Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 10(3)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38507785

RESUMO

The aim of this study was to use computer simulation to analyze the impact of the aluminum fixing support on the Reference Air Kerma (RAK), a physical quantity obtained in a calibration system that was experimentally developed in the Laboratory of Radiological Sciences of the University of the State of Rio de Janeiro (LCR-UERJ). Correction factors due to scattered radiation and the geometry of the192Ir sources were also sought to be determined. The computational simulation was validated by comparing some parameters of the experimental results with the computational results. These parameters were: verification of the inverse square law of distance, determination of (RAKR), analysis of the source spectrum with and without encapsulation, and the sensitivity curve of the Sourcecheck 4PI ionization chamber response, as a function of the distance from the source along the axial axis, using the microSelectron-v2 (mSv2) and GammaMedplus (GMp) sources. Kerma was determined by activity in the Reference air, with calculated values of 1.725 × 10-3U. Bq-1and 1.710 × 10-3U. Bq-1for the ionization chamber NE 2571 and TN 30001, respectively. The expanded uncertainty for these values was 0.932% and 0.919%, respectively, for a coverage factor (k = 2). The correction factor due to the influence of the aluminum fixing support for measurements at 1 cm and 10 cm from the source was 0.978 and 0.969, respectively. The geometric correction factor of the sources was ksg= 1.005 with an expanded uncertainty of 0.7% for a coverage factor (k = 2). This value has a difference of approximately 0.2% compared to the experimental values.


Assuntos
Simulação por Computador , Radioisótopos de Irídio , Radiometria , Calibragem , Radiometria/métodos , Radioisótopos de Irídio/uso terapêutico , Humanos , Ar , Alumínio , Método de Monte Carlo , Doses de Radiação , Braquiterapia/métodos , Braquiterapia/normas , Dosagem Radioterapêutica , Espalhamento de Radiação
2.
PLoS One ; 19(2): e0298550, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38335156

RESUMO

After 2010, the source model of the microSelectron HDR Afterloader System was slightly modified from the previous model. Granero et al. named the modified source model "mHDR-v2r (revised model mHDR-v2)" and the previous model "mHDR-v2". They concluded that the dosimetric differences arising from the dimensional changes between the mHDR-v2 and mHDR-v2r designs were negligible at almost all locations (within 0.5% for r ≥ 0.25 cm), the two-dimensional anisotropy function difference between the two sources is found 2.1% at r = 1.0 cm when compared with the results of the other experimental group. To confirm this difference, we performed a full Monte Carlo simulation without energy-fluence approximation. This is useful near the radiation source where charged-particle equilibrium does not hold. The two-dimensional anisotropy function of the TG-43U1 dataset showed a few percent difference between the mHDR-v2r and mHDR-v2 sources. There was no agreement in the immediate vicinity of the source (0.10 cm and 0.25 cm), when compared to Granero et al. in mHDR-v2r sources. The differences in these two-dimensional anisotropy functions were identified.


Assuntos
Braquiterapia , Braquiterapia/métodos , Radioisótopos de Irídio/uso terapêutico , Dosagem Radioterapêutica , Método de Monte Carlo , Radiometria/métodos
3.
J Appl Clin Med Phys ; 25(1): e14228, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043126

RESUMO

PURPOSE: To analytically assess the heterogeneity effect of vaginal cylinders (VC) made of high-density plastics on dose calculations, considering the prescription point (surface or 5 mm beyond the surface), and benchmark the accuracy of a commercial model-based dose calculation (MBDC) algorithm using Monte Carlo (MC) simulations. METHODS AND MATERIALS: The GEANT4 MC code was used to simulate a commercial 192 Ir HDR source and VC, with diameters ranging from 20 to 35 mm, inside a virtual water phantom. Standard plans were generated from a commercial treatment planning system [TPS-BrachyVision ACUROS (BV)] optimized for a treatment length of 5 cm through two dose calculation approaches: (1) assuming all the environment as water (i.e., Dw,w-MC & Dw,w-TG43 ) and (2) accounting for the heterogeneity of VC applicators (i.e., Dw,w-App-MC & Dw,w-App-MBDC ). The compared isodose lines, and dose & energy difference maps were extracted for analysis. In addition, the dose difference on the peripheral surface, along the applicator and at middle of treatment length, as well as apical tip was evaluated. RESULTS: The Dw,w-App-MC results indicated that the VC heterogeneity can cause a dose reduction of (up to) % 6.8 on average (for all sizes) on the peripheral surface, translating to 1 mm shrinkage of the isodose lines compared to Dw,w-MC . In addition, the results denoted that BV overestimates the dose on the peripheral surface and apical tip of about 3.7% and 17.9%, respectively, (i.e., Dw,w-App-MBDC vs Dw,w-App-MC ) when prescribing to the surface. However, the difference between the two were negligible at the prescription point when prescribing to 5 mm beyond the surface. CONCLUSION: The VCs' heterogeneity could cause dose reduction when prescribing dose to the surface of the applicator, and hence increases the level of uncertainty. Thus, reviewing the TG43 results, in addition to ACUROS, becomes prudent, when evaluating the surface coverage at the apex.


Assuntos
Braquiterapia , Feminino , Humanos , Dosagem Radioterapêutica , Braquiterapia/métodos , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Radioisótopos de Irídio/uso terapêutico , Água , Radiometria
4.
Appl Radiat Isot ; 196: 110751, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36871495

RESUMO

The present study was conducted to elucidate the effects of hip prostheses in 192Ir HDR brachytherapy and determine dose uncertainties introduced by the treatment planning. A gynaecological phantom irradiated using Nucletron 192Ir microSelectron HDR source was modeled using MCNP5 code. Three hip materials considered in this study were water, bone, and metal prosthesis. According to the obtained results, a dose perturbation was observed within the medium with a higher atomic number, which reduced the dose to the nearby region.


Assuntos
Braquiterapia , Prótese de Quadril , Braquiterapia/métodos , Dosagem Radioterapêutica , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Metais
5.
J Radiat Res ; 64(1): 180-185, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36214326

RESUMO

In this study, an independent dose verification plugin (DVP) using the Eclipse Scripting Application Programming Interface (ESAPI) for brachytherapy was developed. The DVP was based on the general 2D formalism reported in AAPM-TG43U1. The coordinate and orientation of each source position were extracted from the translation matrix acquired from the treatment planning system (TPS), and the distance between the source and verification point (r) was calculated. Moreover, the angles subtended by the center-tip and tip-tip of the hypothetical line source with respect to the verification point (θ and ß) were calculated. With r, θ, ß and the active length of the source acquired from the TPS, the geometry function was calculated. As the TPS calculated the radial dose function, g(r), and 2D anisotropy function, F(r,θ), by interpolating and extrapolating the corresponding table stored in the TPS, the DVP calculated g(r) and F(r,θ) independently from equations fitted with the Monte Carlo data. The relative deviation of the fitted g(r) and F(r,θ) for the GammaMed Plus HDR 192Ir source was 0.5% and 0.9%, respectively. The acceptance range of the relative dose difference was set to ±1.03% based on the relative deviation between the fitted functions and Monte Carlo data, and the linear error propagation law. For 64 verification points from sixteen plans, the mean of absolute values of the relative dose difference was 0.19%. The standard deviation (SD) of the relative dose difference was 0.17%. The DVP maximizes efficiency and minimizes human error for the brachytherapy plan check.


Assuntos
Braquiterapia , Radioisótopos de Irídio , Humanos , Dosagem Radioterapêutica , Braquiterapia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Método de Monte Carlo , Radiometria/métodos
6.
Appl Radiat Isot ; 187: 110332, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35717903

RESUMO

Magnetic resonance imaging (MRI) during brachytherapy may alter the dose distribution of radioactive sources implanted in the tumor. This study investigates the impact of a magnetic field of 1.5 T, 3 T, and 7 T strengths on the dose distribution of high dose rate Co-60, Ir-192, and Yb-169, and low dose rate I-125 sources, using Geant4 Monte Carlo toolkit. After validating the simulation results by calculating the AAPM-TG43 dosimetric parameters, seven sources of each radioisotope were simulated in a water phantom, and their dose distributions were compared under the influence of a magnetic field. The simulation results indicate that using Co-60 brachytherapy under the MRI guidance is not recommended. Furthermore, the impact of a magnetic field of up to 7 T strength on the dose distribution of Ir-192, Yb-169, and I-125 sources is negligible, provided that there is no air pocket near brachytherapy sources.


Assuntos
Braquiterapia , Radioisótopos de Irídio , Braquiterapia/métodos , Radioisótopos de Cobalto/uso terapêutico , Radioisótopos do Iodo , Radioisótopos de Irídio/uso terapêutico , Campos Magnéticos , Método de Monte Carlo , Radiometria/métodos , Dosagem Radioterapêutica
7.
Med Phys ; 49(7): 4715-4730, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35443079

RESUMO

BACKGROUND: There is increased interest in in vivo dosimetry for 192 Ir brachytherapy (BT) treatments using high atomic number (Z) inorganic scintillators. Their high light output enables construction of small detectors with negligible stem effect and simple readout electronics. Experimental determination of absorbed-dose energy dependence of detectors relative to water is prevalent, but it can be prone to high detector positioning uncertainties and does not allow for decoupling of absorbed-dose energy dependence from other factors affecting detector response . PURPOSE: To investigate which measurement conditions and detector properties could affect their absorbed-dose energy dependence in BT in vivo dosimetry. METHODS: We used a general-purpose Monte Carlo (MC) code PENELOPE for the characterization of high-Z inorganic scintillators with the focus on ZnSe ( Z ¯ = 32 $\bar{Z}=32$ ) Z. Two other promising media CsI ( Z ¯ = 54 $\bar{Z}=54$ ) and Al2 O3 ( Z ¯ = 11 $\bar{Z}=11$ ) were included for comparison in selected scenarios. We determined absorbed-dose energy dependence of crystals relative to water under different scatter conditions (calibration phantom 12 × 12 × 30 cm3 , characterization phantoms 20 × 20 × 20 cm3 , 30 × 30 × 30 cm3 , 40 × 40 × 40 cm3 , and patient-like elliptic phantom 40 × 30 × 25 cm3 ). To mimic irradiation conditions during prostate treatments, we evaluated whether the presence of pelvic bones and calcifications affect ZnSe response. ZnSe detector design influence was also investigated. RESULTS: In contrast to low-Z organic and medium-Z inorganic scintillators, ZnSe and CsI media have substantially greater absorbed-dose energy dependence relative to water. The response was phantom-size dependent and changed by 11% between limited- and full-scatter conditions for ZnSe, but not for Al2 O3 . For a given phantom size, a part of the absorbed-dose energy dependence of ZnSe is caused not due to in-phantom scatter but due to source anisotropy. Thus, the absorbed-dose energy dependence of high-Z scintillators is a function of not only the radial distance but also the polar angle. Pelvic bones did not affect ZnSe response, whereas large and intermediate size calcifications reduced it by 9% and 5%, respectively, when placed midway between the source and the detector. CONCLUSIONS: Unlike currently prevalent low- and medium-Z scintillators, high-Z crystals are sensitive to characterization and in vivo measurement conditions. However, good agreement between MC data for ZnSe in the present study and experimental data for ZnSe:O by Jørgensen et al. (2021) suggests that detector signal is proportional to the average absorbed dose to the detector cavity. This enables an easy correction for non-TG43-like scenarios (e.g., patient sizes and calcifications) through MC simulations. Such information should be provided to the clinic by the detector vendors.


Assuntos
Braquiterapia , Dosimetria in Vivo , Radioisótopos de Irídio , Humanos , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Radiometria , Contagem de Cintilação , Água
8.
Med Phys ; 49(6): 3926-3935, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35403255

RESUMO

PURPOSE: High-dose-rate (HDR) vaginal cuff brachytherapy is an effective adjuvant therapy for women with stage I endometrial cancer. Although infrequent, failures do occur, most frequently at the vaginal vault. A potential cause of failure is insufficient dosimetric coverage at the vaginal apex due to cold spots from the anisotropic dose distribution of the source. Here, we propose a novel direction modulated brachytherapy (DMBT)-concept vaginal cylinder (VC) applicator that resolves this dosimetric issue. METHODS AND MATERIALS: The novel DMBT-VC applicator was designed and simulated with the GEANT4 Monte Carlo code. The outer cylinder material chosen was polyphenylsulfone (PPSU) plastic, and the central part was a detachable rod, housing a single lumen made of either polyether ether ketone (PEEK) plastic or an MR-compatible tungsten alloy. The PPSU-based outer cylinder, together with the inner PEEK rod provides the dose distribution of a conventional VC applicator. The PEEK rod is then replaced with an MR-compatible tungsten alloy rod of the same dimensions to generate directional "pencil-like" beams to compensate for the anisotropic cold spots. Two widely used 192 Ir HDR sources, VS2000 and GammaMedPlus, were also simulated. RESULTS: The novel DMBT-VC applicator was able to remove the underdosage at the apex due to the anisotropy effect regardless of the HDR sources without unnecessarily increasing the dose to the periphery of the applicator. Also, further directional modulation to reach deeper in the apex by up to 14 mm beyond the VC surface was achievable, again without increasing the peripheral doses. Total treatment dwell times increased only by 7-13%. CONCLUSIONS: The novel DMBT-VC applicator provides improved dose coverage at the vaginal apex by overcoming the classical anisotropy issue ubiquitous to all HDR brachytherapy sources. The next step in development of the device is manufacturing a prototype for clinical testing.


Assuntos
Braquiterapia , Ligas , Feminino , Humanos , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Plásticos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Tungstênio
9.
Phys Med Biol ; 67(8)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35334474

RESUMO

Objective. To investigate the potential of 2D ion chamber arrays to serve as a standalone tool for the verification of source strength, positioning and dwell time, within the framework of192Ir high-dose rate brachytherapy device quality assurance (QA).Approach.A commercially available ion chamber array was used. Fitting of a 2D Lorentzian peak function to experimental data from a multiple source dwell position irradiation on a frame-by-frame basis, facilitated tracking of the source center orthogonal projection on the array plane. For source air kerma strength verification, Monte Carlo simulation was employed to obtain a chamber array- and source-specific correction factor of calibration with a 6 MV photon beam. This factor converted the signal measured by each ion chamber element to air kerma in free space. A source positioning correction was also applied to lift potential geometry mismatch between experiment and Monte Carlo simulation.Main results.Spatial and temporal accuracy of source movement was verified within 0.5 mm and 0.02 s, respectively, in compliance with the test endpoints recommended by international professional societies. The source air kerma strength was verified experimentally within method uncertainties estimated as 1.44% (k = 1). The source positioning correction method employed did not introduce bias to experimental results of irradiations where source positioning was accurate. Development of a custom jig attachable to the chamber array for accurate and reproducible experimental set up would improve testing accuracy and obviate the need for source positioning correction in air kerma strength verification.Significance.Delivery of a single irradiation plan, optimized based on results of this work, to a 2D ion chamber array can be used for concurrent testing of source position, dwell time and air kerma strength, and the procedure can be expedited through automation. Chamber arrays merit further study in treatment planning QA and real time,in vivodose verification.


Assuntos
Braquiterapia , Braquiterapia/métodos , Calibragem , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Radiometria/métodos , Dosagem Radioterapêutica , Incerteza
10.
Med Phys ; 48(10): 5584-5592, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34460946

RESUMO

PURPOSE: Previous publications have described how the standard temperature and pressure correction will overcorrect measurements with a low-energy photon low-dose rate brachytherapy source at low ambient air pressures. To account for this effect, an additional correction factor is applied after the standard temperature and pressure correction. This additional correction is dependent on the source being measured and the chamber it is measured in. Well chamber corrections for two sources and findings regarding aspects that may affect the altitude response of the sources are presented. METHODS: A purpose-built pressure vessel was constructed previously, which could achieve pressures ranging from 74.661 to 106.66 kPa (560-800 mmHg). Three Cesium Blu sources (131 Cs) from Isoray Inc. and three CivaDots (103 Pd) from CivaTech Oncology Inc. were tested over this pressure range in increments of 2.7 kPa (20 mmHg) in three HDR 1000 Plus chambers, and the Cesium Blu sources were also tested in two IVB 1000 chambers. Both chamber models are air communicating well-type ionization chambers produced by Standard Imaging Inc. Multiple runs of each source/chamber combination were completed, corrected with the standard temperature and pressure correction, normalized to the result at 101.325 kPa, and averaged with runs of the same combination. The chamber response was also simulated using MCNP6 to validate the experimental results. RESULTS: Measurements of both sources in all chambers followed the expected power dependence on ambient pressure as seen in previous studies. The Cesium Blu source, however, demonstrated a significant difference in response in the HDR 1000 Plus chamber versus the IVB 1000 chamber. For an altitude correction factor of the form, PA  = k1 (P)k 2 , new coefficients are proposed for both sources for pressure units of kPa and mmHg. The Monte Carlo calculated chamber response agreed with the experimental results within 2% for all sources and chambers at all pressures. CONCLUSIONS: Altitude correction coefficients for two new low-energy photon low-dose rate brachytherapy sources are provided. The directional dependence of the CivaDot has no bearing on its dependence on pressure; however, the difference in construction materials from other 103 Pd sources leads to unique correction coefficients. The higher energy of the Cesium Blu source with respect to 103 Pd and 125 I sources yields a difference in correction factors depending on which model chamber is used for air-kerma strength calculations. Clinics must be careful to select the correct pair of coefficients for the chamber model they used.


Assuntos
Braquiterapia , Altitude , Césio , Radioisótopos de Irídio , Método de Monte Carlo , Radiometria
11.
Comput Methods Programs Biomed ; 205: 106089, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33862569

RESUMO

PURPOSE: This study aimed to calculate and compare absorbed dose to bone following exposure to 192Ir and 60Co sources in high dose rate (HDR) skin brachytherapy. Moreover, effects of the bone thickness and soft tissue thickness before the bone on absorbed dose to the bone are evaluated . MATERIALS AND METHODS: 192Ir and 60Co sources inserted in Leipzig applicators with internal diameters of 1, 2 and 3 cm with/without their optimal flattening filters were simulated by MCNPX Monte Carlo code. Then, heterogeneous phantoms (including skin, soft tissue before and after the bone, cortical bone and bone marrow) were defined. Finally, relative depth dose values for the bone and other tissues in the heterogeneous phantoms were obtained and compared. RESULTS: The average relative depth dose values of the skin, soft tissue before and after bone and bone marrow were almost similar for both 192Ir and 60Co sources, with a maximum difference less than 2%. However, a 0.1-6.8% difference was observed between average relative depth dose values of these two sources for the cortical bone. The results showed that with increasing the bone thickness and bone distance from the skin surface, the average relative depth dose values of the bone marrow and cortical bone decreased for both 192Ir and 60Co sources inserted in the applicators without/with their optimal flattening filters. For most of evaluated the applicators without/with their flattening filters, the average relative depth dose values of the bone marrow arisen from the 60Co source were higher than those obtained from the 192Ir source, while an opposite trend was observed for the cortical bone . CONCLUSION: The obtained findings showed that the average relative depth dose values of 192Ir and 60Co sources at the corresponding depths of the designed heterogeneous phantoms were almost similar (expect for the cortical bone). Hence, it is concluded that 60Co source can be used instead of 192Ir source in HDR skin brachytherapy, particularly in developing countries.


Assuntos
Braquiterapia , Neoplasias Cutâneas , Osso e Ossos , Humanos , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica
12.
Appl Radiat Isot ; 173: 109709, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33865052

RESUMO

A new Iridium-192 seed for brachytherapy is under development. Specific dose rate contribution by two different factors were evaluated: the effect from movement of the core in the free space within the seed and the effect of the end-weld thickness variation. Both were investigated through use of the Monte Carlo radiation transport code MCNP6 and an in-house routine programmed with MATLAB. Differences greater than 15% compared to results from the nominal seed were found near the source, indicating a significant dose variation.


Assuntos
Braquiterapia , Radioisótopos de Irídio/uso terapêutico , Dosagem Radioterapêutica , Simulação por Computador , Humanos , Método de Monte Carlo
13.
Phys Med ; 84: 50-55, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33845419

RESUMO

PURPOSE: Fricke dosimetry has shown great potential in the direct measurement of the absolute absorbed dose for 192Ir sources used in HDR brachytherapy. This work describes the determination of the correction factors necessary to convert the absorbed dose in the Fricke solution to the absorbed dose to water. METHODS: The experimental setup for Fricke irradiation using a 192Ir source was simulated. The holder geometry used for the Fricke solution irradiation was modelled for MC simulation, using the PENELOPE. RESULTS: The values of the factors determined for validation purposes demonstrated differences of less than 0.2% when compared to the published values. Four factors were calculated to correct: the differences in the density of the solution (1.0004 ± 0.0004); the perturbations caused by the holder (0.9989 ± 0.0004); the source anisotropy and the water attenuation effects (1.0327 ± 0.0012); and the distance from the center of the detection volume to the source (7.1932 ± 0.0065). CONCLUSION: Calculated corrections in this work show that the largest correction comes from the inverse squared reduction of the dose due to the point of measurement shift from the reference position of 1 cm. This situation also causes the correction due to volume averaging and attenuation in water to be significant. Future versions of the holder will aim to reduce these effects by having a position of measurement closer to the reference point thus requiring smaller corrections.


Assuntos
Braquiterapia , Radiometria , Simulação por Computador , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Dosagem Radioterapêutica
14.
Med Phys ; 48(7): 4053-4063, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33880777

RESUMO

PURPOSE: The purpose of this study is to improve dose distribution and organ-at-risk sparing during gynecologic HDR brachytherapy with patient-specific applicators. The majority of applicators used today are generic in design and do not allow for dose modulation for patient-specific shaping of dose distributions. Their performance might be adjusted with commercially available wedge shields; however, this provides dose modulation in the orthogonal plane only and does not allow for variation along the length of the applicator. Generic applicators are available only in standard sizes and geometries, and provide suboptimal patient fit with limited dose modulation. METHODS: In this paper we use Monte Carlo modeling for comprehensive characterization of radiologic properties of various 3D printable biocompatible and sterilizable materials with comparison to water. Based on these results, we choose the optimal set of materials for a patient-specific applicator. We develop a novel method to design the patient-specific applicator without incurring a significant increase in treatment time or changes to clinical workflow. Finally, using an example of two selected vaginal cancers, we compare the performance of patient-specific and water-equivalent applicators in terms of target coverage and rectum sparing. RESULTS: In the energy range from 1 MeV to 4 MeV, all materials have similar attenuation coefficients. In the range from ~2 keV to 1 MeV and above 4 MeV, tungsten-polylactic acid composite (WPLA) was seen to have the highest attenuation coefficient. The dose distribution of the water-equivalent applicator was found to be symmetric about its central axis. At the same time patient-specific shielded applicators exhibit well-modulated dose distributions. Their isodose lines are seen to spread radially into the patient, while merging close to the applicator surface, where WPLA shielding has been applied. CONCLUSIONS: The patient-specific cylinders provide comparable dose to the target, while offering advanced healthy tissue sparing, not achievable with the generic design.


Assuntos
Braquiterapia , Feminino , Humanos , Radioisótopos de Irídio , Método de Monte Carlo , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
15.
Med Phys ; 48(5): 2604-2613, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33619739

RESUMO

PURPOSE: The purpose of this study was to evaluate the impact of dose reporting schemes and tissue/applicator heterogeneities for 192 Ir-, 75 Se-, and 169 Yb-based MRI-guided conventional and intensity-modulated brachytherapy. METHODS AND MATERIALS: Treatment plans using a variety of dose reporting and tissue/applicator segmentation schemes were generated for a cohort (n = 10) of cervical cancer patients treated with 192 Ir-based Venezia brachytherapy. Dose calculations were performed using RapidBrachyMCTPS, a Geant4-based research Monte Carlo treatment planning system. Ultimately, five dose calculation scenarios were evaluated: (a) dose to water in water (Dw,w ); (b) Dw,w taking the applicator material into consideration (Dw,wApp ); (c) dose to water in medium (Dw,m ); (d and e) dose to medium in medium with mass densities assigned either nominally per structure (Dm,m (Nom) ) or voxel-by-voxel (Dm,m ). RESULTS: Ignoring the plastic Venezia applicator (Dw,wApp ) overestimates Dm,m by up to 1% (average) with high energy source (192 Ir and 75 Se) and up to 2% with 169 Yb. Scoring dose to water (Dw,wApp or Dw,m ) generally overestimates dose and this effect increases with decreasing photon energy. Reporting dose other than Dm,m (or Dm,m Nom ) for 169 Yb-based conventional and intensity-modulated brachytherapy leads to a simultaneous overestimation (up to 4%) of CTVHR D90 and underestimation (up to 2%) of bladder D2cc due to a significant dip in the mass-energy absorption ratios at the depths of nearby targets and OARs. Using a nominal mass-density assignment per structure, rather than a CT-derived voxel-by-voxel assignment for MRI-guided brachytherapy, amounts to a dose error up to 1% for all radionuclides considered. CONCLUSIONS: The effects of the considered dose reporting schemes trend correspondingly between conventional and intensity-modulated brachytherapy. In the absence of CT-derived mass densities, MRI-only-based dosimetry can adequately approximate Dm,m by assigning nominal mass densities to structures. Tissue and applicator heterogeneities do not significantly impact dosimetry for 192 Ir and 75 Se, but do for 169 Yb; dose reporting must be explicitly defined since Dw,m and Dw,w may overstate the dosimetric benefits.


Assuntos
Braquiterapia , Neoplasias do Colo do Útero , Feminino , Humanos , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Neoplasias do Colo do Útero/radioterapia
16.
Int J Nanomedicine ; 16: 359-370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33469290

RESUMO

PURPOSE: Gold nanoparticles (AuNPs) are candidate radiosensitizers for medium-energy photon treatment, such as γ-ray radiation in high-dose-rate (HDR) brachytherapy. However, high AuNP concentrations are required for sufficient dose enhancement for clinical applications. Here, we investigated the effect of positively (+) charged AuNP radiosensitization of plasmid DNA damage induced by 192Ir γ-rays, and compared it with that of negatively (-) charged AuNPs. METHODS: We observed DNA breaks and reactive oxygen species (ROS) generation in the presence of AuNPs at low concentrations. pBR322 plasmid DNA exposed to 64 ng/mL AuNPs was irradiated with 192Ir γ-rays via HDR brachytherapy. DNA breaks were detected by observing the changes in the form of the plasmid and quantified by agarose gel electrophoresis. The ROS generated by the AuNPs were measured with the fluorescent probe sensitive to ROS. The effects of positively (+) and negatively (-) charged AuNPs were compared to study the effect of surface charge on dose enhancement. RESULTS: +AuNPs at lower concentrations promoted a comparable level of radiosensitization by producing both single-stranded breaks (SSBs) and double-stranded breaks (DSBs) than those used in cell assays and Monte Carlo simulation experiments. The dose enhancement factor (DEF) for +AuNPs was 1.3 ± 0.2 for SSBs and 1.5 ± 0.4 for DSBs. The ability of +AuNPs to augment plasmid DNA damage is due to enhanced ROS generation. While -AuNPs generated similar ROS levels, they did not cause significant DNA damage. Thus, dose enhancement using low concentrations of +AuNPs presumably occurred via DNA binding or increasing local +AuNP concentration around the DNA. CONCLUSION: +AuNPs at low concentrations displayed stronger radiosensitization compared to -AuNPs. Combining +AuNPs with 192Ir γ-rays in HDR brachytherapy is a candidate method for improving clinical outcomes. Future development of cancer cell-specific +AuNPs would allow their wider application for HDR brachytherapy.


Assuntos
Braquiterapia , Dano ao DNA , Ouro/farmacologia , Nanopartículas Metálicas/química , Plasmídeos/genética , Radiossensibilizantes/farmacologia , Dosagem Radioterapêutica , Simulação por Computador , Relação Dose-Resposta à Radiação , Raios gama , Humanos , Radioisótopos de Irídio/química , Nanopartículas Metálicas/ultraestrutura , Método de Monte Carlo , Espécies Reativas de Oxigênio/metabolismo
17.
Radiat Environ Biophys ; 60(1): 115-124, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389051

RESUMO

In this work, the use of gold and gold alloy plaques is proposed for the first time, to reduce the dose to healthy organs in brachytherapy with Ir-192 sources. For dose simulations in tumour and healthy tissue, the MCNPX Monte Carlo code was used. The radiation source implemented in those simulations was benchmarked with well-known TG-43 criteria of dose rate constant, air-kerma strength, radial dose function, and 2D anisotropy function. For various arrangements of iridium sources and plaques of gold and gold alloy of various thicknesses, the dose distributions in an esophagus tumour and in surrounding healthy organs were simulated. The results showed that while the dose to the tumour is not much affected by the presence of gold plaques with a thickness of 3.5 mm in an optimized 192Ir sources' configuration, a relative reduction in average organ dose of 64%, 65%, 73%, 67%, and 35% was observed, for esophagus, thyroid, heart, stomach, and liver, respectively. Moreover, it was found that a gold plaque leads to smaller doses to healthy organs than a gold alloy plaque. It is concluded that gold plaques can be used to improve the treatment of esophageal cancer by HDR brachytherapy and to protect surrounding non-target organs.


Assuntos
Braquiterapia , Neoplasias Esofágicas/radioterapia , Ligas de Ouro , Ouro , Radioisótopos de Irídio , Lesões por Radiação/prevenção & controle , Braquiterapia/instrumentação , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica
18.
Radiat Res ; 195(3): 253-264, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347576

RESUMO

With the use of ionizing radiation comes the risk of accidents and malevolent misuse. When unplanned exposures occur, there are several methods which can be used to retrospectively reconstruct individual radiation exposures; biological methods include analysis of aberrations and damage of chromosomes and DNA, while physical methods rely on luminescence (TL/OSL) or EPR signals. To ensure the quality and dependability of these methods, they should be evaluated under realistic exposure conditions. In 2019, EURADOS Working Group 10 and RENEB organized a field test with the purpose of evaluating retrospective dosimetry methods as carried out in potential real-life exposure scenarios. A 1.36 TBq 192Ir source was used to irradiate anthropomorphic phantoms in different geometries at doses of several Gy in an outdoor open-air geometry. Materials intended for accident dosimetry (including mobile phones and blood) were placed on the phantoms together with reference dosimeters (LiF, NaCl, glass). The objective was to estimate radiation exposures received by individuals as measured using blood and fortuitous materials, and to evaluate these methods by comparing the estimated doses to reference measurements and Monte Carlo simulations. Herein we describe the overall planning, goals, execution and preliminary outcomes of the 2019 field test. Such field tests are essential for the development of new and existing methods. The outputs from this field test include useful experience in terms of planning and execution of future exercises, with respect to time management, radiation protection, and reference dosimetry to be considered to obtain relevant data for analysis.


Assuntos
Doses de Radiação , Monitoramento de Radiação/métodos , Radiação Ionizante , Humanos , Radioisótopos de Irídio/efeitos adversos , Método de Monte Carlo , Imagens de Fantasmas , Exposição à Radiação/efeitos adversos , Proteção Radiológica , Radiometria/métodos
19.
Brachytherapy ; 20(1): 265-271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33039331

RESUMO

PURPOSE: he purpose of this study was to study the dosimetric characterization of sonolucent material "TPX" to be used toward gynecologic high-dose-rate brachytherapy treatments using ultrasound-compatible cylinders in non-model-based dose calculation workflows. METHODS: Monte Carlo simulations were performed using EGSnrc application egs_brachy in cylinders of polymethylpentene (TPX) plastic, water, and PMMA. Simulations were performed of five 192Ir sources placed longitudinally in ∼3.7 cm diameter, 5.0 cm length cylinders (matching physical cylinders used in film measurements). TPX and PMMA dose distributions and percentage depth dose curves were compared relative to water. Film measurements were performed to validate egs_brachy simulations. TPX and PMMA cylinders were placed in a water tank using 3D-printed supports to position film radially and touching the surface of the cylinders. The same five 192Ir dwell positions were delivered as simulated in egs_brachy. RESULTS: The egs_brachy and film percentage depth doses agreed within film uncertainties. The egs_brachy relative dose difference between TPX and water was (0.74 ± 0.09)% and between PMMA and water was (-0.79 ± 0.09)% over the dose scoring phantom. Dose differences for TPX and PMMA relative to water were less than ± 1% within 5 cm of the cylinder surface. CONCLUSIONS: In a solid sonolucent sheath of TPX, the dosimetric differences are comparable with PMMA and other applicator materials in clinical use. No additional uncertainty to dose calculation is introduced when treating through TPX cylinders compared with current applicator materials, and therefore, it is acceptable to perform gynecologic brachytherapy treatments with a sonolucent sheath inserted during radiation delivery.


Assuntos
Braquiterapia , Radioisótopos de Irídio , Braquiterapia/métodos , Feminino , Dosimetria Fotográfica , Humanos , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
20.
PLoS One ; 15(10): e0238704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33035214

RESUMO

The aim of this work was to use TOPAS Monte Carlo simulations to model the effect of magnetic fields on dose distributions in brachytherapy lung treatments, under ideal and clinical conditions. Idealistic studies were modeled consisting of either a monoenergetic electron source of 432 keV, or a polyenergetic electron source using the spectrum of secondary electrons produced by 192Ir gamma-ray irradiation. The electron source was positioned in the center of a homogeneous, lung tissue phantom (ρ = 0.26 g/cm3). Conversely, the clinical study was simulated using the VariSource VS2000 192Ir source in a patient with a lung tumor. Three contoured volumes were considered: the tumor, the planning tumor volume (PTV), and the lung. In all studies, dose distributions were calculated in the presence or absence of a constant magnetic field of 3T. Also, TG-43 parameters were calculated for the VariSource and compared with published data from EGS-brachy (EGSnrc) and PENELOPE. The magnetic field affected the dose distributions in the idealistic studies. For the monoenergetic and poly-energetic studies, the radial distance of the 10% iso-dose line was reduced in the presence of the magnetic field by 64.9% and 24.6%, respectively. For the clinical study, the magnetic field caused differences of 10% on average in the patient dose distributions. Nevertheless, differences in dose-volume histograms were below 2%. Finally, for TG-43 parameters, the dose-rate constant from TOPAS differed by 0.09% ± 0.33% and 0.18% ± 0.33% with respect to EGS-brachy and PENELOPE, respectively. The geometry and anisotropy functions differed within 1.2% ± 1.1%, and within 0.0% ± 0.3%, respectively. The Lorentz forces inside a 3T magnetic resonance machine during 192Ir brachytherapy treatment of the lung are not large enough to affect the tumor dose distributions significantly, as expected. Nevertheless, large local differences were found in the lung tissue. Applications of this effect are therefore limited by the fact that meaningful differences appeared only in regions containing air, which is not abundant inside the human.


Assuntos
Braquiterapia/métodos , Neoplasias Pulmonares/radioterapia , Pulmão/efeitos da radiação , Campos Magnéticos , Braquiterapia/estatística & dados numéricos , Simulação por Computador , Relação Dose-Resposta à Radiação , Elétrons , Humanos , Radioisótopos de Irídio/administração & dosagem , Radioisótopos de Irídio/farmacocinética , Radioisótopos de Irídio/uso terapêutico , Imageamento por Ressonância Magnética , Método de Monte Carlo , Imagens de Fantasmas , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/uso terapêutico , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA