Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 14992, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929133

RESUMO

Long-lasting confusion and memory difficulties during the postictal state remain a major unmet problem in epilepsy that lacks pathophysiological explanation and treatment. We previously identified that long-lasting periods of severe postictal hypoperfusion/hypoxia, not seizures per se, are associated with memory impairment after temporal lobe seizures. While this observation suggests a key pathophysiological role for insufficient energy delivery, it is unclear how the networks that underlie episodic memory respond to vascular constraints that ultimately give rise to amnesia. Here, we focused on cellular/network level analyses in the CA1 of hippocampus in vivo to determine if neural activity, network oscillations, synaptic transmission, and/or synaptic plasticity are impaired following kindled seizures. Importantly, the induction of severe postictal hypoperfusion/hypoxia was prevented in animals treated by a COX-2 inhibitor, which experimentally separated seizures from their vascular consequences. We observed complete activation of CA1 pyramidal neurons during brief seizures, followed by a short period of reduced activity and flattening of the local field potential that resolved within minutes. During the postictal state, constituting tens of minutes to hours, we observed no changes in neural activity, network oscillations, and synaptic transmission. However, long-term potentiation of the temporoammonic pathway to CA1 was impaired in the postictal period, but only when severe local hypoxia occurred. Lastly, we tested the ability of rats to perform object-context discrimination, which has been proposed to require temporoammonic input to differentiate between sensory experience and the stored representation of the expected object-context pairing. Deficits in this task following seizures were reversed by COX-2 inhibition, which prevented severe postictal hypoxia. These results support a key role for hypoperfusion/hypoxia in postictal memory impairments and identify that many aspects of hippocampal network function are resilient during severe hypoxia except for long-term synaptic plasticity.


Assuntos
Amnésia/fisiopatologia , Hipocampo/fisiopatologia , Convulsões/fisiopatologia , Acetaminofen/farmacologia , Animais , Região CA1 Hipocampal/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipóxia/fisiopatologia , Potenciação de Longa Duração , Masculino , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Células Piramidais/fisiologia , Ratos Long-Evans , Convulsões/induzido quimicamente , Convulsões/complicações , Transmissão Sináptica , Vasoconstrição
2.
Hippocampus ; 24(9): 1129-45, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24799359

RESUMO

Cognitive impairment is a common comorbidity in temporal lobe epilepsy (TLE) and is often considered more detrimental to quality of life than seizures. While it has been previously shown that the encoding of memory during behavior is impaired in the pilocarpine model of TLE in rats, how this information is consolidated during the subsequent sleep period remains unknown. In this study, we first report marked deficits in spatial memory performance and severe cell loss in the CA1 layer of the hippocampus lower spatial coherence of firing in TLE rats. We then present the first evidence that the reactivation of behavior-driven patterns of activity of CA1 place cells in the hippocampus is intact in TLE rats. Using a template-matching method, we discovered that real-time (3-5 s) reactivation structure was intact in TLE rats. Furthermore, we estimated the entropy rate of short time scale (∼250 ms) bursting activity using block entropies and found that significant, extended temporal correlations exist in both TLE and control rats. Fitting a first-order Markov Chain model to these bursting time series, we found that long sequences derived from behavior were significantly enriched in the Markov model over corresponding models fit on randomized data confirming the presence of replay in shorter time scales. We propose that the persistent consolidation of poor spatial information in both real time and during bursting activity may contribute to memory impairments in TLE rats.


Assuntos
Transtornos Cognitivos/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Células Piramidais/fisiopatologia , Memória Espacial/fisiologia , Potenciais de Ação , Animais , Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/fisiopatologia , Transtornos Cognitivos/epidemiologia , Transtornos Cognitivos/patologia , Comorbidade , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/epidemiologia , Epilepsia do Lobo Temporal/patologia , Cloreto de Lítio , Cadeias de Markov , Aprendizagem em Labirinto/fisiologia , Modelos Neurológicos , Pilocarpina , Células Piramidais/patologia , Ratos Sprague-Dawley , Convulsões/epidemiologia , Convulsões/patologia , Convulsões/fisiopatologia , Sono/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA