Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JCI Insight ; 4(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31619590

RESUMO

Deterioration or inborn malformations of the cardiac conduction system (CCS) interfere with proper impulse propagation in the heart and may lead to sudden cardiac death or heart failure. Patients afflicted with arrhythmia depend on antiarrhythmic medication or invasive therapy, such as pacemaker implantation. An ideal way to treat these patients would be CCS tissue restoration. This, however, requires precise knowledge regarding the molecular mechanisms underlying CCS development. Here, we aimed to identify regulators of CCS development. We performed a compound screen in zebrafish embryos and identified tolterodine, a muscarinic receptor antagonist, as a modifier of CCS development. Tolterodine provoked a lower heart rate, pericardiac edema, and arrhythmia. Blockade of muscarinic M3, but not M2, receptors induced transcriptional changes leading to amplification of sinoatrial cells and loss of atrioventricular identity. Transcriptome data from an engineered human heart muscle model provided additional evidence for the contribution of muscarinic M3 receptors during cardiac progenitor specification and differentiation. Taken together, we found that muscarinic M3 receptors control the CCS already before the heart becomes innervated. Our data indicate that muscarinic receptors maintain a delicate balance between the developing sinoatrial node and the atrioventricular canal, which is probably required to prevent the development of arrhythmia.


Assuntos
Arritmias Cardíacas/tratamento farmacológico , Sistema de Condução Cardíaco/embriologia , Antagonistas Muscarínicos/farmacologia , Organogênese/efeitos dos fármacos , Receptor Muscarínico M3/metabolismo , Tartarato de Tolterodina/farmacologia , Animais , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Embrião de Mamíferos , Embrião não Mamífero , Células HEK293 , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Camundongos , Camundongos Knockout , Antagonistas Muscarínicos/uso terapêutico , Miócitos Cardíacos , Receptor Muscarínico M3/genética , Tartarato de Tolterodina/uso terapêutico , Xenopus laevis , Peixe-Zebra
2.
J Pharmacol Toxicol Methods ; 68(3): 323-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23933114

RESUMO

INTRODUCTION: Efficacy describes the property of a ligand that enables the receptor to change its behavior towards the host cell, while biased agonism defines the ability of a ligand to differentially activate some of the vectorial pathways over others mediated through the receptor. However, little is known about the molecular basis defining the efficacy of ligands at G protein-coupled receptors. Here we characterize the biased agonism and cell phenotypic efficacy of seven agonists at the endogenous muscarinic M3 receptors in six different cell lines including HT-29, PC-3, HeLa, SF268, CCRF-CEM and HCT-15 cells. METHODS: Quantitative real-time PCR and multiple label-free whole cell dynamic mass redistribution (DMR) assays were used to determine the functional muscarinic receptors in each cell line. DMR pathway deconvolution assay was used to determine the pathway biased activity of the muscarinic agonists. Operational agonism model was used to quantify the pathway bias, while macro-kinetic data reported in literature was used to analyze the biochemical mechanism of action of these agonists. RESULTS: Quantitative real-time PCR and ligand pharmacology studies showed that all the native cell lines endogenously express functional M3 receptors. Furthermore, different agonists triggered distinct DMR signals in a specific cell line as well as in different cell lines. DMR pathway deconvolution using known G protein modulators revealed that the M3 receptor in all the six cell lines signals through multiple G protein-mediated pathways, and certain agonists display biased agonism in a cell line-dependent manner. The whole cell efficacy and potency of these agonists were found to be sensitive to the assay time as well as the cell background. Correlation analysis suggested that the whole cell efficacy of agonists is correlated well with their macro-dissociation rate constants. DISCUSSION: This study implicates that the endogenous M3 receptors are coupled to multiple pathways, and the muscarinic agonists can display distinct biased agonism and whole cell phenotypic efficacy.


Assuntos
Agonistas Muscarínicos/farmacologia , Receptor Muscarínico M3/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Ligantes , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Receptor Muscarínico M3/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA