Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuropharmacology ; 222: 109273, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252615

RESUMO

The cost-benefit decision-making (CBDM) is critical to normal human activity and a diminished willingness to expend effort to obtain rewards is a prevalent/noted characteristic of neuropsychiatric disorders such as schizophrenia, Parkinson's disease. Numerous studies have identified nucleus accumbens (NAc) as an important locus for CBDM control but their neuromodulatory and behavioral mechanisms remain largely under-explored. Adenosine A2A receptors (A2ARs), which are highly concentrated in the striatopallidal neurons, can integrate glutamate and dopamine signals for controlling effort-related choice behaviors. While the involvement of A2ARs in effort-based decision making is well documented, the role of other decision variables (reward discrimination) in effort-based decision making and the role of A2AR in delay-based decision making are less clear. In this study, we have developed a well-controlled CBDM behavioral paradigm to manipulate effort/cost and reward independently or in combination, allowing a dissection of four behavioral elements: effort-based CBDM (E-CBDM), delay-based CBDM (D-CBDM), reward discrimination (RD), effort discrimination (ED), and determined the effect of genetic knockdown (KD) of NAc A2AR on the four behavioral elements. We found that A2AR KD in NAc increased the choice for larger, more costly reward in the E-CBDM, but not D-CBDM. Furthermore, this high-effort/high-reward bias was attributable to the increased willingness to engage in effort but not the effect of discrimination of reward magnitude. Our findings substantiate an important role of the NAc A2AR in control of E-CBDM and support that pharmacologically targeting NAc A2ARs would be a useful strategy for treating the aberrant effort-based decision making in neuropsychiatric disorders.


Assuntos
Adenosina , Receptor A2A de Adenosina , Humanos , Adenosina/farmacologia , Tomada de Decisões/fisiologia , Recompensa , Viés
2.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162950

RESUMO

A2A adenosine receptors (A2A-AR) have a cardio-protective function upon ischemia and reperfusion, but on the other hand, their stimulation could lead to arrhythmias. Our aim was to investigate the potential use of the PET radiotracer [18F]FLUDA to non-invasively determine the A2A-AR availability for diagnosis of the A2AR status. Therefore, we compared mice with cardiomyocyte-specific overexpression of the human A2A-AR (A2A-AR TG) with the respective wild type (WT). We determined: (1) the functional impact of the selective A2AR ligand FLUDA on the contractile function of atrial mouse samples, (2) the binding parameters (Bmax and KD) of [18F]FLUDA on mouse and human atrial tissue samples by autoradiographic studies, and (3) investigated the in vivo uptake of the radiotracer by dynamic PET imaging in A2A-AR TG and WT. After A2A-AR stimulation by the A2A-AR agonist CGS 21680 in isolated atrial preparations, antagonistic effects of FLUDA were found in A2A-AR-TG animals but not in WT. Radiolabelled [18F]FLUDA exhibited a KD of 5.9 ± 1.6 nM and a Bmax of 455 ± 78 fmol/mg protein in cardiac samples of A2A-AR TG, whereas in WT, as well as in human atrial preparations, only low specific binding was found. Dynamic PET studies revealed a significantly higher initial uptake of [18F]FLUDA into the myocardium of A2A-AR TG compared to WT. The hA2A-AR-specific binding of [18F]FLUDA in vivo was verified by pre-administration of the highly affine A2AAR-specific antagonist istradefylline. Conclusion: [18F]FLUDA is a promising PET probe for the non-invasive assessment of the A2A-AR as a marker for pathologies linked to an increased A2A-AR density in the heart, as shown in patients with heart failure.


Assuntos
Coração/diagnóstico por imagem , Miocárdio/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptor A2A de Adenosina/genética , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Radioisótopos de Flúor/química , Coração/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Fenetilaminas/farmacologia , Purinas/farmacologia , Receptor A2A de Adenosina/metabolismo , Vidarabina/administração & dosagem , Vidarabina/análogos & derivados , Vidarabina/química
3.
J Chem Inf Model ; 54(8): 2243-54, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25046649

RESUMO

The progress made in the field of G protein-coupled receptors (GPCRs) structural determination has increased the adoption of docking-driven approaches for the identification or optimization of novel potent and selective ligands. In this work, we compared the performances of the 16 different docking/scoring combinations using the recently released crystal structures of the human A2A AR (hA2A AR) in complex with both agonists and antagonists. The proposed evaluation strategy encompasses the use of three complementary "quality descriptors": (a) the number of conformations generated by a docking algorithm having a RMSD value lower than the crystal structure resolution (R); (b) a novel consensus-based function defined as "protocol score"; and (c) the interaction energy maps (IEMs) analysis, based on the identification of key ligand-receptor interactions observed in the crystal structures.


Assuntos
Adenosina/química , Simulação de Acoplamento Molecular/métodos , Agonistas do Receptor Purinérgico P1/química , Antagonistas de Receptores Purinérgicos P1/química , Receptor A2A de Adenosina/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Ligação Proteica , Conformação Proteica , Termodinâmica
4.
J Biol Chem ; 289(13): 9263-74, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24509856

RESUMO

The A2A receptor is a class A/rhodopsin-like G protein-coupled receptor. Coupling to its cognate protein, Gs, occurs via restricted collision coupling and is contingent on the presence of cholesterol. Agonist activation slows diffusion of the A2A adenosine receptor in the lipid bilayer. We explored the contribution of the hydrophobic core and of the extended C terminus by examining diffusion of quantum dot-labeled receptor variants in dissociated hippocampal neurons. Single particle tracking of the A2A receptor(1-311), which lacks the last 101 residues, revealed that agonist-induced confinement was abolished and that the agonist-induced decrease in diffusivity was reduced substantially. A fragment comprising the SH3 domain and the guanylate kinase domain of synapse-associated protein 102 (SAP102) was identified as a candidate interactor that bound to the A2A receptor C terminus. Complex formation between the A2A receptor and SAP102 was verified by coimmunoprecipitation and by tracking its impact on receptor diffusion. An analysis of all trajectories by a hidden Markov model was consistent with two diffusion states where agonist activation reduced the transition between the two states and, thus, promoted the accumulation of the A2A receptor in the compartment with slow mobility. Overexpression of SAP102 precluded the access of the A2A receptor to a compartment with restricted mobility. In contrast, a mutated A2A receptor (with (383)DVELL(387) replaced by RVRAA) was insensitive to the action of SAP102. These observations show that the hydrophobic core per se does not fully account for the agonist-promoted change in mobility of the A2A receptor. The extended carboxyl terminus allows for regulatory input by scaffolding molecules such as SAP102.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Hipocampo/citologia , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Receptor A2A de Adenosina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Difusão/efeitos dos fármacos , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Cadeias de Markov , Mutação , Ratos , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/genética
5.
J Chem Inf Model ; 53(7): 1700-13, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23725291

RESUMO

Recent efforts in the computational evaluation of the thermodynamic properties of water molecules have resulted in the development of promising new in silico methods to evaluate the role of water in ligand binding. These methods include WaterMap, SZMAP, GRID/CRY probe, and Grand Canonical Monte Carlo simulations. They allow the prediction of the position and relative free energy of the water molecule in the protein active site and the analysis of the perturbation of an explicit water network (WNP) as a consequence of ligand binding. We have for the first time extended these approaches toward the prediction of kinetics for small molecules and of relative free energy of binding with a focus on the perturbation of the water network and application to large diverse data sets. Our results support a qualitative correlation between the residence time of 12 related triazine adenosine A(2A) receptor antagonists and the number and position of high energy trapped solvent molecules. From a quantitative viewpoint, we successfully applied these computational techniques as an implicit solvent alternative, in linear combination with a molecular mechanics force field, to predict the relative ligand free energy of binding (WNP-MMSA). The applicability of this linear method, based on the thermodynamics additivity principle, did not extend to 375 diverse A(2A) receptor antagonists. However, a fast but effective method could be enabled by replacing the linear approach with a machine learning technique using probabilistic classification trees, which classified the binding affinity correctly for 90% of the ligands in the training set and 67% in the test set.


Assuntos
Antagonistas do Receptor A2 de Adenosina/metabolismo , Modelos Moleculares , Receptor A2A de Adenosina/metabolismo , Água/química , Antagonistas do Receptor A2 de Adenosina/química , Algoritmos , Cinética , Ligantes , Método de Monte Carlo , Probabilidade , Ligação Proteica , Conformação Proteica , Receptor A2A de Adenosina/química , Termodinâmica
6.
J Med Chem ; 55(9): 4297-308, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22486652

RESUMO

Structures of G protein-coupled receptors (GPCRs) have a proven utility in the discovery of new antagonists and inverse agonists modulating signaling of this important family of clinical targets. Applicability of active-state GPCR structures to virtual screening and rational optimization of agonists, however, remains to be assessed. In this study of adenosine 5' derivatives, we evaluated the performance of an agonist-bound A(2A) adenosine receptor (AR) structure in retrieval of known agonists and then employed the structure to screen for new fragments optimally fitting the corresponding subpocket. Biochemical and functional assays demonstrate high affinity of new derivatives that include polar heterocycles. The binding models also explain modest selectivity gain for some substituents toward the closely related A(1)AR subtype and the modified agonist efficacy of some of these ligands. The study suggests further applicability of in silico fragment screening to rational lead optimization in GPCRs.


Assuntos
Adenosina/análogos & derivados , Agonistas do Receptor Purinérgico P1/química , Agonistas do Receptor Purinérgico P1/farmacologia , Receptor A2A de Adenosina/metabolismo , Adenosina/química , Adenosina/farmacologia , Animais , Sítios de Ligação , Células CHO , Cricetinae , Desenho de Fármacos , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Método de Monte Carlo , Ligação Proteica , Agonistas do Receptor Purinérgico P1/síntese química , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
7.
Mol Vis ; 17: 486-91, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22740769

RESUMO

PURPOSE: The adenosine A(2A) receptor (A(2A)R) modulates collagen synthesis and extracellular matrix production in ocular tissues that contribute to eye growth and the development of myopia. We aimed to determine if single nucleotide polymorphisms (SNPs) in A(2A)R exons associates with high myopia found in Chinese subjects. METHODS: DNA samples were prepared from venous lymphocytes of 175 Chinese subjects with high myopia of less than -8.00 diopters (D) correction and 101 ethnically similar controls with between -1.00 D and +1.00 D correction. The coding region sequences of A(2A)R were amplified by PCR and analyzed by Sanger sequencing. The detected variations were confirmed by reverse sequencing. Allelic frequencies of all detected common SNPs were assessed for Hardy-Weinberg equilibrium. RESULTS: Five variations in A(2A)R exons, 5675 A>G, 5765 C>T, 13325 G>A, 13448 C>T, and 14000 T>A, were detected in controls at a low frequency (<1%). However, one SNP, 13772 T>C (rs5751876), showed its polymorphism in 53.3% of the total study population. The rs5751876 is a synonymous substitution located in a tyrosine codon of exon 2. Despite no significant difference in genotype distribution between cases and controls, the frequency of heterozygotes with the rs5751876 genotype was significantly lower in subjects with high myopia. CONCLUSIONS: The reduced frequency of the heterozygote rs5751876 genotype in subjects suggests a possible association of A(2A)R with high myopia in a Chinese population.


Assuntos
Povo Asiático , Miopia/genética , Polimorfismo de Nucleotídeo Único , Receptor A2A de Adenosina/genética , Adulto , Alelos , Estudos de Casos e Controles , Éxons , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Heterozigoto , Humanos , Masculino , Análise de Sequência de DNA
8.
J Struct Biol ; 170(1): 10-20, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20079848

RESUMO

G protein-coupled receptors (GPCRs) are therapeutic targets for many diseases, but progress in developing active and selective therapeutics has been severely hampered by the difficulty in obtaining accurate structures. We have been developing methods for predicting the structures for GPCR ligand complexes, but validation has been hampered by a lack of experimental structures with which to compare our predictions. We report here the predicted structures of the human adenosine GPCR subtypes (A(1), A(2A), A(2B), and A(3)) and the binding sites for adenosine agonist and eight antagonists to this predicted structure, making no use of structural data, and compare with recent experimental crystal structure for ZM241385 bound human A(2A) receptor. The predicted structure correctly identifies 9 of the 12 crystal binding site residues. Moreover, the predicted binding energies of eight antagonists to the predicted structure of A(2A) correlate quite well with experiment. These excellent predictions resulted when we used Monte Carlo techniques to optimize the loop structures, particularly the cysteine linkages. Ignoring these linkages led to a much worse predicted binding site (identifying only 3 of the 12 important residues). These results indicate that computational methods can predict the three-dimensional structure of GPCR membrane proteins sufficiently accurately for use in designing subtype selective ligands for important GPCR therapeutics targets.


Assuntos
Modelos Moleculares , Conformação Proteica , Receptor A2A de Adenosina/química , Sítios de Ligação/genética , Cristalização , Humanos , Estrutura Molecular , Método de Monte Carlo , Triazinas , Triazóis
9.
Nat Rev Drug Discov ; 8(6): 455-63, 2009 06.
Artigo em Inglês | MEDLINE | ID: mdl-19461661

RESUMO

Recent breakthroughs in the determination of the crystal structures of G protein-coupled receptors (GPCRs) have provided new opportunities for structure-based drug design strategies targeting this protein family. With the aim of evaluating the current status of GPCR structure prediction and ligand docking, a community-wide, blind prediction assessment - GPCR Dock 2008 - was conducted in coordination with the publication of the crystal structure of the human adenosine A(2A) receptor bound to the ligand ZM241385. Twenty-nine groups submitted 206 structural models before the release of the experimental structure, which were evaluated for the accuracy of the ligand binding mode and the overall receptor model compared with the crystal structure. This analysis highlights important aspects for success and future development, such as accurate modelling of structurally divergent regions and use of additional biochemical insight such as disulphide bridges in the extracellular loops.


Assuntos
Modelos Moleculares , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Triazinas/metabolismo , Triazóis/metabolismo , Animais , Cristalização , Cristalografia por Raios X , Desenho de Fármacos , Indústria Farmacêutica/métodos , Humanos , Ligantes , Valor Preditivo dos Testes , Ligação Proteica/fisiologia , Relação Estrutura-Atividade
10.
J Neurochem ; 88(3): 726-34, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14720222

RESUMO

The results presented in this paper show that adenosine A2A receptor (A2AR) form homodimers and that homodimers but not monomers are the functional species at the cell surface. Fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) techniques have been used to demonstrate in transfected HEK293 cells homodimerization of A2AR, which are heptaspanning membrane receptors with enriched expression in striatum. The existence of homodimers at the cell surface was demonstrated by time-resolved FRET. Although agonist activation of the receptor leads to the formation of receptor clusters, it did not affect the degree of A2AR-A2AR dimerization. Both monomers and dimers were detected by immunoblotting in cell extracts. However, cell surface biotinylation of proteins has made evident that more than 90% of the cell surface receptor is in its dimeric form. Thus, it seems that homodimers are the functional form of the receptor present on the plasma membrane. A deletion mutant version of the A2A receptor, lacking its C-terminal domain, was also able to form both monomeric and dimeric species when cell extracts from transfected cells were analyzed by immunoblotting. This suggests that the C-terminal tail does not participate in the dimerization. This is relevant as the C-terminal tail of A2AR is involved in heteromers formed by A2AR and dopamine D2 receptors. BRET ratios corresponding to A2AR-A2AR homodimers were higher than those encountered for heterodimers formed by A2AR and dopamine D2 receptors. As A2AR and dopamine D2 receptors do indeed interact, these results indicate that A2AR homodimers are the functional species at the cell surface and that they coexist with A2AR/D2 receptor heterodimers.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , beta-Ciclodextrinas , Linhagem Celular , Ciclodextrinas/química , Dimerização , Células HeLa , Humanos , Medições Luminescentes
11.
J Biol Chem ; 278(47): 46741-9, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-12933819

RESUMO

There is evidence for strong functional antagonistic interactions between adenosine A2A receptors (A2ARs) and dopamine D2 receptors (D2Rs). Although a close physical interaction between both receptors has recently been shown using co-immunoprecipitation and co-localization assays, the existence of a A2AR-D2R protein-protein interaction still had to be demonstrated in intact living cells. In the present work, fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) techniques were used to confirm the occurrence of A2AR-D2R interactions in co-transfected cells. The degree of A2AR-D2R heteromerization, measured by BRET, did not vary after receptor activation with selective agonists, alone or in combination. BRET competition experiments were performed using a chimeric D2R-D1R in which helices 5 and 6, the third intracellular loop (I3), and the third extracellular loop (E3) of the D2R were replaced by those of the dopamine D1 receptor (D1R). Although the wild type D2R was able to decrease the BRET signal, the chimera failed to achieve any effect. This suggests that the helix 5-I3-helix 6-E3 portion of D2R holds the site(s) for interaction with A2AR. Modeling of A2AR and D2R using a modified rhodopsin template followed by molecular dynamics and docking simulations gave essentially two different possible modes of interaction between D2R and A2AR. In the most probable one, helix 5 and/or helix 6 and the N-terminal portion of I3 from D2R approached helix 4 and the C-terminal portion of the C-tail from the A2AR, respectively.


Assuntos
Transferência de Energia , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/metabolismo , Sítios de Ligação , Linhagem Celular , Simulação por Computador , Dimerização , Fluorescência , Humanos , Medições Luminescentes , Modelos Moleculares , Ligação Proteica , Proteínas Recombinantes de Fusão , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA