Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 591, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902617

RESUMO

BACKGROUND: Light deficit in shaded environment critically impacts the growth and development of turf plants. Despite this fact, past research has predominantly concentrated on shade avoidance rather than shade tolerance. To address this, our study examined the photosynthetic adjustments of Bermudagrass when exposed to varying intensities of shade to gain an integrative understanding of the shade response of C4 turfgrass. RESULTS: We observed alterations in photosynthetic pigment-proteins, electron transport and its associated carbon and nitrogen assimilation, along with ROS-scavenging enzyme activity in shaded conditions. Mild shade enriched Chl b and LHC transcripts, while severe shade promoted Chl a, carotenoids and photosynthetic electron transfer beyond QA- (ET0/RC, φE0, Ψ0). The study also highlighted differential effects of shade on leaf and root components. For example, Soluble sugar content varied between leaves and roots as shade diminished SPS, SUT1 but upregulated BAM. Furthermore, we observed that shading decreased the transcriptional level of genes involving in nitrogen assimilation (e.g. NR) and SOD, POD, CAT enzyme activities in leaves, even though it increased in roots. CONCLUSIONS: As shade intensity increased, considerable changes were noted in light energy conversion and photosynthetic metabolism processes along the electron transport chain axis. Our study thus provides valuable theoretical groundwork for understanding how C4 grass acclimates to shade tolerance.


Assuntos
Aclimatação , Cynodon , Fotossíntese , Folhas de Planta , Cynodon/fisiologia , Cynodon/genética , Cynodon/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/genética , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Raízes de Plantas/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Clorofila/metabolismo
2.
Physiol Plant ; 176(3): e14336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783514

RESUMO

The tiller inhibition (tin) and Reduced height (Rht) genes strongly influence the carbon partitioning and architecture of wheat shoots, but their effects on the energy economy of roots have not been examined in detail. We examined multiple root traits in three sets of near-isogenic wheat lines (NILs) that differ in the tin gene or various dwarfing gene alleles (Rht-B1b, Rht-D1b, Rht-B1c and Rht-B1b + Rht-D1b) to determine their effects on root structure, anatomy and carbon allocation. The tin gene resulted in fewer tillers but more costly roots in an extreme tin phenotype with a Banks genetic background due to increases in root-to-shoot ratio, total root length, and whole root respiration. However, this effect depended on the genetic background as tin caused both smaller shoots and roots in a different genetic background. The semi-dwarf gene Rht-B1b caused few changes to the root structure, whereas Rht-D1b, Rht-B1c and the double dwarf (Rht-B1b + Rht-D1b) decreased the root biomass. Rht-B1c reduced the energy cost of roots by increasing specific root length, increasing the volume of cortical aerenchyma and by reducing root length, number, and biomass without affecting the root-to-shoot ratio. This work informs researchers using tin and Rht genes how to modify root system architecture to suit specific environments.


Assuntos
Fenótipo , Raízes de Plantas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Triticum/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Genes de Plantas/genética , Biomassa
3.
Nat Plants ; 10(6): 901-909, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38740944

RESUMO

Carbon influences the evolution and functioning of plants and their roots. Previous work examining a small number of commonly measured root traits has revealed a global multidimensionality of the resource economics traits in fine roots considering carbon as primary currency but without considering the diversity of carbon-related traits. To address this knowledge gap, we use data from 66 tree species from a tropical forest to illustrate that root economics space co-varies with a novel molecular-level traits space based on nuclear magnetic resonance. Thinner fine roots exhibit higher proportions of carbohydrates and lower diversity of molecular carbon than thicker roots. Mass-denser fine roots have more lignin and aromatic carbon compounds but less bioactive carbon compounds than lighter roots. Thus, the transition from thin to thick fine roots implies a shift in the root carbon economy from 'do-it-yourself' soil exploration to collaboration with mycorrhizal fungi, while the shift from light to dense fine roots emphasizes a shift from acquisitive to conservative root strategy. We reveal a previously undocumented role of molecular-level carbon traits that potentially undergird the multidimensional root economics space. This finding offers new molecular insight into the diversity of root form and function, which is fundamental to our understanding of plant evolution, species coexistence and adaptations to heterogeneous environments.


Assuntos
Carbono , Raízes de Plantas , Árvores , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Carbono/metabolismo , Árvores/metabolismo , Florestas
4.
Methods Mol Biol ; 2787: 95-103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656484

RESUMO

Our method describes how to collect forest tree root tips in the field, to store them for transfer to the lab, to pretreat root tips in order to arrest cells in metaphase, fix root tips to preserve specific morphological organizations, to stain fixed root tips by Feulgen's Reaction in order to increase contrast, and to prepare the root meristem for analyzing mitotic stages and chromosomal aberrations via light microscopy. We further describe how to classify chromosomal abnormalities and quantify them via aberration indices.


Assuntos
Meristema , Árvores , Meristema/genética , Árvores/genética , Aberrações Cromossômicas , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Análise Citogenética/métodos
5.
Plant J ; 119(1): 100-114, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38600835

RESUMO

As global climate change persists, ongoing warming exposes plants, including kiwifruit, to repeated cycles of drought stress and rewatering, necessitating the identification of drought-resistant genotypes for breeding purposes. To better understand the physiological mechanisms underlying drought resistance and recovery in kiwifruit, moderate (40-45% field capacity) and severe (25-30% field capacity) drought stresses were applied, followed by rewatering (80-85% field capacity) to eight kiwifruit rootstocks in this study. We then conducted a multivariate analysis of 20 indices for the assessment of drought resistance and recovery capabilities. Additionally, we identified four principal components, each playing a vital role in coping with diverse water conditions. Three optimal indicator groups were pinpointed, enhancing precision in kiwifruit drought resistance and recovery assessment and simplifying the evaluation system. Finally, MX-1 and HW were identified as representative rootstocks for future research on kiwifruit's responses to moderate and severe drought stresses. This study not only enhances our understanding of the response mechanisms of kiwifruit rootstocks to progressive drought stress and recovery but also provides theoretical guidance for reliable screening of drought-adaptive kiwifruit genotypes.


Assuntos
Actinidia , Resistência à Seca , Actinidia/genética , Actinidia/fisiologia , Resistência à Seca/genética , Frutas/genética , Frutas/fisiologia , Genótipo , Análise Multivariada , Raízes de Plantas/fisiologia , Raízes de Plantas/genética , Estresse Fisiológico/genética
6.
Plant J ; 118(5): 1343-1357, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38340035

RESUMO

It has been hypothesized that vacuolar occupancy in mature root cortical parenchyma cells regulates root metabolic cost and thereby plant fitness under conditions of drought, suboptimal nutrient availability, and increased soil mechanical impedance. However, the mechanistic role of vacuoles in reducing root metabolic cost was unproven. Here we provide evidence to support this hypothesis. We first show that root cortical cell size is determined by both cortical cell diameter and cell length. Significant genotypic variation for both cortical cell diameter (~1.1- to 1.5-fold) and cortical cell length (~ 1.3- to 7-fold) was observed in maize and wheat. GWAS and QTL analyses indicate cortical cell diameter and length are heritable and under independent genetic control. We identify candidate genes for both phenes. Empirical results from isophenic lines contrasting for cortical cell diameter and length show that increased cell size, due to either diameter or length, is associated with reduced root respiration, nitrogen content, and phosphorus content. RootSlice, a functional-structural model of root anatomy, predicts that an increased vacuolar: cytoplasmic ratio per unit cortical volume causes reduced root respiration and nutrient content. Ultrastructural imaging of cortical parenchyma cells with varying cortical diameter and cortical cell length confirms the in silico predictions and shows that an increase in cell size is correlated with increased vacuolar volume and reduced cytoplasmic volume. Vacuolar occupancy and its relationship with cell size merits further investigation as a phene for improving crop adaptation to edaphic stress.


Assuntos
Tamanho Celular , Raízes de Plantas , Locos de Características Quantitativas , Vacúolos , Zea mays , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/citologia , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiologia , Zea mays/citologia , Vacúolos/metabolismo , Locos de Características Quantitativas/genética , Triticum/genética , Triticum/metabolismo , Triticum/fisiologia , Estudo de Associação Genômica Ampla , Genótipo , Nitrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA