Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 259: 127495, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32623203

RESUMO

Pharmaceuticals have been categorized as emerging contaminants that may be hazardous to the environment. To assess their environmental risk, understanding their fate and behaviour is highly needed, particularly in soil where little is known. This study investigated sorption, degradation and mobility potential of ranitidine (RAN) from soil to groundwater in two soils with different physicochemical properties. Sorption resulted in data were found to fit well to isotherm models following the order: linear model > Freundlich > Langmuir with R2 of up to 0.98. RAN showed low sorption affinity to soils with maximum adsorption coefficient (Kd) of 21.47 L kg-1. Physicochemical properties for soil and RAN showed insignificant positive correlation to Kd values except the sand%, which showed significant negative correlation. Degradation of RAN was fitted to the first order exponential decay model with minimum DT50 (time for a 50% dissipation in RAN concentration) values of 31.6 d under non-sterile conditions. Prolonged DT50 of 62.4 d was obtained in soils from sterile treatments indicating the microbial activity role in dissipation of RAN process. To predict potential leaching of RAN in soil, this study experimentally obtained values of Kd, Koc and DT50 were implemented in mathematical screening models. Results showed different but moderate leaching potential of RAN in soils.


Assuntos
Poluentes Ambientais/química , Modelos Teóricos , Ranitidina/química , Adsorção , Água Subterrânea/química , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/química
2.
Environ Sci Pollut Res Int ; 27(5): 5469-5481, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31853849

RESUMO

The pharmaceuticals bisoprolol (BIS), sotalol (SOT), and ranitidine (RAN) are among the most consumed pharmaceuticals worldwide and are frequently detected in different aquatic ecosystems. However, very few ecotoxicity data are available in the literature for them. To help fill these data gaps, toxicity tests with the algae Raphidocelis subcapitata, the macrophyte Lemna minor, the cnidarian Hydra attenuata, the crustacean Daphnia similis, and the fish Danio rerio were performed for assessing the ecotoxicity of these pharmaceuticals. Standard, as well as non-standard endpoint, was evaluated, including the locomotor behavior of D. rerio larvae. Results obtained for SOT and RAN showed that acute adverse effects are not expected to occur on aquatic organisms at the concentrations at which these pharmaceuticals are usually found in fresh surface waters. On the other hand, BIS was classified as hazardous to the environment in the acute III category. Locomotor behavior of D. rerio larvae was not affected by BIS and RAN. A disturbance on the total swimming distance at the dark cycle was observed only for larvae exposed to the highest test concentration of 500 mg L-1 of SOT. D. similis reproduction was affected by BIS with an EC10 of 3.6 (0.1-34.0) mg L-1. A risk quotient (RQ) of 0.04 was calculated for BIS in fresh surface water, considering a worst-case scenario. To the best of our knowledge, this study presents the first chronic toxicity data with BIS on non-target organisms.


Assuntos
Ranitidina , Poluentes Químicos da Água , Animais , Bisoprolol/química , Daphnia/química , Ecossistema , Ranitidina/química , Sotalol/química
3.
Chemosphere ; 155: 606-613, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27155476

RESUMO

A coupled Bio-EF treatment has been applied as a reliable process for the degradation of the pharmaceuticals furosemide (FRSM) and ranitidine (RNTD) in aqueous medium, in order to reduce the high energy consumption related to electrochemical technology. In the first stage of this study, electrochemical degradation of the drugs was assessed by the electro-Fenton process (EF) using a BDD/carbon-felt cell. Biodegradability of the drugs solutions was enhanced reaching BOD5/COD ratios close to the biodegradability threshold of 0.4, evidencing the formation of bio-compatible by-products (mainly short-chain carboxylic acids) which are suitable for biological post-treatment. Moreover, toxicity evaluation by the Microtox(®) method revealed that EF pre-treatment was able of detoxifying both, FRSM and RNTD solutions, constituting another indicator of biodegradability of EF treated solutions. In the second stage, electrolyzed solutions were treated by means of an aerobic biological process. A significant part of the short-chain carboxylic acids formed during the electrochemical phase was satisfactorily removed by the used selected microorganisms. The results obtained demonstrate the efficiency and feasibility of the integrated Bio-EF process.


Assuntos
Bactérias/metabolismo , Técnicas Eletroquímicas , Furosemida/química , Ranitidina/química , Poluentes Químicos da Água/química , Poluição Química da Água/economia , Biodegradação Ambiental , Carbono/química , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Eletrólise , Furosemida/toxicidade , Peróxido de Hidrogênio/química , Ferro/química , Oxirredução , Ranitidina/toxicidade , Poluentes Químicos da Água/toxicidade , Poluição Química da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA