Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gynecol Oncol ; 159(3): 887-898, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33012552

RESUMO

Homologous recombination DNA repair deficiency (HRD) is a functional defect in homologous recombination DNA repair, arising from germline or somatic mutations in BRCA1/2 or other mechanisms. Cells with HRD are more sensitive to platinum and poly(ADP-ribose) polymerase inhibitors (PARPi). HRD generates permanent changes in the genome with specific, quantifiable patterns ("genomic scars"). Clinical tests for HRD, such as the Myriad genomic instability score and Foundation Medicine loss of heterozygosity test, aim to predict the presence of HRD based on genomic features. Clinical trials of PARPi in ovarian cancer have evaluated genetic mutations and HRD genomic assays as potential biomarkers of response. Patients with HRD due to BRCA1/2 mutations are more likely to respond to PARPi than those with wild-type (WT) BRCA1/2. In some clinical trials, patients with WT BRCA1/2 who were predicted to be HRD by a genomic test exhibited greater clinical benefit from PARPi than patients with WT BRCA1/2 and no evidence of HRD. HRD tests therefore hold promise as predictive biomarkers for PARPi and other DNA-damaging agents. However, HRD tests vary in terms of the specific genomic features they measure, and the methods used to determine thresholds defining patients with HRD. Also, HRD test results and PARPi responses can be discordant: for instance, tumors with reversion mutations that restore HR function still exhibit a "genomic scar" of HRD, and PARPi resistance mechanisms independent of HR can result in lack of PARPi response despite HRD. Emerging methods to predict HRD, including genomic and functional assays, may overcome some of these challenges. Evaluation of HRD in the clinical setting is an important tool that has potential to aid patient selection for PARPi and other DNA-damaging agents in ovarian cancer, but understanding the details of these tests and their limitations is critical to ensure their optimal clinical application.


Assuntos
Carcinoma Epitelial do Ovário/terapia , Testes Genéticos/métodos , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ovarianas/terapia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Reparo de DNA por Recombinação/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores Tumorais/genética , Carcinoma Epitelial do Ovário/diagnóstico , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/mortalidade , Quimioterapia Adjuvante/métodos , Tomada de Decisão Clínica/métodos , Ensaios Clínicos Fase III como Assunto , Replicação do DNA/genética , Feminino , Testes Genéticos/tendências , Humanos , Mutação , Terapia Neoadjuvante/métodos , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/genética , Estadiamento de Neoplasias , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Ovariectomia , Ovário/patologia , Seleção de Pacientes , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Intervalo Livre de Progressão , Reparo de DNA por Recombinação/efeitos dos fármacos
2.
Nat Commun ; 8(1): 2053, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233960

RESUMO

Large-scale genomic analyses of human cancers have cataloged somatic point mutations thought to initiate tumor development and sustain cancer growth. However, determining the functional significance of specific alterations remains a major bottleneck in our understanding of the genetic determinants of cancer. Here, we present a platform that integrates multiplexed AAV/Cas9-mediated homology-directed repair (HDR) with DNA barcoding and high-throughput sequencing to simultaneously investigate multiple genomic alterations in de novo cancers in mice. Using this approach, we introduce a barcoded library of non-synonymous mutations into hotspot codons 12 and 13 of Kras in adult somatic cells to initiate tumors in the lung, pancreas, and muscle. High-throughput sequencing of barcoded Kras HDR alleles from bulk lung and pancreas reveals surprising diversity in Kras variant oncogenicity. Rapid, cost-effective, and quantitative approaches to simultaneously investigate the function of precise genomic alterations in vivo will help uncover novel biological and clinically actionable insights into carcinogenesis.


Assuntos
Carcinogênese/genética , Análise Mutacional de DNA/métodos , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Reparo de DNA por Recombinação/genética , Animais , Sistemas CRISPR-Cas/genética , Análise Custo-Benefício , Análise Mutacional de DNA/economia , Estudos de Viabilidade , Feminino , Genômica/economia , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Masculino , Camundongos , Mutação , Neoplasias/patologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA