Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 642
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11575, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773273

RESUMO

Leishmaniasis is a disease caused by a protozoan of the genus Leishmania, affecting millions of people, mainly in tropical countries, due to poor social conditions and low economic development. First-line chemotherapeutic agents involve highly toxic pentavalent antimonials, while treatment failure is mainly due to the emergence of drug-resistant strains. Leishmania arginase (ARG) enzyme is vital in pathogenicity and contributes to a higher infection rate, thus representing a potential drug target. This study helps in designing ARG inhibitors for the treatment of leishmaniasis. Py-CoMFA (3D-QSAR) models were constructed using 34 inhibitors from different chemical classes against ARG from L. (L.) amazonensis (LaARG). The 3D-QSAR predictions showed an excellent correlation between experimental and calculated pIC50 values. The molecular docking study identified the favorable hydrophobicity contribution of phenyl and cyclohexyl groups as substituents in the enzyme allosteric site. Molecular dynamics simulations of selected protein-ligand complexes were conducted to understand derivatives' interaction modes and affinity in both active and allosteric sites. Two cinnamide compounds, 7g and 7k, were identified, with similar structures to the reference 4h allosteric site inhibitor. These compounds can guide the development of more effective arginase inhibitors as potential antileishmanial drugs.


Assuntos
Arginase , Inibidores Enzimáticos , Leishmania , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Arginase/antagonistas & inibidores , Arginase/química , Arginase/metabolismo , Leishmania/enzimologia , Leishmania/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Relação Quantitativa Estrutura-Atividade , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Sítio Alostérico , Antiprotozoários/farmacologia , Antiprotozoários/química , Domínio Catalítico
2.
SAR QSAR Environ Res ; 35(4): 265-284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591137

RESUMO

Eight QSAR models (M1-M8) were developed from a dataset of 118 benzo-fused heteronuclear derivatives targeting VEGFR-2 by Monte Carlo optimization method of CORALSEA 2023 software. Models were generated with hybrid optimal descriptors using both SMILES and Graphs with zero- and first-order Morgan extended connectivity index from a training set of 103 derivatives. All statistical parameters for model validation were within the prescribed limits, establishing the models to be robust and of excellent quality. Among all models, split-2 of M5 was the best-fit as reflected by rvalidation2, Qvalidation2 and MAE. Mechanistic interpretation of this model assisted the identification of structural descriptors as promoters and hinderers for VEGFR-2 inhibition. These descriptors were utilized to design novel VEGFR-2 inhibitors (YS01-YS07) by bringing modifications in compound MS90 in the dataset. Docking of all designed compounds, MS90 and sorafenib with VEGFR-2 binding site revealed favourable binding interactions. Docking score of YS07 was higher than that of MS90 and sorafenib. Molecular dynamics simulation study revealed sustained interactions of YS07 with key amino acids of VEGFR-2 at a run time of 100 ns. This study concludes the development of a best fit QSAR model which can assist the design of new anticancer agents targeting VEGFR-2.


Assuntos
Desenho de Fármacos , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Método de Monte Carlo , Simulação por Computador
3.
Regul Toxicol Pharmacol ; 149: 105614, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574841

RESUMO

The United States Environmental Protection Agency (USEPA) uses the lethal dose 50% (LD50) value from in vivo rat acute oral toxicity studies for pesticide product label precautionary statements and environmental risk assessment (RA). The Collaborative Acute Toxicity Modeling Suite (CATMoS) is a quantitative structure-activity relationship (QSAR)-based in silico approach to predict rat acute oral toxicity that has the potential to reduce animal use when registering a new pesticide technical grade active ingredient (TGAI). This analysis compared LD50 values predicted by CATMoS to empirical values from in vivo studies for the TGAIs of 177 conventional pesticides. The accuracy and reliability of the model predictions were assessed relative to the empirical data in terms of USEPA acute oral toxicity categories and discrete LD50 values for each chemical. CATMoS was most reliable at placing pesticide TGAIs in acute toxicity categories III (>500-5000 mg/kg) and IV (>5000 mg/kg), with 88% categorical concordance for 165 chemicals with empirical in vivo LD50 values ≥ 500 mg/kg. When considering an LD50 for RA, CATMoS predictions of 2000 mg/kg and higher were found to agree with empirical values from limit tests (i.e., single, high-dose tests) or definitive results over 2000 mg/kg with few exceptions.


Assuntos
Simulação por Computador , Praguicidas , Relação Quantitativa Estrutura-Atividade , Testes de Toxicidade Aguda , United States Environmental Protection Agency , Animais , Medição de Risco , Praguicidas/toxicidade , Dose Letal Mediana , Ratos , Administração Oral , Testes de Toxicidade Aguda/métodos , Estados Unidos , Reprodutibilidade dos Testes
4.
Environ Sci Process Impacts ; 26(5): 870-881, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38652036

RESUMO

Direct or indirect consumption of pesticides and their related products by humans and other living organisms without safe dosing may pose a health risk. The risk may arise after a short/long time which depends on the nature and amount of chemicals consumed. Therefore, the maximum acceptable daily intake of chemicals must be calculated to prevent these risks. In the present work, regression-based quantitative structure-activity relationship (QSAR) models were developed using 39 pesticides with maximum acceptable daily intake (MADI) for humans as the endpoint. From the statistical results (R2 = 0.674-0.712, QLOO2 = 0.553-0.580, Q(F1)2 = 0.544-0.611, and Q(F2)2 = 0.531-0.599), it can be inferred that the developed models were robust, reliable, reproducible, accurate, and predictive. Intelligent Consensus Prediction (ICP) was employed to improve the external predictivity (Q(F1)2 =0.579-0.657 and Q(F2)2 = 0.563-0.647) of the models. Some of the chemical markers responsible for toxicity enhancement are the presence of unsaturated bonds, lipophilicity, presence of C< (double bond-single bond-single bonded carbon), and the presence of sulphur and phosphate bonds at the topological distances 1 and 6, while the presence of hydrophilic groups and short chain fragments reduces the toxicity. The Pesticide Properties Database (PPDB) (1694 pesticides) was also screened with the developed models. Hence, this research work will be helpful for the toxicity assessment of pesticides before their synthesis, the development of eco-friendly and safer pesticides, and data-gap filling reducing the time, cost, and animal experimentation. Thus, this study might hold promise for future potential MADI assessment of pesticides and provide a meaningful contribution to the field of risk assessment.


Assuntos
Praguicidas , Relação Quantitativa Estrutura-Atividade , Praguicidas/análise , Praguicidas/toxicidade , Humanos , Medição de Risco/métodos , Poluentes Ambientais/análise
5.
Sci Total Environ ; 927: 172119, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569951

RESUMO

Simulation of the physicochemical and biochemical behavior of nanomaterials has its own specifics. However, the main goal of modeling for both traditional substances and nanomaterials is the same. This is an ecologic risk assessment. The universal indicator of toxicity is the n-octanol/water partition coefficient. Mutagenicity indicates the possibility of future undesirable environmental effects, possibly greater than toxicity. Models have been proposed for the octanol/water distribution coefficient of gold nanoparticles and the mutagenicity of silver nanoparticles. Unlike the previous studies, here the models are built using an updated scheme, which includes two improvements. Firstly, the computing involves a new criterion for prediction potential, the so-called coefficient of conformism of a correlative prediction (CCCP); secondly, the Las Vegas algorithm is used to select the potentially most promising models from a group of models obtained by the Monte Carlo algorithm. Apparently, CCCP is a measure of the predictive potential (not only correlation). This can give an advantage in developing a model in comparison to using the classic determination coefficient. Likely, CCCP can be more informative than the classical determination coefficient. The Las Vegas algorithm is able to improve the model obtained by the Monte Carlo method.


Assuntos
Relação Quantitativa Estrutura-Atividade , Algoritmos , Nanopartículas Metálicas , Método de Monte Carlo , Modelos Químicos , Nanopartículas , Medição de Risco/métodos , Prata
6.
Sci Total Environ ; 927: 171448, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453088

RESUMO

Despite the theoretical risk of forming halogenated methylparabens (halo-MePs) during water chlorination in the absence or presence of bromide ions, there remains a lack of in vivo toxicological assessments on vertebrate organisms for halo-MePs. This research addresses these gaps by investigating the lethal (assessed by embryo coagulation) or sub-lethal (assessed by hatching success/heartbeat rate) toxicity and teratogenicity (assessed by deformity rate) of MeP and its mono- and di-halogen derivatives (Cl- or Br-) using Japanese medaka embryos. In assessing selected apical endpoints to discern patterns in physiological or biochemical alterations, heightened toxic impacts were observed for halo-MePs compared to MeP. These include a higher incidence of embryo coagulation (4-36 fold), heartbeat rate decrement (11-36 fold), deformity rate increment (32-223 fold), hatching success decrement (11-59 fold), and an increase in Reactive Oxygen Species (ROS) level (1.2-7.4 fold)/Catalase (CAT) activity (1.7-2.8 fold). Experimentally determined LC50 values are correlated and predicted using a Quantitative Structure Activity Relationship (QSAR) based on the speciation-corrected liposome-water distribution ratio (Dlipw, pH 7.5). The QSAR baseline toxicity aligns well with (sub)lethal toxicity and teratogenicity, as evidenced by toxic ratio (TR) analysis showing TR < 10 for MeP exposure in all cases, while significant specific or reactive toxicity was found for halo-MeP exposure, with TR > 10 observed (excepting three values). Our extensive findings contribute novel insights into the intricate interplay of embryonic toxicity during the early-life-stage of Japanese medaka, with a specific focus on highlighting the potential hazards associated with halo-MePs compared to the parent compound MeP.


Assuntos
Embrião não Mamífero , Oryzias , Parabenos , Relação Quantitativa Estrutura-Atividade , Poluentes Químicos da Água , Animais , Oryzias/embriologia , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Parabenos/toxicidade , Teratogênicos/toxicidade , Testes de Toxicidade
7.
Food Chem Toxicol ; 187: 114597, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492856

RESUMO

CONTEXT: Transition to the use of recycled plastics raises an issue concerning safety assessment of Non Intentionally Added Substances (NIAS). To assess the mutagenic potential of the recycled polyethylene impurities and to evaluate the need to perform in vitro assays on recycled resins, this study lies in identifying existing NIAS associated with recycled Low/High Density Polyethylene and assessing the mutagenicity data-gaps by employing in silico tools. METHODS: Quantitative Structure-Activity Relationship (QSAR) models predicting Ames mutagenicity were selected from literature, then NIAS were run to 1/evaluate performances of each model, 2/apply a QSAR strategy on the NIAS molecular space and address data-gaps. RESULTS: Among the 165 NIAS identified, experimental Ames results were not found for 50 substances while the substances with experimental data were predominantly negatives. No individual model was able to predict all NIAS due to applicability domain limitations. Taking into account 1/calculated performances, 2/availability of applicability domain, 3/description of the Training Set, an Integrated Strategy was founded including Sarpy, Consensus and Protox to extend the applicability domain. CONCLUSION & PERSPECTIVES: Existing data and predictions generated by this strategy suggest a low mutagenic potential of NIAS. Further investigation is needed to explore other genotoxicity mechanisms.


Assuntos
Mutagênicos , Relação Quantitativa Estrutura-Atividade , Mutagênicos/toxicidade , Mutagênicos/análise , Testes de Mutagenicidade/métodos , Mutagênese , Reciclagem , Simulação por Computador
8.
Comput Biol Chem ; 110: 108051, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520883

RESUMO

Amidst the Zn2+-dependant isoforms of the HDAC family, HDAC6 has emerged as a potential target associated with an array of diseases, especially cancer and neuronal disorders like Rett's Syndrome, Alzheimer's disease, Huntington's disease, etc. Also, despite the availability of a handful of HDAC inhibitors in the market, their non-selective nature has restricted their use in different disease conditions. In this situation, the development of selective and potent HDAC6 inhibitors will provide efficacious therapeutic agents to treat different diseases. In this context, this study has been carried out to evaluate the potential structural contributors of quinazoline-cap-containing HDAC6 inhibitors via machine learning (ML), conventional classification-dependant QSAR, and MD simulation-based binding mode of interaction analysis toward HDAC6 binding. This combined conventional and modern molecular modeling study has revealed the significance of the quinazoline moiety, substitutions present at the quinazoline cap group, as well as the importance of molecular property, number of hydrogen bond donor-acceptor functions, carbon-chlorine distance that significantly affects the HDAC6 binding of these inhibitors, subsequently affecting their potency . Interestingly, the study also revealed that the substitutions such as the chloroethyl group, and bulky quinazolinyl cap group can affect the binding of the cap function with the amino acid residues present in the loops proximal to the catalytic site of HDAC6. Such contributions of cap groups can lead to both stabilization and destabilization of the cap function after occupying the hydrophobic catalytic site by the aryl hydroxamate linker-ZBG functions.


Assuntos
Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Simulação de Dinâmica Molecular , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/química , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Quinazolinas/química , Quinazolinas/farmacologia , Aprendizado de Máquina
9.
Regul Toxicol Pharmacol ; 148: 105572, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325631

RESUMO

We have modeled here chronic Daphnia toxicity taking pNOEC (negative logarithm of no observed effect concentration in mM) and pEC50 (negative logarithm of half-maximal effective concentration in mM) as endpoints using QSAR and chemical read-across approaches. The QSAR models were developed by strictly obeying the OECD guidelines and were found to be reliable, predictive, accurate, and robust. From the selected features in the developed models, we have found that an increase in lipophilicity and saturation, the presence of electrophilic or electronegative or heavy atoms, the presence of sulphur, amine, and their related functionality, an increase in mean atomic polarizability, and higher number of (thio-) carbamates (aromatic) groups are responsible for chronic toxicity. Therefore, this information might be useful for the development of environmentally friendly and safer chemicals and data-gap filling as well as reducing the use of identified toxic chemicals which have chronic toxic effects on aquatic ecosystems. Approved classes of drugs from DrugBank databases and diverse groups of chemicals from the Chemical and Product Categories (CPDat) database were also assessed through the developed models.


Assuntos
Daphnia magna , Poluentes Químicos da Água , Animais , Relação Quantitativa Estrutura-Atividade , Ecossistema , Daphnia , Poluentes Químicos da Água/toxicidade
10.
Pharm Res ; 41(3): 493-500, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38337105

RESUMO

PURPOSE: In order to ensure that drug administration is safe during pregnancy, it is crucial to have the possibility to predict the placental permeability of drugs in humans. The experimental method which is most widely used for the said purpose is in vitro human placental perfusion, though the approach is highly expensive and time consuming. Quantitative structure-activity relationship (QSAR) modeling represents a powerful tool for the assessment of the drug placental transfer, and can be successfully employed to be an alternative in in vitro experiments. METHODS: The conformation-independent QSAR models covered in the present study were developed through the use of the SMILES notation descriptors and local molecular graph invariants. What is more, the Monte Carlo optimization method, was used in the test sets and the training sets as the model developer with three independent molecular splits. RESULTS: A range of different statistical parameters was used to validate the developed QSAR model, including the standard error of estimation, mean absolute error, root-mean-square error (RMSE), correlation coefficient, cross-validated correlation coefficient, Fisher ratio, MAE-based metrics and the correlation ideality index. Once the mentioned statistical methods were employed, an excellent predictive potential and robustness of the developed QSAR model was demonstrated. In addition, the molecular fragments, which are derived from the SMILES notation descriptors accounting for the decrease or increase in the investigated activity, were revealed. CONCLUSION: The presented QSAR modeling can be an invaluable tool for the high-throughput screening of the placental permeability of drugs.


Assuntos
Placenta , Relação Quantitativa Estrutura-Atividade , Feminino , Gravidez , Humanos , Modelos Moleculares , Método de Monte Carlo , Permeabilidade
11.
J Hazard Mater ; 467: 133642, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38330644

RESUMO

Due to their endocrine-disrupting effects and the risks posed in surface waters, in particular by chronic low-dose exposure to aquatic organisms, phthalate esters (PAEs) have received significant attention. However, most assessments of risks posed by PAEs were performed at a selection level, and thus limited by empirical data on toxic effects and potencies. A quantitative structure activity relationship (QSAR) and interspecies correlation estimation (ICE) model was constructed to estimate hazardous concentrations (HCs) of selected PAEs to aquatic organisms, then they were used to conduct a multiple-level environmental risk assessment for PAEs in surface waters of China. Values of hazardous concentration for 5% of species (HC5s), based on acute lethality, estimated by use of the QSAR-ICE model were within 1.25-fold of HC5 values derived from empirical data on toxic potency, indicating that the QSAR-ICE model predicts the toxicity of these three PAEs with sufficient accuracy. The five selected PAEs may be commonly measured in China surface waters at concentrations between ng/L and µg/L. Risk quotients according to median concentrations of the five PAEs ranged from 3.24 for di(2-ethylhexhyl) phthalate (DEHP) to 4.10 × 10-3 for dimethyl phthalate (DMP). DEHP and dibutyl phthalate (DBP) had risks to the most vulnerable aquatic biota, with the frequency of exceedances of the predicted no-effect concentration (PNECs) of 75.5% and 38.0%, respectively. DEHP and DBP were identified as having "high" or "moderate" risks. Results of the joint probability curves (JPC) method indicated DEHP posed "intermediate" risk to freshwater species with a maximum risk product of 5.98%. The multiple level system introduced in this study can be used to prioritize chemicals and other new pollutant in the aquatic ecological.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Poluentes Químicos da Água , Dietilexilftalato/toxicidade , Relação Quantitativa Estrutura-Atividade , Rios/química , Ésteres/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Ácidos Ftálicos/toxicidade , Dibutilftalato/toxicidade , Medição de Risco , China
12.
Comput Biol Med ; 169: 107880, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211383

RESUMO

It is challenging to model the toxicity of nitroaromatic compounds due to limited experimental data. Nitrobenzene derivatives are commonly used in industry and can lead to environmental contamination. Extensive research, including several QSPR studies, has been conducted to understand their toxicity. Predictive QSPR models can help improve chemical safety, but their limitations must be considered, and the molecular factors affecting toxicity should be carefully investigated. The latest QSPR methods, molecular modeling techniques, machine learning algorithms, and computational chemistry tools are essential for developing accurate and robust models. In this work, we used these methods to study a series of fifty compounds derived from nitrobenzene. The Monte Carlo approach was used for QSPR modeling by applying the SMILES molecular structure representation and optimal molecular descriptors. The correlation ideality index (CII) and correlation contradiction index (CCI) were further introduced as validation parameters to estimate the developed models' predictive ability. The statistical quality of the CII models was better than those without CII. The best QSPR model with the following statistical parameters (Split-3): (R2 = 0.968, CCC = 0.984, IIC = 0.861, CII = 0.979, Q2 = 0.954, QF12 = 0.946, QF22 = 0.938, QF32 = 0.947, Rm2 = 0.878, RMSE = 0.187, MAE = 0.151, FTraining = 390, FInvisible = 218, FCalibration = 240, RTest2 = 0.905) was selected to generate the studied promoters with increasing and decreasing activity.


Assuntos
Tetrahymena pyriformis , Modelos Moleculares , Nitrobenzenos , Método de Monte Carlo , Relação Quantitativa Estrutura-Atividade
13.
Environ Sci Pollut Res Int ; 31(8): 12371-12386, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228952

RESUMO

In the modern fast-paced lifestyle, time-efficient and nutritionally rich foods like corn and oat have gained popularity for their amino acids and antioxidant contents. The increasing demand for these cereals necessitates higher production which leads to dependency on agrochemicals, which can pose health risks through residual present in the plant products. To first report the phytotoxicity for corn and oat, our study employs QSAR, quantitative Read-Across and quantitative RASAR (q-RASAR). All developed QSAR and q-RASAR models were equally robust (R2 = 0.680-0.762, Q2Loo = 0.593-0.693, Q2F1 = 0.680-0.860) and find their superiority in either oat or corn model, respectively, based on MAE criteria. AD and PRI had been performed which confirm the reliability and predictability of the models. The mechanistic interpretation reveals that the symmetrical arrangement of electronegative atoms and polar groups directly influences the toxicity of compounds. The final phytotoxicity and prioritization are performed by the consensus approach which results into selection of 15 most toxic compounds for both species.


Assuntos
Relação Quantitativa Estrutura-Atividade , Zea mays , Avena , Agroquímicos/toxicidade , Consenso , Reprodutibilidade dos Testes , Medição de Risco
14.
Environ Pollut ; 342: 123093, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072027

RESUMO

The continuously increased production of various chemicals and their release into environments have raised potential negative effects on ecological health. However, traditional labor-intensive assessment methods cannot effectively and rapidly evaluate these hazards, especially for chronic risk. In this study, machine learning (ML) was employed to construct quantitative structure-activity relationship (QSAR) models, enabling the prediction of chronic toxicity to aquatic organisms by leveraging the molecular characteristics of pollutants, namely, the molecular descriptors, fingerprints, and graphs. The limited dataset size hindered the notable advantages of the graph attention network (GAT) model for the molecular graphs. Considering computational efficiency and performance (R2 = 0.78; RMSE = 0.77), XGBoost (XGB) was used for reliable QSAR-ML models predicting chronic toxicity using small- or medium-sized tabular data and the molecular descriptors. Further kernel density estimation analysis confirmed the high accuracy of the model for pollutant concentrations ranging from 10-3 to 102 mg/L, effectively aligning with most environmental scenarios. Model interpretation showed SlogP and exposure duration as the primary influential factors. SlogP, representing the distribution coefficient of a molecule between lipophilic and hydrophilic environments, had a negative effect on the toxicity outcomes. Additionally, the exposure duration played a crucial role in determining the chronic toxicity. Finally, the chronic toxicity data of bisphenol A validated the robustness and reliability of the model established in this research. Our study provided a robust and feasible methodology for chronic ecological risk evaluation of various types of pollutants and could facilitate and increase the use of ML applications in environmental fields.


Assuntos
Poluentes Ambientais , Aprendizado de Máquina , Reprodutibilidade dos Testes , Medição de Risco , Relação Quantitativa Estrutura-Atividade
15.
Comput Biol Chem ; 108: 107975, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37950961

RESUMO

Monoamine oxidases are the enzymes involved in the management of brain homeostasis through oxidative deamination of monoamines such as neurotransmitters, tyramine etc. The excessive production of monoamine oxidase-B specifically results in numerous neurodegenerative disorders like Alzheimer's and Parkinson's diseases. Inhibitors of monoamine oxidase-B are applied in the management of these disorders. Here in this article we have developed robust hybrid descriptor based QSAR models related to 123 monoamine oxidase-B inhibitors through CORAL software by means of Monte Carlo optimization method. Three target functions were applied to prepare QSAR models and three splits were made for each target function. The most reliable, robust and better predictive QSAR models were developed with TF3 (correlation intensity index -index of ideality of correlation). Correlation intensity index showed positive effect on QSAR models. The structural features obtained from the QSAR modeling were incorporated in newly designed molecules and exhibited positive effect on their endpoint. Significant binding interactions were represented by these molecules in docking studies. Molecule B5 displayed prominent pIC50 (8.3) and binding affinity (-11.5 kcal mol-1) towards monoamine oxidase-B.


Assuntos
Monoaminoxidase , Doença de Parkinson , Humanos , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Software , Doença de Parkinson/tratamento farmacológico , Método de Monte Carlo , Relação Quantitativa Estrutura-Atividade
16.
Med Chem ; 20(1): 78-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37594099

RESUMO

INTRODUCTION: Inflammation can be defined as a complex biological response that is produced by body tissues to harmful agents like pathogens, irritants, and damaged cells and thereby acts as a protective response incorporating immune cells, blood vessels, and molecular mediators. Histamine, serotonin, bradykinin, leukotrienes (LTB4), prostaglandins (PGE2), prostacyclins, reactive oxygen species, proinflammatory cytokines like IL-1, IL-11, TNF- anti-inflammatory cytokines like IL-4, IL-10, IL-11, IL-6 and IL-13, etc. all have different effects on both pro and anti-inflammatory mediators. Incorporation of combinatorial chemistry and computational studies have helped the researchers to design xanthones moieties with high selectivity that can serve as a lead compound and help develop potential compounds that can act as effective COX-2 inhibitors. The study aims to design and develop different series of substituted hydroxyxanthone derivatives with anti-inflammatory potential. METHODS: The partially purified synthetic xanthone derivatives were orally administered to the carrageenan induced paw oedemic rat models at the dose of 100 mg/kg, and their effect in controlling the degree of inflammation was measured at the time interval of 30 min, 1, 2, 3, 4 and 6 hrs. respectively. Further, these compounds were also subjected to modern analytical studies like UV, IR, NMR and mass spectrometry or their characterization. RESULTS: The results drawn out of the in silico, in vitro, in vivo and analytical studies concluded that the hydroxyxanthone derivatives can obstruct the enzyme COX-2 and produce anti-inflammatory action potentially. CONCLUSION: With the aim to evaluate the compounds for their anti-inflammatory activity, it was observed that the newly designed xanthonic compounds also possess a safe toxicity margin and hence can be utilized by the researchers to develop hybrid xanthonic moieties that can specifically target the enzyme COX-2.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Xantonas , Animais , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Carragenina/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Citocinas , Edema/induzido quimicamente , Edema/tratamento farmacológico , Inflamação/tratamento farmacológico , Interleucina-11/metabolismo , Relação Quantitativa Estrutura-Atividade , Xantonas/farmacologia
17.
Acta Chim Slov ; 70(4): 634-641, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38124634

RESUMO

Benzodiazepines and their derivatives belong to a category of new psychoactive substances that have been introduced into the continually expanding illicit market. However, there is a notable absence of available pharmacological data for these substances. To gain a deeper understanding of their pharmacology, we employed the Monte Carlo optimization conformation-independent method as a tool for developing QSAR models. These models were built using optimal molecular descriptors derived from both SMILES notation and molecular graph representations. The resulting QSAR model demonstrated robustness and a high degree of predictability, proving to be very reliable. Moreover, we were able to identify specific molecular fragments that exerted both positive and negative effects on binding activity. This discovery paves the way for the swift prediction of binding activity for emerging benzodiazepines, offering a faster and more cost-effective alternative to traditional in vitro/in vivo analyses.


Assuntos
Benzodiazepinas , Receptores de GABA-A , Benzodiazepinas/farmacologia , Relação Quantitativa Estrutura-Atividade , Ligação Proteica , Método de Monte Carlo
18.
Nat Commun ; 14(1): 7141, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932302

RESUMO

Animal studies are unavoidable in evaluating chemical and drug safety. Generative Adversarial Networks (GANs) can generate synthetic animal data by learning from the legacy animal study results, thus may serve as an alternative approach to assess untested chemicals. AnimalGAN, a GAN method to simulate 38 rat clinical pathology measures, was developed with significant robustness even for the drugs that vary significantly from these used during training, both in terms of chemical structure, drug class, and the year of FDA approval. AnimalGAN showed comparable results in hepatotoxicity assessment as using the real animal data and outperformed 12 conventional quantitative structure-activity relationship approaches. Using AnimalGAN, a virtual experiment of 100,000 rats ranked hepatotoxicity of three structurally similar drugs in a similar trend that has been observed in human population. AnimalGAN represented a significant step with artificial intelligence towards the global effort in replacement, reduction, and refinement (3Rs) of animal use.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Patologia Clínica , Humanos , Animais , Ratos , Inteligência Artificial , Animais de Laboratório , Relação Quantitativa Estrutura-Atividade
19.
Molecules ; 28(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687065

RESUMO

Commercially available cathinones are drugs of long-term abuse drugs whose pharmacology is fairly well understood. While their psychedelic effects are associated with 5-HT2AR, the enclosed study summarizes efforts to shed light on the pharmacodynamic profiles, not yet known at the receptor level, using molecular docking and three-dimensional quantitative structure-activity relationship (3-D QSAR) studies. The bioactive conformations of cathinones were modeled by AutoDock Vina and were used to build structure-based (SB) 3-D QSAR models using the Open3DQSAR engine. Graphical inspection of the results led to the depiction of a 3-D structure analysis-activity relationship (SAR) scheme that could be used as a guideline for molecular determinants by which any untested cathinone molecule can be predicted as a potential 5-HT2AR binder prior to experimental evaluation. The obtained models, which showed a good agreement with the chemical properties of co-crystallized 5-HT2AR ligands, proved to be valuable for future virtual screening campaigns to recognize unused cathinones and similar compounds, such as 5-HT2AR ligands, minimizing both time and financial resources for the characterization of their psychedelic effects.


Assuntos
Alucinógenos , Drogas Ilícitas , Simulação de Acoplamento Molecular , Serotonina , Alucinógenos/farmacologia , Ligantes , Relação Quantitativa Estrutura-Atividade
20.
Molecules ; 28(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37764363

RESUMO

The assessment of cardiotoxicity is a persistent problem in medicinal chemistry. Quantitative structure-activity relationships (QSAR) are one possible way to build up models for cardiotoxicity. Here, we describe the results obtained with the Monte Carlo technique to develop hybrid optimal descriptors correlated with cardiotoxicity. The predictive potential of the cardiotoxicity models (pIC50, Ki in nM) of piperidine derivatives obtained using this approach provided quite good determination coefficients for the external validation set, in the range of 0.90-0.94. The results were best when applying the so-called correlation intensity index, which improves the predictive potential of a model.


Assuntos
Cardiotoxicidade , Química Farmacêutica , Humanos , Cardiotoxicidade/etiologia , Método de Monte Carlo , Piperidinas , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA