Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Radiat Oncol ; 16(1): 87, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980248

RESUMO

The Polaris product line from Northern Digital Inc. is well known for accurate optical tracking measurements in research and medical environments. The Spectra position sensor, to date often found in image guided radiotherapy suites, has however reached its end-of-life, being replaced by the new Vega model. The performance in static and dynamic measurements of this new device has been assessed in controlled laboratory conditions, against the strict requirements for system integration in radiation therapy. The system accuracy has improved with respect to the Spectra in both static (0.045 mm RMSE) and dynamic (0.09 mm IQR, < 20 cm/s) tracking and brings marginal improvement in the measurement latency (14.2 ± 1.8 ms). The system performance was further confirmed under clinical settings with the report of early results from periodic QA tests within specifications. Based on our tests, the Polaris Vega meets the quality standards of radiotherapy applications and can be safely used for monitoring respiratory breathing motion or verifying patient positioning.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Movimento , Neoplasias/radioterapia , Radioterapia Guiada por Imagem/instrumentação , Respiração , Humanos , Neoplasias/patologia
2.
Cancer Radiother ; 25(8): 790-794, 2021 Dec.
Artigo em Francês | MEDLINE | ID: mdl-33390319

RESUMO

Image-guided radiotherapy (IGRT) has become a standard irradiation technique to improve the clinical outcome of patients in terms of toxicity and local control due to better targeting of radiation during the irradiation fraction. Positioning imaging systems, whether embedded or not, such as kV for 2×2D acquisitions and especially kVCBCT for 3D acquisitions are however irradiating in a large volume including the target volume but also healthy tissue, with a theoretical risk of increased toxicity and second cancer. It therefore appears very important both to optimize the absorbed dose due to IGRT practice but also to report it, especially in case of kVCBCT. The AAPM report published in 2018 (« Image guidance doses delivered during radiotherapy: Quantification, management, and reduction ¼) proposes a management of image guidance doses delivered during radiotherapy. This report is the basis of this focus article that aims at giving orders of magnitude and proposing a management of image guidance doses delivered during radiotherapy in clinical practice. The dose delivered per kVCBCT is about 0.5 to 2 cGy at isocenter according to treatment site. As long as the calculation algorithms are not available in the treatment planning systems, it seems appropriate to use at least the published dose orders of magnitude. This estimate should ultimately allow the clinician to decide on the therapeutic strategy in the event of accumulation of positioning imaging sessions.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Órgãos em Risco/efeitos da radiação , Radioterapia Guiada por Imagem/métodos , Humanos , Método de Monte Carlo , Posicionamento do Paciente , Doses de Radiação , Radioterapia Guiada por Imagem/instrumentação , Terminologia como Assunto
3.
Phys Med Biol ; 66(5): 055021, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503604

RESUMO

PURPOSE: To develop and demonstrate an end-to-end assessment procedure for adaptive radiotherapy (ART) within an MR-guided system. METHODS AND MATERIALS: A 3D printed pelvic phantom was designed and constructed for use in this study. The phantom was put through the complete radiotherapy treatment chain, with planned internal changes made to model prostate translations and shape changes, allowing an investigation into three ART techniques commonly used. Absolute dosimetry measurements were made within the phantom using both gafchromic film and alanine. Comparisons between treatment planning system (TPS) calculations and measured dose values were made using the gamma evaluation with criteria of 3 mm/3% and 2 mm/2%. RESULTS: Gamma analysis evaluations for each type of treatment plan adaptation investigated showed a very high agreement with pass rates for each experiment ranging from 98.10% to 99.70% and 92.60% to 97.55%, for criteria of 3%/3 mm and 2%/2 mm respectively. These pass rates were consistent for both shape and position changes. Alanine measurements further supported the results, showing an average difference of 1.98% from the TPS. CONCLUSION: The end-to-end assessment procedure provided demanding challenges for treatment plan adaptations to demonstrate the capabilities and achieved high consistency in all findings.


Assuntos
Imageamento por Ressonância Magnética , Aceleradores de Partículas , Radioterapia Guiada por Imagem/métodos , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem/instrumentação
4.
Int J Radiat Oncol Biol Phys ; 108(4): 999-1007, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32603774

RESUMO

PURPOSE: Stereotactic radiosurgery (SRS) historically has been used to treat multiple brain lesions using a multiple-isocenter technique-frequently associated with significant complexity in treatment planning and long treatment times. Recently, given innovations in planning algorithms, patients with multiple brain lesions may now be treated with a single-isocenter technique using fewer total arcs and less time spent during image guidance (though with stricter image guided radiation therapy tolerances). This study used time-driven activity-based costing to determine the difference in cost to a provider for delivering SRS to multiple brain lesions using single-isocenter versus multiple-isocenter techniques. METHODS AND MATERIALS: Process maps, consisting of discrete steps, were created for each phase of the SRS care cycle and were based on interviews with department personnel. Actual treatment times (including image guidance) were extracted from treatment record and verify software. Additional sources of data to determine costs included salary/benefit data of personnel and average list price/maintenance costs for equipment. RESULTS: Data were collected for 22 patients who underwent single-isocenter SRS (mean lesions treated, 5.2; mean treatment time, 30.2 minutes) and 51 patients who underwent multiple-isocenter SRS (mean lesions treated, 4.4; mean treatment time, 75.2 minutes). Treatment time for multiple-isocenter SRS varied substantially with increasing number of lesions (11.8 minutes/lesion; P < .001), but to a much lesser degree in single-isocenter SRS (1.8 minutes/lesion; P = .029). The resulting cost savings from single-isocenter SRS based on number of lesions treated ranged from $296 to $3878 for 2 to 10 lesions treated. The 2-mm planning treatment volume margin used with single-isocenter SRS resulted in a mean 43% increase of total volume treated compared with a 1-mm planning treatment volume expansion. CONCLUSIONS: In a comparison of time-driven activity-based costing assessment of single-isocenter versus multiple-isocenter SRS for multiple brain lesions, single-isocenter SRS appears to save time and resources for as few as 2 lesions, with incremental benefits for additional lesions treated.


Assuntos
Neoplasias Encefálicas/radioterapia , Redução de Custos/economia , Custos de Cuidados de Saúde , Neoplasias Primárias Múltiplas/radioterapia , Radiocirurgia/economia , Algoritmos , Neoplasias Encefálicas/economia , Tomografia Computadorizada de Feixe Cônico , Humanos , Modelos Lineares , Serviço Hospitalar de Engenharia e Manutenção/economia , Neoplasias Primárias Múltiplas/economia , Aceleradores de Partículas/economia , Radiocirurgia/instrumentação , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/economia , Radioterapia Guiada por Imagem/economia , Radioterapia Guiada por Imagem/instrumentação , Radioterapia de Intensidade Modulada/economia , Radioterapia de Intensidade Modulada/métodos , Salários e Benefícios/economia , Fatores de Tempo
5.
Int J Radiat Oncol Biol Phys ; 108(4): 1063-1072, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32585336

RESUMO

PURPOSE: Small animal irradiation is crucial to the investigation of radiobiological mechanisms. The paradigm of clinical radiation therapy is trending toward high-precision, stereotactic treatment. However, translating this scheme to small animal irradiation is challenging owing to the lack of high-quality image guidance. To overcome this obstacle, we developed a multimodality image guided precision radiation platform. METHODS AND MATERIALS: The platform consists of 4 modules: x-ray computed tomography (CT), bioluminescence tomography (BLT), fluorescence molecular tomography (FMT), and radiation therapy. CT provides animal anatomy and material density for radiation dose calculation, as well as body contour for BLT and FMT reconstruction. BLT and FMT provide tumor localization to guide radiation beams and molecular activity to evaluate treatment outcome. Furthermore, we developed a Monte Carlo-based treatment planning system (TPS) for 3-dimensional dose calculation, calibrated it using radiochromic films sandwiched in a water-equivalent phantom, and validated it using in vivo dosimeters surgically implanted into euthanized mice (n = 4). Finally, we performed image guided irradiation on mice bearing orthotopic breast and prostate tumors and confirmed radiation delivery using γH2AX histology. RESULTS: The Monte Carlo-based TPS was successfully calibrated by benchmarking simulation dose against film measurement. For in vivo dosimetry measured in the euthanized mice, the average difference between the TPS calculated dose and measured dose was 3.86% ± 1.12%. Following the TPS-generated treatment plan, we successfully delivered 20 Gy dose to an animal bearing an orthotopic prostate tumor using 4 BLT-guided radiation beams and 5 Gy dose to an animal bearing an orthotopic breast tumor using a single FMT-guided radiation beam. γH2AX histology presented significantly more DNA damage in irradiated tumors and thus validated the dose delivery accuracy. CONCLUSIONS: Combined with Monte Carlo TPS, this multimodality CT/BLT/FMT image guided small animal radiation platform can specifically localize tumors, accurately calculate dose distribution, precisely guide radiation delivery, and molecularly evaluate treatment response. It provides an advanced toolset for radiobiology and translational cancer research.


Assuntos
Neoplasias da Mama/radioterapia , Imagem Multimodal/métodos , Neoplasias da Próstata/radioterapia , Radioterapia Guiada por Imagem/métodos , Animais , Benchmarking , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Calibragem , Desenho de Equipamento , Feminino , Medições Luminescentes/métodos , Masculino , Camundongos , Método de Monte Carlo , Imagem Multimodal/instrumentação , Transplante de Neoplasias , Imagem Óptica/métodos , Imagens de Fantasmas , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Doses de Radiação , Radiometria/métodos , Radioterapia Guiada por Imagem/instrumentação , Tomografia Computadorizada por Raios X/métodos , Filme para Raios X
7.
Kurume Med J ; 65(4): 129-136, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31723077

RESUMO

OBJECTIVE: This study evaluated the clinical feasibility of a new low-cost TomoTherapy system (OnradTM) and compared it with low-cost linear accelerator models (linacs). METHODS: Various aspects of treatment and cost were compared between Onrad and linacs for 3-dimensional radiotherapy (3DCRT). Dosimetric comparisons of 10 patients each with breast, stage III lung, prostate, head and neck, and cervical cancers were carried out (total 100 plans). RESULTS: Onrad had advantages in terms of availability of long treatment fields and a smaller mechanical footprint. For breast cancers and lung cancers, target dose homogeneity in Onrad plans was better than that in 3DCRT. In the prostate plans, Onrad plans provided superior D95, conformity and homogeneity. The rectum doses of Onrad plans were lower than those with 3DCRT. Onrad plans provided superior homogeneity and D95 in head and neck cancer. The mean dose and V10-40 Gy of the parotid glands was lower using Onrad. In the cervical cancer plans, target doses were similar with both systems. Normal tissue doses were equal. CONCLUSIONS: Onrad is useful in the clinical setting. Onrad can achieve favorable or comparable dose distributions compared with those of 3DCRT in actual clinical treatment of breast, lung, prostate, head and neck, and cervical cancers.


Assuntos
Custos de Cuidados de Saúde , Neoplasias/economia , Neoplasias/radioterapia , Doses de Radiação , Radioterapia Guiada por Imagem/economia , Radioterapia de Intensidade Modulada/economia , Análise Custo-Benefício , Estudos de Viabilidade , Feminino , Humanos , Masculino , Tomografia Computadorizada Multidetectores/economia , Neoplasias/diagnóstico por imagem , Radioterapia Guiada por Imagem/efeitos adversos , Radioterapia Guiada por Imagem/instrumentação , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/instrumentação , Resultado do Tratamento
8.
J Appl Clin Med Phys ; 20(10): 187-200, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31578811

RESUMO

PURPOSE: The imaging performance and dose of a mobile CT scanner (Brainlab Airo®, Munich, Germany) is evaluated, with particular consideration to assessment of technique protocols for image-guided brachytherapy. METHOD: Dose measurements were performed using a 100-mm-length pencil chamber at the center and periphery of 16- and 32-cm-diameter CTDI phantoms. Hounsfield unit (HU) accuracy and linearity were assessed using materials of specified electron density (Gammex RMI, Madison, WI), and image uniformity, noise, and noise-power spectrum (NPS) were evaluated in a 20-cm-diameter water phantom as well as an American College of Radiology (ACR) CT accreditation phantom (Model 464, Sun Nuclear, Melbourne, FL). Spatial resolution (modulation transfer function, MTF) was assessed with an edge-spread phantom and visually assessed with respect to line-pair patterns in the ACR phantom and in structures of interest in anthropomorphic phantoms. Images were also obtained on a diagnostic CT scanner (Big Bore CT simulator, Philips, Amsterdam, Netherlands) for qualitative and quantitative comparison. The manufacturer's metal artifact reduction (MAR) algorithm was assessed in an anthropomorphic body phantom containing surgical instrumentation. Performance in application to brachytherapy was assessed with a set of anthropomorphic brachytherapy phantoms - for example, a vaginal cylinder and interstitial ring and tandem. RESULT: Nominal dose for helical and axial modes, respectively, was 56.4 and 78.9 mGy for the head protocol and 17.8 and 24.9 mGy for the body protocol. A high degree of HU accuracy and linearity was observed for both axial and helical scan modes. Image nonuniformity (e.g., cupping artifact) in the transverse (x,y) plane was less than 5 HU, but stitching artifacts (~5 HU) in the longitudinal (z) direction were observed in axial scan mode. Helical and axial modes demonstrated comparable spatial resolution of ~5 lp/cm, with the MTF reduced to 10% at ~0.38 mm-1 . Contrast-to-noise ratio was suitable to soft-tissue visualization (e.g., fat and muscle), but windmill artifacts were observed in helical mode in relation to high-frequency bone and metal. The MAR algorithm provided modest improvement to image quality. Overall, image quality appeared suitable to relevant clinical tasks in intracavitary and interstitial (e.g., gynecological) brachytherapy, including visualization of soft-tissue structures in proximity to the applicators. CONCLUSION: The technical assessment highlighted key characteristics of dose and imaging performance pertinent to incorporation of the mobile CT scanner in clinical procedures, helping to inform clinical deployment and technique protocol selection in brachytherapy. For this and other possible applications, the work helps to identify protocols that could reduce radiation dose and/or improve image quality. The work also identified areas for future improvement, including reduction of stitching, windmill, and metal artifacts.


Assuntos
Braquiterapia/instrumentação , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Radioterapia Guiada por Imagem/instrumentação , Razão Sinal-Ruído , Tomógrafos Computadorizados/estatística & dados numéricos , Tomografia Computadorizada por Raios X/instrumentação , Algoritmos , Braquiterapia/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X/métodos
9.
Phys Med Biol ; 64(11): 115015, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-30974415

RESUMO

The dosimetry of preclinical micro-irradiators is challenging due to their millimetric beams and medium x-ray energy range. Plastic scintillator dosimeters (PSD) are good candidates for such a purpose as they provide a high spatial resolution although they show an energy dependence below 100 keV. The purpose of this study was to assess the energy dependence of a dedicated PSD (called DosiRat) for micro-irradiators dosimetry. The response of the PSD relative to air kerma was measured for different beam qualities (40-225 kV) with the X-RAD 225Cx irradiator. The corresponding energy spectra, determined by Monte Carlo simulations, allowed for correcting the differences in absorbed dose between the DosiRat material (polystyrene) and the air and therefore allowed to compare DosiRat intrinsic energy response to the Birks scintillation quenching model. The energy response of DosiRat was then assessed under preclinical conditions through percentage depth dose curves (PDD) and relative output factor (ROF) measurements in water for beam diameters ranging from 1 to 25 mm. DosiRat energy response showed a coefficient of variation of 23% from 40 to 225 kV, mainly explained by the mass energy-absorption coefficient variation between polystyrene and air. A remaining variation was shown to be caused by the quenching of the scintillation and was correctly reproduced by the Birks model (with kB = 10.27 mg MeV-1 cm-2). PDD and ROF measurements highlighted an energy response variation with depth and collimation up to 10%. A dose accuracy better than 1% was finally achieved with appropriate calibration and correction factors (CF), for beam collimations larger than the detector ([Formula: see text]2 mm diameter). DosiRat energy dependence was fully characterized in preclinical energy range and shown to be negligible with convenient calibration and corrections factors. It provided accurate dosimetry for medium energy (225 kV) and millimetric beams (down to 2.5 mm).


Assuntos
Modelos Animais , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/instrumentação , Contagem de Cintilação/instrumentação , Animais , Calibragem , Tomografia Computadorizada de Feixe Cônico , Plásticos , Doses de Radiação , Contagem de Cintilação/métodos
10.
Med Phys ; 46(5): 2015-2024, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30947359

RESUMO

PURPOSE: The goal of this work was to develop and test a cylindrical tissue-equivalent quality assurance (QA) phantom for micro computed tomography (microCT) image-guided small animal irradiators that overcomes deficiencies of existing phantoms due to its mouse-like dimensions and composition. METHODS: The 8.6-cm-long and 2.4-cm-diameter phantom was three-dimensionally (3D) printed out of Somos NeXt plastic on a stereolithography (SLA) printer. The modular phantom consisted of four sections: (a) CT number evaluation section, (b) spatial resolution with slanted edge (for the assessment of longitudinal resolution) and targeting section, (c) spatial resolution with hole pattern (for the assessment of radial direction) section, and (d) uniformity and geometry section. A Python-based graphical user interface (GUI) was developed for automated analysis of microCT images and evaluated CT number consistency, longitudinal and radial modulation transfer function (MTF), image uniformity, noise, and geometric accuracy. The phantom was placed at the imaging isocenter and scanned with the small animal radiation research platform (SARRP) in the pancake geometry (long axis of the phantom perpendicular to the axis of rotation) with a variety of imaging protocols. Tube voltage was set to 60 and 70 kV, tube current was set to 0.5 and 1.2 mA, voxel size was set to 200 and 275 µm, imaging times of 1, 2, and 4 min were used, and frame rates of 6 and 12 frames per second (fps) were used. The phantom was also scanned in the standard (long axis of the phantom parallel to the axis of rotation) orientation. The quality of microCT images was analyzed and compared to recommendations presented in our previous work that was derived from a multi-institutional study. Additionally, a targeting accuracy test with a film placed in the phantom was performed. MicroCT imaging of the phantom was also simulated in a modified version of the EGSnrc/DOSXYZnrc code. Images of the resolution section with the hole pattern were acquired experimentally as well as simulated in both the pancake and the standard imaging geometries. The radial spatial resolution of the experimental and simulated images was evaluated and compared to experimental data. RESULTS: For the centered phantom images acquired in the pancake geometry, all imaging protocols passed the spatial resolution criterion in the radial direction (>1.5 lp/mm @ 0.2 MTF), the geometric accuracy criterion (<200 µm), and the noise criterion (<55 HU). Only the imaging protocol with 200-µm voxel size passed the criterion for spatial resolution in the longitudinal direction (>1.5 lp/mm @ 0.2 MTF). The 70-kV tube voltage dataset failed the bone CT number consistency test (<55 HU). Due to cupping artifacts, none of the imaging protocols passed the uniformity test of <55 HU. When the phantom was scanned in the standard imaging geometry, image uniformity and longitudinal MTF were satisfactory; however, the CT number consistency failed the recommended limit. A targeting accuracy of 282 and 251 µm along the x- and z-direction was observed. Monte Carlo simulations confirmed that the radial spatial resolution for images acquired in the pancake geometry was higher than the one acquired in the standard geometry. CONCLUSIONS: The new 3D-printed phantom presents a useful tool for microCT image analysis as it closely mimics a mouse. In order to image mouse-sized animals with acceptable image quality, the standard protocol with a 200-µm voxel size should be chosen and cupping artifacts need to be resolved.


Assuntos
Simulação por Computador , Tomografia Computadorizada de Feixe Cônico/instrumentação , Método de Monte Carlo , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia Guiada por Imagem/métodos , Microtomografia por Raio-X/instrumentação , Animais , Desenho de Equipamento , Processamento de Imagem Assistida por Computador/métodos , Impressão Tridimensional , Radioterapia Guiada por Imagem/instrumentação , Razão Sinal-Ruído
11.
Radiat Environ Biophys ; 58(1): 21-37, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30392077

RESUMO

Cone-beam computed tomography (CBCT) is widely used for pre-treatment verification and patient setup in image-guided radiation therapy (IGRT). CBCT imaging is employed daily and several times per patient, resulting in potentially high cumulative imaging doses to healthy tissues that surround exposed target organs. Computed tomography dose index (CTDI) is the parameter used by CBCT equipment as indication of the radiation output to patients. This study aimed to increase the knowledge on the relation between CBCT organ doses and weighted CTDI (CTDIW) for a thorax scanning protocol. A CBCT system was modelled using the Monte Carlo (MC) radiation transport program MCNPX2.7.0. Simulation results were validated against half-value layer (HVL), axial beam profile, patient skin dose (PSD) and CTDI measurements. For organ dose calculations, a male voxel phantom ("Golem") was implemented with the CBCT scanner computational model. After a successful MC model validation with measurements, a systematic comparison was performed between organ doses (and their distribution) and CTDI dosimetry concepts [CTDIW and cumulative dose quantities f100(150) and [Formula: see text]]. The results obtained show that CBCT organ doses vary between 1.2 ± 0.1 mGy and 3.3 ± 0.2 mGy for organs located within the primary beam. It was also verified that CTDIW allows prediction of absorbed doses to tissues at distances of about 5 cm from the isocentre of the CBCT system, whereas f100(150) allows prediction of organ doses at distances of about 10 cm from the isocentre, independently from its location. This study demonstrates that these dosimetric concepts are suitable methods that easily allow a good approximation of the additional CBCT imaging doses during a typical lung cancer IGRT treatment.


Assuntos
Tomografia Computadorizada de Feixe Cônico/efeitos adversos , Exposição à Radiação/efeitos adversos , Humanos , Masculino , Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/instrumentação , Tórax/diagnóstico por imagem , Tórax/efeitos da radiação
12.
Endoscopy ; 51(5): 463-467, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30577061

RESUMO

BACKGROUND: Insertion of fiducials to outline the targeted lesion allows image-guided radiotherapy, and is best achieved by endoscopic ultrasound (EUS). This study is a performance comparison of the new EUS-guided preloaded fiducial needle against Visicoil fiducials. METHODS: Technical success, visibility score, procedural time, costs, and complications for patients who underwent EUS-guided fiducial placement in upper gastrointestinal malignancies were prospectively collected. RESULTS: 60 patients with upper gastrointestinal cancers had fiducials (14 Visicoil; 46 preloaded fiducials) inserted for image-guided radiotherapy. Technical success was 100 %, with a shorter mean (standard deviation) insertion time of 0.94 minutes (0.28 minutes) vs. 5.5 minutes (1.9 minutes; P < 0.001) and higher visibility score on fluoroscopy of 2 vs. 1.18 (P < 0.001) in the preloaded group. Neither group had major complications related to fiducial insertion. The cost of consumables per patient was lower in the preloaded group at US$480 (US$124) vs. US$643 (US$123; P < 0.001). CONCLUSION: Fiducial insertion for image-guided radiotherapy using the new preloaded needle is associated with 100 % technical success, shorter insertion time, and higher visibility, and is more cost-effective than the Visicoil system.


Assuntos
Endossonografia , Marcadores Fiduciais , Neoplasias Gastrointestinais , Agulhas , Radioterapia Guiada por Imagem , Trato Gastrointestinal Superior/diagnóstico por imagem , Pesquisa Comparativa da Efetividade , Análise Custo-Benefício , Endossonografia/instrumentação , Endossonografia/métodos , Desenho de Equipamento , Feminino , Neoplasias Gastrointestinais/diagnóstico por imagem , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/radioterapia , Humanos , Masculino , Pessoa de Meia-Idade , Radioterapia Guiada por Imagem/economia , Radioterapia Guiada por Imagem/instrumentação , Radioterapia Guiada por Imagem/métodos , Resultado do Tratamento
13.
Med Phys ; 45(11): 4869-4876, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30216465

RESUMO

PURPOSE: The increased use of image-guided radiation therapy (IGRT) has led to increased use of kV on board imaging (OBI) devices. At present, directly measured OBI beam quality data have only been reported in terms of half-value layers (HVL). However, the HVL metric alone does not give the full OBI energy spectra as needed for accurate beam modeling. Although direct kV spectrometer devices exist they typically suffer from detector pile-up when used with OBI sources. We therefore present, for the first time, a novel laser-guided collimation system that allows direct measurement of the full energy spectrum for clinical OBI systems. METHODS: Several clinically relevant spectra (80, 100, and 125 kVp), with and without the half bow-tie filter, were measured using a thermoelectric cooled cadmium telluride (CdTe) detector paired with a multichannel analyzer. To prevent detector saturation, the photon flux at the detector was reduced by use of an in-house designed laser-guided collimation system. After applying energy bin corrections, direct spectroscopic measurements were compared to Monte Carlo (MC) simulated spectra in order to verify accuracy of collected data. Both percent depth dose (PDD) curves and digitally reconstructed radiographs (DRR) were compared using the measured vs MC spectra. RESULTS: Measured and MC spectra agree with RMSD between 1.96% and 3.29%. PDD curves generated from the measured and MC spectra were found to match except for in the small buildup region, with an overall match for the six beams ranging between 0.3% and 2.7% RMSD. DRRs matched well with a maximum difference in contrast of 1.1% and RMSD of 0.46% contrast for various materials in DRRs. CONCLUSIONS: The use of a laser-guided collimation system provided a method for quickly obtaining highly accurate kV spectrum data from OBI sources. For kV dose or DRR calculation, it was found that both spectra produced similar results.


Assuntos
Lasers , Aceleradores de Partículas , Radioterapia Guiada por Imagem/instrumentação , Método de Monte Carlo , Análise Espectral
14.
Strahlenther Onkol ; 194(11): 1030-1038, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30022277

RESUMO

For patients with inoperable liver metastases, intra-operative liver high dose-rate brachytherapy (HDR-BT) is a promising technology enabling delivery of a high radiation dose to the tumor, while sparing healthy tissue. Liver brachytherapy has been described in the literature as safe and effective for the treatment of primary or secondary hepatic malignancies. It is preferred over other ablative techniques for lesions that are either larger than 4 cm or located in close proximity to large vessels or the common bile duct. In contrast to external beam radiation techniques, organ movements do not affect the size of the irradiated volume in intra-operative HDR-BT and new technical solutions exist to support image guidance for intra-operative HDR-BT. We have retrospectively analyzed anonymized CT datasets of 5 patients who underwent open liver surgery (resection and/or ablation) in order to test whether the accuracy of a new image-guidance method specifically adapted for intra-operative HDR-BT is high enough to use it in similar situations and whether patients could potentially benefit from navigation-guided intra-operative needle placement for liver HDR-BT.


Assuntos
Braquiterapia/métodos , Período Intraoperatório , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/métodos , Braquiterapia/instrumentação , Terapia Combinada , Estudos de Viabilidade , Marcadores Fiduciais , Humanos , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/instrumentação , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
15.
Phys Med Biol ; 63(14): 145001, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29923495

RESUMO

In recent years, small animal image-guided irradiators have been widely utilized in preclinical studies involving rodent models. However, the dosimetry commissioning of such equipment involving kilovoltage small-field dosimetry has not received as much interest as the megavoltage small-field dosimetry used clinically. To date, a paucity of measured kilovoltage beam data, especially for field sizes less than 3 mm, can be found in the literature. For improvement of rodent treatments in the future, this work aims to provide comprehensive and accurate beam data for the small animal radiation research platform (SARRP, Xstrahl) using EBT3 Gafchromic films and Monte Carlo calculation, with submillimeter resolution and accuracy. This work includes three primary tasks: (1) establish an optimized film measurement protocol for small field dosimetry of kilovoltage photon beam. (2) Acquire dosimetric data including (a) depth dose curves from the surface to 6 cm depth (b) beam profiles, (c) penumbra, (d) cone factors and (e) 2D dose distribution. These tasks were undertaken for a 220 kVp photon beam with five different small field widths and 33 cm source to surface distance (0.5 mm and 1 mm circular fields, 3 × 3 mm2, 5 × 5 mm2, 10 × 10 mm2 square fields). Beam data was measured with EBT3 films. (3) Provide comparative dosimetry for film measurements, Monte Carlo calculations, and the dose calculations performed with the SARRP treatment planning system, Muriplan. For the majority of parameters, film measurement agreed with Monte Carlo simulation within 1%. There were, however, discrepancies between measured beam data and Muriplan treatment planning data. Specifically, for PDD, Muriplan underestimates the dose for field sizes of 0.5 mm and 1 mm. For beam profiles comparisons, the calculation from Muriplan predicts a smaller lateral distance between the 50% isodose lines compared to film measurement. There is a difference of 0.18, 0.72, 0.6 mm between Muriplan and film for field sizes of 3, 5, 10 mm, respectively. This work demonstrates that accurate and precise kilovoltage small-field dosimetry can be conducted using EBT3 Gafchromic film with an optimized protocol. In addition, discrepancies between measured beam data and Muriplan were identified.


Assuntos
Dosimetria Fotográfica/métodos , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/instrumentação , Animais , Desenho de Equipamento
16.
Med Phys ; 45(7): 3429-3434, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29763970

RESUMO

PURPOSE: Given its sensitivity to anatomical variations, proton therapy is expected to benefit greatly from integration with magnetic resonance imaging for online anatomy monitoring during irradiation. Such an integration raises several challenges, as both systems mutually interact. The proton beam will experience quasi-continuous energy loss and energy-dependent electromagnetic deflection at the same time, giving rise to a deflected beam trajectory and an altered dose distribution with a displaced Bragg peak. So far, these effects have only been predicted using Monte Carlo and analytical models, but no clear consensus has been reached and experimental benchmark data are lacking. We measured proton beam trajectories and Bragg peak displacement in a homogeneous phantom placed inside a magnetic field and compared them to simulations. METHODS: Planar dose distributions of proton pencil beams (80-180 MeV) traversing the field of a 0.95 T NdFeB permanent magnet while depositing energy in a PMMA slab phantom were measured using EBT3 radiochromic films and simulated using the Geant4 toolkit. Deflected beam trajectories and the Bragg peak displacement were extracted from the measured planar dose distributions and compared against the simulations. RESULTS: The lateral beam deflection was clearly visible on the EBT3 films and ranged from 1 to 10 mm for 80 to 180 MeV, respectively. Simulated and measured beam trajectories and Bragg peak displacement agreed within 0.8 mm for all studied proton energies. CONCLUSIONS: These results prove that the magnetic field-induced Bragg peak displacement is both measurable and accurately predictable in a homogeneous phantom at 0.95 T, and allows Monte Carlo simulations to be used as gold standard for proton beam trajectory prediction in similar frameworks for MR-integrated proton therapy.


Assuntos
Imagem por Ressonância Magnética Intervencionista/métodos , Terapia com Prótons/métodos , Radioterapia Guiada por Imagem/métodos , Comportamento Compulsivo , Desenho de Equipamento , Dosimetria Fotográfica , Campos Magnéticos , Imagem por Ressonância Magnética Intervencionista/instrumentação , Método de Monte Carlo , Imagens de Fantasmas , Polimetil Metacrilato , Terapia com Prótons/instrumentação , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/instrumentação
17.
Med Phys ; 45(6): 2647-2659, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29663429

RESUMO

PURPOSE: Tools to perform regular quality assurance of magnetic resonance image-guided radiotherapy (MRIgRT) systems should ideally be independent of interference from the magnetic fields. Remotely acquired optical Cherenkov imaging-based dosimetry measurements in water were investigated for this purpose, comparing measures of dose accuracy, temporal dynamics, and overall integrated IMRT delivery. METHODS: A 40 × 30.5 × 37.5 cm3 water tank doped with 1 g/L of quinine sulfate was imaged using an intensified charge-coupled device (ICCD) to capture the Cherenkov emission while being irradiated by a commercial MRIgRT system (ViewRay™). The ICCD was placed down-bore at the end of the couch, 4 m from treatment isocenter and behind the 5-Gauss line of the 0.35-T MRI. After establishing optimal camera acquisition settings, square beams of increasing size (4.2 × 4.2 cm2 , 10.5 × 10.5 cm2 , and 14.7 × 14.7 cm2 ) were imaged at 0.93 frames per second, from an individual cobalt-60 treatment head, to develop projection measures related to percent depth dose (PDD) curves and cross beam profiles (CPB). These Cherenkov-derived measurements were compared to ionization chamber (IC) and radiographic film dosimetry data, as well as simulation data from the treatment planning system (TPS). An intensity-modulated radiotherapy (IMRT) commissioning plan from AAPM TG-119 (C4:C-Shape) was also imaged at 2.1 frames per second, and the single linear sum image from 509 s of plan delivery was compared to the dose volume prediction generated by the TPS using gamma index analysis. RESULTS: Analysis of standardized test target images (1024 × 1024 pixels) yielded a pixel resolution of 0.37 mm/pixel. The beam width measured from the Cherenkov image-generated projection CBPs was within 1 mm accuracy when compared to film measurements for all beams. The 502 point measurements (i.e., pixels) of the Cherenkov image-based projection percent depth dose curves (pPDDs) were compared to pPDDs simulated by the treatment planning system (TPS), with an overall average error of 0.60%, 0.56%, and 0.65% for the 4.2, 10.5, and 14.7 cm square beams, respectively. The relationships between pPDDs and central axis PDDs derived from the TPS were used to apply a weighting factor to the Cherenkov pPDD, so that the Cherenkov data could be directly compared to IC PDDs (average error of -0.07%, 0.10%, and -0.01% for the same sized beams, respectively). Finally, the composite image of the TG-119 C4 treatment plan achieved a 95.1% passing rate using 4%/4 mm gamma index agreement criteria between Cherenkov intensity and TPS dose volume data. CONCLUSIONS: This is the first examination of Cherenkov-generated pPDDs and pCBPs in an MR-IGRT system. Cherenkov imaging measurements were fast to acquire, and minimal error was observed overall. Cherenkov imaging also provided novel real-time data for IMRT QA. The strengths of this imaging are the rapid data capture ability providing real-time, high spatial resolution data, combined with the remote, noncontact nature of imaging. The biggest limitation of this method is the two-dimensional (2D) projection-based imaging of three-dimensional (3D) dose distributions through the transparent water tank.


Assuntos
Imagem por Ressonância Magnética Intervencionista/métodos , Imagem Óptica/métodos , Garantia da Qualidade dos Cuidados de Saúde/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Calibragem , Simulação por Computador , Dosimetria Fotográfica , Humanos , Imagem por Ressonância Magnética Intervencionista/instrumentação , Método de Monte Carlo , Imagem Óptica/instrumentação , Quinina , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem/instrumentação , Radioterapia de Intensidade Modulada/instrumentação , Fatores de Tempo , Água
18.
Med Phys ; 45(5): 1832-1843, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29532489

RESUMO

PURPOSE: To evaluate the effectiveness of CT image-guided proton radiotherapy for prostate cancer by analyzing the positioning uncertainty and assessing daily dose change due to anatomical variations. MATERIALS AND METHODS: Patients with prostate cancer were treated by opposed lateral proton beams based on a passive scattering method using an in-room CT image-guided system. The system employs a single couch for both CT scanning and beam delivery. The patient was positioned by matching the boundary between the prostate and the rectum's anterior region identified in the CT images to the corresponding boundary in the simulator images after bone matching. We acquired orthogonal kV x-ray images after couch movement and confirmed the body position by referring to the bony structure prior to treatment. In offline analyses, we contoured the targeted anatomical structures on 375 sets of daily in-room CT images for 10 patients. The uncertainty of the image-matching procedure was evaluated using the prostate contours and actual couch corrections. We also performed dose calculations using the same set of CT images, and evaluated daily change of dose-volume histograms (DVHs) to compare the effectiveness of the treatment using prostate matching to the bone-matching procedure. RESULTS: The isocenter shifts by prostate matching after bone matching were 0.5 ± 1.8 and -0.8 ± 2.6 mm along the superior-inferior (SI) and anterior-posterior (AP) directions, respectively. The body movement errors (σ) after couch movement were 0.7, 0.5, and 0.3 mm along the lateral, SI and AP direction, respectively, for 30 patients. The estimated errors (σ) in the prostate matching were 1.0 and 1.3 mm, and, in conjunction with the movement errors, the total positioning uncertainty was estimated to be 1.0 and 1.4 mm along the SI and AP directions, respectively. Daily DVH analyses showed that in the prostate matching, 98.7% and 86.1% of the total 375 irradiations maintained a dose condition of V95%  > 95% for the prostate and a dose constraint of V77%  < 18% for the rectum, whereas 90.4% and 66.1% of the total irradiations did so when bone matching was used. The dose constraint of the rectum and dose coverage of the prostate were better maintained by prostate matching than bone matching (P < 0.001). The daily variation in the dose to the seminal vesicles (SVs) was large, and only 40% of the total irradiations maintained the initial planned values of V95% for high-risk treatment. Nevertheless, the deviations from the original value were -4 ± 7% and -5 ± 11% in the prostate and bone matching, respectively, and a better dose coverage of the SV was achieved by the prostate matching. CONCLUSION: The correction of repositioning along the AP and SI direction from conventional bone matching in CT image-guided proton therapy was found to be effective to maintain the dose constraint of the rectum and the dose coverage of the prostate. This work indicated that prostate cancer treatment by prostate matching using CT image guidance may be effective to reduce the rectal complications and achieve better tumor control of the prostate. However, an adaptive approach is desirable to maintain better dose coverage of the SVs.


Assuntos
Posicionamento do Paciente/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Terapia com Prótons/instrumentação , Doses de Radiação , Radioterapia Guiada por Imagem/instrumentação , Tomografia Computadorizada por Raios X , Humanos , Masculino , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
19.
Med Phys ; 44(12): 6261-6269, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29031024

RESUMO

PURPOSE: A Compton camera (CC), which measures prompt gammas (PGs) emitted during proton therapy, is a potentially useful imaging device for proton range verification. The aim of this study was to evaluate how well the reconstructed PG images obtained from various two-stage CC configurations reproduce the distal falloff of the PG emission. METHODS: We conducted Monte Carlo simulations to evaluate different two-stage CCs positioned orthogonal to a proton pencil beam irradiating a water phantom. The results were compared with those obtained for a three-stage CC. In particular, all detectors were made of lutetium-yttrium orthosilicate (LYSO) crystals. RESULTS: We found that: (a) the position resolution of the detector led to more uncertainty in predicting the depth of maximum emission and distal falloff positions than did the energy resolution of the detector; (b) reducing the thickness of the absorber detector reduces the effect of position resolution on the quality of reconstructed images and improves falloff position estimates; (c) incomplete absorption of PGs can be filtered by restricting incident gamma energies to known PG energy spectral peaks; and (d) there is greater bias and less accuracy in predicting distal falloff positions with the three-stage CC compared with the two-stage CC. CONCLUSIONS: This study demonstrates the feasibility of using various CC designs and event selection methods to improve the imaging of PG rays. In our designed two-stage CCs, the thin LYSO-based absorber can provide better predictions of the distal falloff positions than the thick one. Compared to three-stage CCs, two-stage CCs are less biased and provide more accurate range verification.


Assuntos
Lutécio/química , Terapia com Prótons/instrumentação , Radioterapia Guiada por Imagem/instrumentação , Silicatos/química , Ítrio/química , Processamento de Imagem Assistida por Computador , Método de Monte Carlo
20.
Med Phys ; 44(12): 6504-6514, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28887825

RESUMO

PURPOSE: The purpose of this study was to investigate and characterize the performance of a Multi Leaf Collimator (MLC) designed for Cobalt-60 based MR-guided radiation therapy system in a 0.35 T magnetic field. METHODS: The MLC design and unique assembly features in the ViewRay MRIdian system were first reviewed. The RF cage shielding of MLC motor and cables were evaluated using ACR phantoms with real-time imaging and quantified by signal-to-noise ratio. The dosimetric characterizations, including the leaf transmission, leaf penumbra, tongue-and-groove effect, were investigated using radiosensitive films. The output factor of MLC-defined fields was measured with ionization chambers for both symmetric fields from 2.1 × 2.1 cm2 to 27.3 × 27.3 cm2 and asymmetric fields from 10.5 × 10.5 cm2 to 10.5 × 2.0 cm2 . Multi leaf collimator (MLC) positional accuracy was assessed by delivering either a picket fence (PF) style pattern on radiochromic films with wire-jig phantom or double and triple-rectangular patterns on ArcCheck-MR (Sun Nuclear, Melbourne, FL, USA) with gamma analysis as the pass/fail indicator. Leaf speed tests were performed to assess the capability of full range leaf travel within manufacture's specifications. Multi leaf collimator plan delivery reproducibility was tested by repeatedly delivering both open fields and fields with irregular shaped segments over 1-month period. RESULTS: Comparable SNRs within 4% were observed for MLC moving and stationary plans on vendor-reconstructed images, and the direct k-space reconstructed images showed that the three SNRs are within 1%. The maximum leaf transmission for all three MLCs was less than 0.35% and the average leakage was 0.153 ± 0.006%, 0.151 ± 0.008%, and 0.159 ± 0.015% for head 1, 2, and 3, respectively. Both the leaf edge and leaf end penumbra showed comparable values within 0.05 cm, and the measured values are within 0.1 cm with TPS values. The leaf edge TG effect indicated 10% underdose and the leaf end TG showed a shifted dose distribution with 0.3 cm offset. The leaf positioning test showed a 0.2 cm accuracy in the PF style test, and a gamma passing rate above 96% was observed with a 3%/2 mm criteria when comparing the measured double/triple-rectangular pattern fluence with TPS calculated fluence. The average leaf speed when executing the test plan fell in a range from 1.86 to 1.95 cm/s. The measured and TPS calculated output factors were within 2% for squared fields and within 3% for rectangular fields. The reproducibility test showed the deviation of output factors were well within 2% for square fields and the gamma passing rate within 1.5% for fields with irregular segments. The Monte Carlo predicted output factors were within 2% compared to TPS values. 15 out of the 16 IMRT plans have gamma passing rate more than 98% compared to the TPS fluence with an average passing rate of 99.1 ± 0.6%. CONCLUSION: The MRIdian MLC has a good RF noise shielding design, low radiation leakage, good positioning accuracy, comparable TG effect, and can be modeled by an independent Monte Carlo calculation platform.


Assuntos
Imageamento por Ressonância Magnética , Radioterapia Guiada por Imagem/instrumentação , Estudos de Viabilidade , Método de Monte Carlo , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA