylococcus, Bacillus, Kocuria, Brevibacterium, Corynebacterium, and Brachybacterium likely serve as food sources for the mites. The domestic acaridid mites carried high numbers of various bacteria that are potential threats to human health. These results contribute to the general understanding of the ecology of mite adaptation to human-made habitats.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Ácaros/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA