Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 725
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(29): 42445-42460, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38872040

RESUMO

In the current study, the Cu phytoremediation ability of two ornamental plants, Chrysanthemum indicum L. and Tagetes erecta L., was tracked concerning the growth and physiological responses. Plants were subjected to varying concentrations of Cu (0, 100, 200, and 400 mg/kg) under the pot experiment for 8 weeks. The results showed that the measured growth and physiological characteristics declined in T. erecta shoots and roots at all tested treatments compared with the control. However, in C. indicum at 100 mg/kg, shoot biomass, shoot total soluble protein, and leaves number remained equal to that of the control and then reduced by rising Cu concentrations, compared with the control. Also, results indicated that in C. indicum, after 56 days of exposure to Cu, the chlorophyll pigments content markedly increased and reached a maximum level at 100 mg/kg dose and gradually declined with enhancing Cu concentrations, compared with the control. Other measured growth and physiological parameters decreased in both tissues of C. indicum in response to Cu usage in the growth medium. The carotenoid content of T. erecta decreased in all studied Cu levels in comparison to the control, but in C. indicum remained unaffected up to 200 mg/kg Cu in comparison to the control and then enhanced with increasing Cu level. The augmentation of antioxidant enzyme activity in two species, especially in roots, reflected the incident of Cu stress as demonstrated by elevated MDA and ion leakage levels. Data concerning copper accumulation in tissues, TF, and BAF showed T. erecta is a weak Cu accumulator and seems not to be an appropriate candidate for Cu phytoremediation. However, the Cu content in shoots and roots of C. indicum increased significantly with an increment in applied Cu level. Also, C. indicum accumulated higher Cu concentrations in the roots than in shoots and exhibited TF < 1, 0.1 < BAF root < 1, and can be considered as a Cu excluder by the phytostabilization mechanism.


Assuntos
Biodegradação Ambiental , Clorofila , Chrysanthemum , Cobre , Tagetes , Chrysanthemum/metabolismo , Chrysanthemum/crescimento & desenvolvimento , Tagetes/metabolismo , Clorofila/metabolismo , Carotenoides/metabolismo , Raízes de Plantas/metabolismo
2.
BMC Plant Biol ; 24(1): 591, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902617

RESUMO

BACKGROUND: Light deficit in shaded environment critically impacts the growth and development of turf plants. Despite this fact, past research has predominantly concentrated on shade avoidance rather than shade tolerance. To address this, our study examined the photosynthetic adjustments of Bermudagrass when exposed to varying intensities of shade to gain an integrative understanding of the shade response of C4 turfgrass. RESULTS: We observed alterations in photosynthetic pigment-proteins, electron transport and its associated carbon and nitrogen assimilation, along with ROS-scavenging enzyme activity in shaded conditions. Mild shade enriched Chl b and LHC transcripts, while severe shade promoted Chl a, carotenoids and photosynthetic electron transfer beyond QA- (ET0/RC, φE0, Ψ0). The study also highlighted differential effects of shade on leaf and root components. For example, Soluble sugar content varied between leaves and roots as shade diminished SPS, SUT1 but upregulated BAM. Furthermore, we observed that shading decreased the transcriptional level of genes involving in nitrogen assimilation (e.g. NR) and SOD, POD, CAT enzyme activities in leaves, even though it increased in roots. CONCLUSIONS: As shade intensity increased, considerable changes were noted in light energy conversion and photosynthetic metabolism processes along the electron transport chain axis. Our study thus provides valuable theoretical groundwork for understanding how C4 grass acclimates to shade tolerance.


Assuntos
Aclimatação , Cynodon , Fotossíntese , Folhas de Planta , Cynodon/fisiologia , Cynodon/genética , Cynodon/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/genética , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Raízes de Plantas/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Clorofila/metabolismo
3.
Curr Microbiol ; 81(7): 207, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831110

RESUMO

The current study aimed to evaluate the plant growth-promoting (PGP) potential of endophytic strain Bacillus subtilis KU21 isolated from the roots of Rosmarinus officinalis. The strain exhibited multiple traits of plant growth promotion viz., phosphate (P) solubilization, nitrogen fixation, indole-3-acetic acid (IAA), siderophore, hydrogen cyanide (HCN), lytic enzymes production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The isolate also exhibited antagonistic activity against phytopathogenic fungi, i.e., Fusarium oxysporum, Fusarium graminiarum, and Rhizoctonia solani. The P-solubilization activity of B. subtilis KU21 was further elucidated via detection of glucose dehydrogenase (gdh) gene involved in the production of gluconic acid which is responsible for P-solubilization. Further, B. subtilis KU21 was evaluated for in vivo growth promotion studies of tomato (test crop) under net house conditions. A remarkable increase in seed germination, plant growth parameters, nutrient acquisition, and soil quality parameters (NPK) was observed in B. subtilis KU21-treated plants over untreated control. Hence, the proposed module could be recommended for sustainable tomato production in the Northwest Himalayan region without compromising soil health and fertility.


Assuntos
Bacillus subtilis , Endófitos , Raízes de Plantas , Rosmarinus , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/metabolismo , Endófitos/isolamento & purificação , Endófitos/metabolismo , Endófitos/genética , Endófitos/classificação , Rosmarinus/química , Rosmarinus/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Fusarium/genética , Fusarium/metabolismo , Microbiologia do Solo , Desenvolvimento Vegetal , Germinação , Ácidos Indolacéticos/metabolismo , Rhizoctonia/crescimento & desenvolvimento , Rhizoctonia/efeitos dos fármacos , Fixação de Nitrogênio , Fosfatos/metabolismo
4.
Fitoterapia ; 177: 106106, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38945492

RESUMO

The Cichorium plants are particularly notable due to their remarkable therapeutic and medicinal properties, besides being used as food and conventional medication. Although Cichorium plants have been studied for their phytoconstituents and biological activities, there is limited knowledge about the constituents of the roots of C. bottae. A phytochemical study of the 90% MeOH extract of C. bottae roots resulted in the isolation of twelve compounds belonging to guaianolide sesquiterpene lactones, sesquiterpene lactone glucosides, and phenolic derivatives, of which two compounds designated as 9α-hydroxycrepediaside B (1) and cichobotinal (2) were previously undescribed. The isolated compounds were assessed for their anti-inflammatory potential through the inhibition of inducible nitric oxide synthase (iNOS) and resultant decrease in nitric oxide generation in LPS-induced macrophages. Among the isolates, compounds 2 and 11 (8-deoxylactucin) inhibited iNOS activity with IC50 values of 21.0 ± 4 and 6.8 ± 0.1 µM, respectively. The methanolic extract of C. bottae inhibited iNOS with an IC50 of 10.5 ± 0.5 µg/mL.


Assuntos
Anti-Inflamatórios , Macrófagos , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Compostos Fitoquímicos , Extratos Vegetais , Raízes de Plantas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Raízes de Plantas/química , Células RAW 264.7 , Camundongos , Animais , Estrutura Molecular , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Lactonas/farmacologia , Lactonas/isolamento & purificação , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , Fenóis/farmacologia , Fenóis/isolamento & purificação , Glucosídeos/farmacologia , Glucosídeos/isolamento & purificação , Sesquiterpenos de Guaiano/farmacologia , Sesquiterpenos de Guaiano/isolamento & purificação
5.
J Pharm Biomed Anal ; 245: 116184, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692214

RESUMO

The plant of Paeonia lactiflora Pall. belongs to Ranunculaceae, and its root can be divided into two categories according to different processing methods, which included that one was directly dried without peeling the root of the P. lactiflora (PR), and the other was peeled the root of the P. lactiflora (PPR) after boiled and dried. To evaluate the difference of chemical components, UPLC-ESI-Q-Exactive Focus-MS/MS and UPLC-QQQ-MS were applied. The distribution of chemical components in different tissues was located by laser microdissection (LMD), especially the different ingredients. A total of 86 compounds were identified from PR and PPR. Four kind of tissues were isolated from the fresh root of the P. lactiflora (FPR), and 54 compounds were identified. Especially the content of gallic acid, albiflorin, and paeoniflorin with high biological activities were the highest in the cork, but they were lower in PR than that in PPR, which probably related to the process. To illustrate the difference in pharmacological effects of PR and PPR, the tonifying blood and analgesic effects on mice were investigated, and it was found that the tonifying blood and analgesic effects of PPR was superior to that of PR, even though PR had more constituents. The material basis for tonifying blood and analgesic effect of the root of P. lactiflora is likely to be associated with an increase in constituents such as paeoniflorin and paeoniflorin lactone after boiled and peeled. The study was likely to provide some theoretical support for the standard and clinical application.


Assuntos
Glucosídeos , Monoterpenos , Paeonia , Raízes de Plantas , Animais , Masculino , Camundongos , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/análise , Hidrocarbonetos Aromáticos com Pontes , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Ácido Gálico/análise , Ácido Gálico/química , Glucosídeos/análise , Glucosídeos/química , Lasers , Espectrometria de Massa com Cromatografia Líquida , Microdissecção/métodos , Monoterpenos/farmacologia , Monoterpenos/análise , Monoterpenos/química , Paeonia/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
6.
Nat Plants ; 10(6): 901-909, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38740944

RESUMO

Carbon influences the evolution and functioning of plants and their roots. Previous work examining a small number of commonly measured root traits has revealed a global multidimensionality of the resource economics traits in fine roots considering carbon as primary currency but without considering the diversity of carbon-related traits. To address this knowledge gap, we use data from 66 tree species from a tropical forest to illustrate that root economics space co-varies with a novel molecular-level traits space based on nuclear magnetic resonance. Thinner fine roots exhibit higher proportions of carbohydrates and lower diversity of molecular carbon than thicker roots. Mass-denser fine roots have more lignin and aromatic carbon compounds but less bioactive carbon compounds than lighter roots. Thus, the transition from thin to thick fine roots implies a shift in the root carbon economy from 'do-it-yourself' soil exploration to collaboration with mycorrhizal fungi, while the shift from light to dense fine roots emphasizes a shift from acquisitive to conservative root strategy. We reveal a previously undocumented role of molecular-level carbon traits that potentially undergird the multidimensional root economics space. This finding offers new molecular insight into the diversity of root form and function, which is fundamental to our understanding of plant evolution, species coexistence and adaptations to heterogeneous environments.


Assuntos
Carbono , Raízes de Plantas , Árvores , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Carbono/metabolismo , Árvores/metabolismo , Florestas
7.
BMC Complement Med Ther ; 24(1): 205, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796482

RESUMO

BACKGROUND: The plant roots excrete a large number of organic compounds into the soil. The rhizosphere, a thin soil zone around the roots, is a hotspot for microbial activity, making it a crucial component of the soil ecosystem. Secondary metabolites produced by rhizospheric Sphingomonas sanguinis DM have sparked significant curiosity in investigating their possible biological impacts. METHODS: A bacterial strain has been isolated from the rhizosphere of Datura metel. The bacterium's identification, fermentation, and working up have been outlined. The ethyl acetate fraction of the propagated culture media of Sphingomonas sanguinis DM was fractioned and purified using various chromatographic techniques. The characterization of the isolated compounds was accomplished through the utilization of various spectroscopic techniques, such as UV, MS, 1D, and 2D-NMR. Furthermore, the evaluation of their antimicrobial activity was conducted using the agar well diffusion method, while cytotoxicity was assessed using the MTT test. RESULTS: The extract from Sphingomonas sanguinis DM provided two distinct compounds: n-dibutyl phthalic acid (1) and Bis (2-methyl heptyl) phthalate (2) within its ethyl acetate fraction. Furthermore, the 16S rRNA gene sequence of Sphingomonas sanguinis DM has been registered under the NCBI GenBank database with the accession number PP422198. The bacterial extract exhibited its effect against gram-positive bacteria, inhibiting Streptococcus mutans (12.6 ± 0.6 mm) and Staphylococcus aureus (10.6 ± 0.6 mm) compared to standard antibiotics. Conversely, compound 1 showed a considerable effect against phytopathogenic fungi such as Alternaria alternate (56.3 ± 10.6 mm) and Fusarium oxysporum (21.3 ± 1.5 mm) with a MIC value of 17.5 µg/mL. However, it was slightly active against Klebsiella pneumonia (11.0 ± 1.0 mm). Furthermore, compound 2 was the most active metabolite, having a significant antimicrobial efficacy against Rhizoctonia solani (63.6 ± 1.1 mm), Pseudomonas aeruginosa (16.7 ± 0.6 mm), and Alternaria alternate (20.3 ± 0.6 mm) with MIC value at 15 µg/mL. In addition, compound 2 exhibited the most potency against hepatocellular (HepG-2) and skin (A-431) carcinoma cell lines with IC50 values of 107.16 µg/mL and 111.36 µg/mL, respectively. CONCLUSION: Sphingomonas sanguinis DM, a rhizosphere bacterium of Datura metel, was studied for its phytochemical and biological characteristics, resulting in the identification of two compounds with moderate antimicrobial and cytotoxic activities.


Assuntos
Datura metel , Rizosfera , Sphingomonas , Datura metel/química , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Testes de Sensibilidade Microbiana , Raízes de Plantas/microbiologia , Antibacterianos/farmacologia , Metabolismo Secundário
8.
Physiol Plant ; 176(3): e14336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783514

RESUMO

The tiller inhibition (tin) and Reduced height (Rht) genes strongly influence the carbon partitioning and architecture of wheat shoots, but their effects on the energy economy of roots have not been examined in detail. We examined multiple root traits in three sets of near-isogenic wheat lines (NILs) that differ in the tin gene or various dwarfing gene alleles (Rht-B1b, Rht-D1b, Rht-B1c and Rht-B1b + Rht-D1b) to determine their effects on root structure, anatomy and carbon allocation. The tin gene resulted in fewer tillers but more costly roots in an extreme tin phenotype with a Banks genetic background due to increases in root-to-shoot ratio, total root length, and whole root respiration. However, this effect depended on the genetic background as tin caused both smaller shoots and roots in a different genetic background. The semi-dwarf gene Rht-B1b caused few changes to the root structure, whereas Rht-D1b, Rht-B1c and the double dwarf (Rht-B1b + Rht-D1b) decreased the root biomass. Rht-B1c reduced the energy cost of roots by increasing specific root length, increasing the volume of cortical aerenchyma and by reducing root length, number, and biomass without affecting the root-to-shoot ratio. This work informs researchers using tin and Rht genes how to modify root system architecture to suit specific environments.


Assuntos
Fenótipo , Raízes de Plantas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Triticum/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Genes de Plantas/genética , Biomassa
9.
Molecules ; 29(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731598

RESUMO

Obtaining high-added value compounds from agricultural waste receives increasing attention, as it can both improve resource utilization efficiency and reduce waste generation. In this study, polysaccharides are extracted from the discarded roots of Abelmoschus manihot (L.) by the high-efficiency ultrasound-assisted extraction (UAE). The optimized condition was determined as solid-liquid ratio SL ratio = 1:20, temperature T = 30 °C and time T = 40 min, achieving an extraction yield of 13.41%. Composition analysis revealed that glucose (Glc, 44.65%), rhamnose (Rha, 26.30%), galacturonic acid (GalA, 12.50%) and galactose (Gal, 9.86%) are the major monosaccharides of the extract. The extract showed a low degree of esterification (DE) value of 40.95%, and its Fourier-transform infrared (FT-IR) spectrum exhibited several characteristic peaks of polysaccharides. Inspired by the wide cosmetic applications of polysaccharides, the skincare effect of the extract was evaluated via the moisture retention, total phenolic content (TPC) quantification, 2,2-Diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging activity, anti-hyaluronidase and anti-elastase activity experiments. The extract solutions demonstrated a 48 h moisture retention rate of 10.75%, which is superior to that of commercially available moisturizer hyaluronic acid (HA). Moreover, both the TPC value of 16.16 mg GAE/g (dw) and DPPH-free radical scavenging activity of 89.20% at the concentration of 2 mg/mL indicated the strong anti-oxidant properties of the extract. Furthermore, the anti-hyaluronidase activity and moderate anti-elastase activity were determined as 72.16% and 42.02%, respectively. In general, in vitro skincare effect experiments suggest moisturizing, anti-oxidant, anti-radical and anti-aging activities of the A. manihot root extract, indicating its potential applications in the cosmetic industry.


Assuntos
Abelmoschus , Antioxidantes , Extratos Vegetais , Raízes de Plantas , Polissacarídeos , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Abelmoschus/química , Antioxidantes/química , Antioxidantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Higiene da Pele/métodos , Ramnose/química , Galactose , Ácidos Hexurônicos/química , Fenóis/química , Fenóis/análise , Fenóis/farmacologia , Humanos
10.
J Hazard Mater ; 472: 134486, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38714052

RESUMO

Peanuts, known for their nutritional value, health benefits, and delicious taste, are susceptible to agricultural chemical contamination, posing a challenge to the peanut industry in China. While tristyrylphenol ethoxylates (TSPEOs) have garnered attention for their widespread use in pesticide formulations, their dissipation and potential risks in peanuts remain a gap in knowledge. This study, unique in its focus on TSPEOs, investigates their dissipation and potential risks under two common application modes: spraying and root irrigation. The concentration of total TSPEOs in peanut plants was significantly higher when sprayed (435-37,693 µg/kg) than in root irrigation (24-1602 µg/kg). The dissipation of TSPEOs was faster in peanuts and soil when sprayed, with half-lives of 3.67-5.59 d (mean: 4.37 d) and 5.41-7.07 d (mean: 5.95 d), respectively. The residue of TSPEOs in peanut shells and soil were higher with root irrigation (8.9-65.2 and 25.4-305.1 µg/kg, respectively) than with spraying (5.4-30.6 and 8.8-146.5 µg/kg, respectively). These results indicated that the dissipation behavior of TSPEOs in peanuts was influenced by application modes. While the healthy and ecological risk assessments of TSPEOs in soil and peanut shells showed no risks, root irrigation might pose a higher potential risk than spraying. This research provides valuable data for the judicious application of pesticides during peanut cultivation to enhance pesticide utilization and reduce potential risks.


Assuntos
Irrigação Agrícola , Arachis , Raízes de Plantas , Poluentes do Solo , Poluentes do Solo/análise , Poluentes do Solo/química , Medição de Risco , Resíduos de Praguicidas/análise , Praguicidas/toxicidade , Praguicidas/química , Praguicidas/análise , Agricultura , China
11.
Plant Cell Environ ; 47(8): 2999-3014, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38644635

RESUMO

Crown removal revitalises sand-fixing shrubs that show declining vigour with age in drought-prone environments; however, the underlying mechanisms are poorly understood. Here, we addressed this knowledge gap by comparing the growth performance, xylem hydraulics and plant carbon economy across different plant ages (10, 21 and 33 years) and treatments (control and crown removal) using a representative sand-fixing shrub (Caragana microphylla Lam.) in northern China. We found that growth decline with plant age was accompanied by simultaneous decreases in soil moisture, plant hydraulic efficiency and photosynthetic capacity, suggesting that these interconnected changes in plant water relations and carbon economy were responsible for this decline. Following crown removal, quick resprouting, involving remobilisation of root nonstructural carbohydrate reserves, contributed to the reconstruction of an efficient hydraulic system and improved plant carbon status, but this became less effective in older shrubs. These age-dependent effects of carbon economy and hydraulics on plant growth vigour provide a mechanistic explanation for the age-related decline and revitalisation of sand-fixing shrubs. This understanding is crucial for the development of suitable management strategies for shrub plantations constructed with species having the resprouting ability and contributes to the sustainability of ecological restoration projects in water-limited sandy lands.


Assuntos
Carbono , Água , Xilema , Carbono/metabolismo , Água/metabolismo , Xilema/metabolismo , Xilema/crescimento & desenvolvimento , Xilema/fisiologia , Caragana/fisiologia , Caragana/crescimento & desenvolvimento , Caragana/metabolismo , Fotossíntese/fisiologia , Areia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Solo/química , China
12.
Regul Toxicol Pharmacol ; 149: 105620, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615840

RESUMO

Botanical extracts, widely used in cosmetics, pose a challenge to safety assessment due to their complex compositions. The threshold of toxicological concern (TTC) approach, offering a safe exposure level for cosmetic ingredients, proves to be a promising solution for ensuring the safety of cosmetic ingredients with low exposure level. We assessed the safety of Paeonia lactiflora root extract (PLR), commonly used in skin conditioning products, with the TTC. We identified 50 constituents of PLR extract from the USDA database and literature exploration. Concentration of each constituent of PLR extract was determined with the information from USDA references, literature, and experimental analysis. The genotoxicity of PLR and its constituents was assessed in vitro and in silico respectively. Cramer class of the constituents of the PLR extract was determined with Toxtree 3.1 extended decision tree using ChemTunes®. Systemic exposure of each constituent from leave-on type cosmetic products containing PLR at a 1% concentration was estimated and compared with respective TTC threshold. Two constituents exceeding TTC threshold were further analyzed for dermal absorption using in silico tools, which confirmed the safety of PLR extract in cosmetics. Collectively, we demonstrated that the TTC is a useful tool for assessing botanical extract safety in cosmetics.


Assuntos
Cosméticos , Paeonia , Extratos Vegetais , Raízes de Plantas , Paeonia/química , Extratos Vegetais/toxicidade , Cosméticos/toxicidade , Raízes de Plantas/química , Medição de Risco , Humanos , Animais , Qualidade de Produtos para o Consumidor , Absorção Cutânea , Nível de Efeito Adverso não Observado
13.
Plant J ; 119(1): 100-114, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38600835

RESUMO

As global climate change persists, ongoing warming exposes plants, including kiwifruit, to repeated cycles of drought stress and rewatering, necessitating the identification of drought-resistant genotypes for breeding purposes. To better understand the physiological mechanisms underlying drought resistance and recovery in kiwifruit, moderate (40-45% field capacity) and severe (25-30% field capacity) drought stresses were applied, followed by rewatering (80-85% field capacity) to eight kiwifruit rootstocks in this study. We then conducted a multivariate analysis of 20 indices for the assessment of drought resistance and recovery capabilities. Additionally, we identified four principal components, each playing a vital role in coping with diverse water conditions. Three optimal indicator groups were pinpointed, enhancing precision in kiwifruit drought resistance and recovery assessment and simplifying the evaluation system. Finally, MX-1 and HW were identified as representative rootstocks for future research on kiwifruit's responses to moderate and severe drought stresses. This study not only enhances our understanding of the response mechanisms of kiwifruit rootstocks to progressive drought stress and recovery but also provides theoretical guidance for reliable screening of drought-adaptive kiwifruit genotypes.


Assuntos
Actinidia , Resistência à Seca , Actinidia/genética , Actinidia/fisiologia , Resistência à Seca/genética , Frutas/genética , Frutas/fisiologia , Genótipo , Análise Multivariada , Raízes de Plantas/fisiologia , Raízes de Plantas/genética , Estresse Fisiológico/genética
14.
Plant Dis ; 108(9): 2710-2721, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38600772

RESUMO

Formally described in 2009, Phytophthora sansomeana is a pathogen of increasing interest in native, agricultural, and horticulturally important plant species. The objective of this study was to elucidate the symptomatic and asymptomatic host range of P. sansomeana on six agricultural crop species commonly used in field crop rotations in Michigan. In addition, sensitivity to oomicides commonly used in seed treatments, including oxathiapiprolin, mefenoxam, ethaboxam, and pyraclostrobin, was performed to aid in disease management recommendations. Plant biomass, quantity of P. sansomeana DNA in roots, and reisolations were used to assess pathogenicity and virulence of 18 isolates of P. sansomeana on each plant species using an inoculated seedling growth chamber assay. Isolates displayed varying levels of virulence to the hosts tested. Reisolations were completed for each plant species tested, and varying quantities of P. sansomeana DNA were found within all plant species root samples. Corn, wheat, soybean, dry bean, and winter cereal rye plants were symptomatic hosts with significant reduction observed in the total plant biomass. No significant reduction in total plant biomass was observed in oats, and oat roots harbored the least amount of P. sansomeana DNA. No P. sansomeana isolates were insensitive to the oomicide compounds tested with mean absolute inhibition (EC50) values of fungicide required for 50% growth inhibition values of 7.8 × 10-2 µg/ml for mefenoxam, 1.13 × 10-1 µg/ml for ethaboxam, 2.6 × 10-2 µg/ml for oxathiapiprolin, and 3.04 × 10-1 µg/ml for pyraclostrobin. These results suggest that common crop rotations in Michigan may not be a viable option to reduce soilborne inoculum accumulation and oomicide seed treatments could be considered for early-season management of P. sansomeana.


Assuntos
Avena , Glycine max , Phytophthora , Doenças das Plantas , Secale , Sementes , Triticum , Zea mays , Phytophthora/efeitos dos fármacos , Phytophthora/fisiologia , Phytophthora/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Secale/microbiologia , Zea mays/microbiologia , Avena/microbiologia , Triticum/microbiologia , Sementes/microbiologia , Glycine max/microbiologia , Especificidade de Hospedeiro , Fungicidas Industriais/farmacologia , Estrobilurinas/farmacologia , Raízes de Plantas/microbiologia , Virulência , Produtos Agrícolas/microbiologia , Michigan , Plântula/microbiologia , Biomassa , Carbamatos/farmacologia , Piridinas , Benzamidas , Alanina/análogos & derivados , Hidrocarbonetos Fluorados , Pirazóis
15.
J Exp Bot ; 75(18): 5750-5767, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-38661441

RESUMO

We describe how increased root cortical parenchyma wall width (CPW) can improve tolerance to drought stress in maize by reducing the metabolic costs of soil exploration. Significant variation (1.0-5.0 µm) for CPW was observed in maize germplasm. The functional-structural model RootSlice predicts that increasing CPW from 2 µm to 4 µm is associated with a ~15% reduction in root cortical cytoplasmic volume, respiration rate, and nitrogen content. Analysis of genotypes with contrasting CPW grown with and without water stress in the field confirms that increased CPW is correlated with an ~32-42% decrease in root respiration. Under water stress in the field, increased CPW is correlated with 125% increased stomatal conductance, 325% increased leaf CO2 assimilation rate, 73-78% increased shoot biomass, and 92-108% increased yield. CPW was correlated with leaf mesophyll midrib parenchyma wall width, indicating pleiotropy. Genome-wide association study analysis identified candidate genes underlying CPW. OpenSimRoot modeling predicts that a reduction in root respiration due to increased CPW would also benefit maize growth under suboptimal nitrogen, which requires empirical testing. We propose CPW as a new phene that has utility under edaphic stress meriting further investigation.


Assuntos
Raízes de Plantas , Água , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia , Zea mays/genética , Zea mays/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Água/metabolismo , Secas , Estudo de Associação Genômica Ampla , Desidratação
16.
Methods Mol Biol ; 2787: 95-103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656484

RESUMO

Our method describes how to collect forest tree root tips in the field, to store them for transfer to the lab, to pretreat root tips in order to arrest cells in metaphase, fix root tips to preserve specific morphological organizations, to stain fixed root tips by Feulgen's Reaction in order to increase contrast, and to prepare the root meristem for analyzing mitotic stages and chromosomal aberrations via light microscopy. We further describe how to classify chromosomal abnormalities and quantify them via aberration indices.


Assuntos
Meristema , Árvores , Meristema/genética , Árvores/genética , Aberrações Cromossômicas , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Análise Citogenética/métodos
17.
Plant Cell Environ ; 47(7): 2526-2541, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38515431

RESUMO

A holistic understanding of plant strategies to acquire soil resources is pivotal in achieving sustainable food security. However, we lack knowledge about variety-specific root and rhizosphere traits for resource acquisition, their plasticity and adaptation to drought. We conducted a greenhouse experiment to phenotype root and rhizosphere traits (mean root diameter [Root D], specific root length [SRL], root tissue density, root nitrogen content, specific rhizosheath mass [SRM], arbuscular mycorrhizal fungi [AMF] colonization) of 16 landraces and 22 modern cultivars of temperate maize (Zea mays L.). Our results demonstrate that landraces and modern cultivars diverge in their root and rhizosphere traits. Although landraces follow a 'do-it-yourself' strategy with high SRLs, modern cultivars exhibit an 'outsourcing' strategy with increased mean Root Ds and a tendency towards increased root colonization by AMF. We further identified that SRM indicates an 'outsourcing' strategy. Additionally, landraces were more drought-responsive compared to modern cultivars based on multitrait response indices. We suggest that breeding leads to distinct resource acquisition strategies between temperate maize varieties. Future breeding efforts should increasingly target root and rhizosphere economics, with SRM serving as a valuable proxy for identifying varieties employing an outsourcing resource acquisition strategy.


Assuntos
Adaptação Fisiológica , Secas , Micorrizas , Raízes de Plantas , Rizosfera , Solo , Zea mays , Zea mays/fisiologia , Zea mays/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Solo/química , Micorrizas/fisiologia , Fenótipo , Nitrogênio/metabolismo
18.
New Phytol ; 243(2): 580-590, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38488228

RESUMO

Non-structural carbohydrates (NSCs), as the labile fraction and dominant carbon currency, are essential mediators of plant adaptation to environments. However, whether and how NSC coordinates with plant economic strategy frameworks, particularly the well-recognized leaf economics spectrums (LES) and root economics space (RES), remains unclear. We examined the relationships between NSC and key plant economics traits in leaves and fine roots across 90 alpine coniferous populations on the Tibetan Plateau, China. We observed contrasting coordination of NSC with economics traits in leaves and roots. Leaf total NSC and soluble sugar aligned with the leaf economic spectrum, conveying a trade-off between growth and storage in leaves. However, NSC in roots was independent of the root economic spectrum, but highly coordinated with root foraging, with more starch and less sugar in forage-efficient, thinner roots. Further, NSC-trait coordination in leaves and roots was, respectively, driven by local temperature and precipitation. These findings highlight distinct roles of NSC in shaping the above- and belowground multidimensional economics trait space, and NSC-based carbon economics provides a mechanistic understanding of how plants adapt to heterogeneous habitats and respond to environmental changes.


Assuntos
Florestas , Folhas de Planta , Raízes de Plantas , Traqueófitas , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Traqueófitas/fisiologia , Metabolismo dos Carboidratos , Carboidratos , Característica Quantitativa Herdável , Temperatura
19.
Ecol Lett ; 27(3): e14402, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511333

RESUMO

Plant species occupy distinct niches along a nitrogen-to-phosphorus (N:P) gradient, yet there is no general framework for belowground nutrient acquisition traits in relation to N or P limitation. We retrieved several belowground traits from databases, placed them in the "root economics space" framework, and linked these to a dataset of 991 plots in Eurasian herbaceous plant communities, containing plant species composition, aboveground community biomass and tissue N and P concentrations. Our results support that under increasing N:P ratio, belowground nutrient acquisition strategies shift from "fast" to "slow" and from "do-it-yourself" to "outsourcing", with alternative "do-it-yourself" to "outsourcing" strategies at both ends of the spectrum. Species' mycorrhizal capacity patterns conflicted with root economics space predictions based on root diameter, suggesting evolutionary development of alternative strategies under P limitation. Further insight into belowground strategies along nutrient stoichiometry is crucial for understanding the high abundance of threatened plant species under P limitation.


Assuntos
Micorrizas , Plantas , Biomassa , Nitrogênio , Nutrientes , Solo , Raízes de Plantas
20.
Plant J ; 118(5): 1343-1357, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38340035

RESUMO

It has been hypothesized that vacuolar occupancy in mature root cortical parenchyma cells regulates root metabolic cost and thereby plant fitness under conditions of drought, suboptimal nutrient availability, and increased soil mechanical impedance. However, the mechanistic role of vacuoles in reducing root metabolic cost was unproven. Here we provide evidence to support this hypothesis. We first show that root cortical cell size is determined by both cortical cell diameter and cell length. Significant genotypic variation for both cortical cell diameter (~1.1- to 1.5-fold) and cortical cell length (~ 1.3- to 7-fold) was observed in maize and wheat. GWAS and QTL analyses indicate cortical cell diameter and length are heritable and under independent genetic control. We identify candidate genes for both phenes. Empirical results from isophenic lines contrasting for cortical cell diameter and length show that increased cell size, due to either diameter or length, is associated with reduced root respiration, nitrogen content, and phosphorus content. RootSlice, a functional-structural model of root anatomy, predicts that an increased vacuolar: cytoplasmic ratio per unit cortical volume causes reduced root respiration and nutrient content. Ultrastructural imaging of cortical parenchyma cells with varying cortical diameter and cortical cell length confirms the in silico predictions and shows that an increase in cell size is correlated with increased vacuolar volume and reduced cytoplasmic volume. Vacuolar occupancy and its relationship with cell size merits further investigation as a phene for improving crop adaptation to edaphic stress.


Assuntos
Tamanho Celular , Raízes de Plantas , Locos de Características Quantitativas , Vacúolos , Zea mays , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/citologia , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiologia , Zea mays/citologia , Vacúolos/metabolismo , Locos de Características Quantitativas/genética , Triticum/genética , Triticum/metabolismo , Triticum/fisiologia , Estudo de Associação Genômica Ampla , Genótipo , Nitrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA