Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068540

RESUMO

Spodopteraexigua, a multifeeding insect pest, has developed a high level of resistance to chlorantraniliprole, which is a benzoylurea insecticide that targets the ryanodine receptors (RyRs). Herein, the resistant strain (SE-Sel) and sensitive strain (SE-Sus) were obtained by bidirectional screening for six generations. The potential oviposited eggs and oviposition rate of the SE-Sel strain were dramatically lower than those of the SE-Sus strain; on the contrary, the weights of prepupae and preadult were significantly increased. As a post-mating response, the higher number of non-oviposited eggs in the SE-Sel strain was caused by a lower mating rate. In addition, the expression levels of vitellogenin (SeVg) and its receptor (SeVgR) in the SE-Sel strain were consistently lower than those in the SE-Sus strain. An RyRI4743M mutation, contributing to the resistance to chlorantraniliprole, was located in the S3 transmembrane segments and might have affected the release of calcium ions; it led to the upregulated expression of the neuropeptide SeNPF and its receptor SeNPFR, and the mating and oviposition rate were significantly recovered when the SeNPF was knocked down though RNA interference (RNAi) in the male adult of the SE-Sel strain. Moreover, the expression of the juvenile hormone-binding proteins SeJHBWDS3 and SeJHBAN in the male adult of the SE-Sel strain was significantly decreased, which proved the existence of a fitness cost from another angle. Therefore, these results indicate that the fitness cost accompanied by chlorantraniliprole resistance in S. exigua may be related to the decrease in mating desire due to SeNPF overexpression.


Assuntos
Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Spodoptera/genética , ortoaminobenzoatos/farmacologia , Animais , Proteínas de Transporte/genética , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Proteínas do Ovo/genética , Aptidão Genética/genética , Inseticidas/farmacologia , Mutação/genética , Neuropeptídeos/genética , Interferência de RNA , Receptores de Superfície Celular/genética , Receptores de Neuropeptídeos/genética , Spodoptera/efeitos dos fármacos , Vitelogeninas/genética , ortoaminobenzoatos/efeitos adversos
2.
Int J Mol Sci ; 20(7)2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30935036

RESUMO

Systemic acquired resistance (SAR) induction is one of the primary defence mechanisms of plants against a broad range of pathogens. It can be induced by infectious agents or by synthetic molecules, such as benzo(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH). SAR induction is associated with increases in salicylic acid (SA) accumulation and expression of defence marker genes (e.g., phenylalanine ammonia-lyase (PAL), the pathogenesis-related (PR) protein family, and non-expressor of PR genes (NPR1)). Various types of pathogens and pests induce plant responses by activating signalling pathways associated with SA, jasmonic acid (JA) and ethylene (ET). This work presents an analysis of the influence of BTH and its derivatives as resistance inducers in healthy and virus-infected plants by determining the expression levels of selected resistance markers associated with the SA, JA, and ET pathways. The phytotoxic effects of these compounds and their influence on the course of viral infection were also studied. Based on the results obtained, the best-performing BTH derivatives and their optimal concentration for plant performance were selected, and their mode of action was suggested. It was shown that application of BTH and its derivatives induces increased expression of marker genes of both the SA- and JA-mediated pathways.


Assuntos
Resistência à Doença/efeitos dos fármacos , Nicotiana/imunologia , Tiadiazóis/farmacologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/virologia , Tobamovirus/patogenicidade
3.
Plant Physiol Biochem ; 133: 134-141, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30408676

RESUMO

Elicitor-induced resistance against diseases is an attractive strategy that could contribute to reduce the use of fungicides for plant protection. However, activation of defenses has an energetic cost that plants have to fuel by a mobilization of their primary metabolism with possible adverse effect on their physiology. In this context, this study was performed to determine whether elicitor-induced resistance of grapevine leaves against downy mildew impacted its development and metabolism. The elicitor PS3 (sulfated ß-glucan laminarin) was sprayed on grapevine herbaceous cuttings grown in greenhouses once or three times, and its impact was studied on young and older grapevine leaves, prior to, and after Plasmopara viticola inoculation. PS3 did not affect grapevine development during the time course of the experiment. A metabolomic analysis, mainly focused on primary metabolites, highlighted a leaf age dependent effect of PS3 treatment. Nitrogen compounds, and sugars to a lesser extent, were impacted. The results obtained complete the current knowledge of the impact of elicitor-induced resistance on plant physiology. They will be helpful to guide further experiments required to better determine the costs and benefits of elicitor-induced resistance in plants.


Assuntos
Resistência à Doença/efeitos dos fármacos , Glucanos/farmacologia , Oomicetos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Folhas de Planta , Vitis , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Vitis/metabolismo , Vitis/microbiologia
4.
New Phytol ; 218(3): 1205-1216, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29465773

RESUMO

ß-Aminobutyric acid (BABA) induces broad-spectrum disease resistance, but also represses plant growth, which has limited its exploitation in crop protection. BABA perception relies on binding to the aspartyl-tRNA synthetase (AspRS) IBI1, which primes the enzyme for secondary defense activity. This study aimed to identify structural BABA analogues that induce resistance without stunting plant growth. Using site-directed mutagenesis, we demonstrate that the (l)-aspartic acid-binding domain of IBI1 is critical for BABA perception. Based on interaction models of this domain, we screened a small library of structural BABA analogues for growth repression and induced resistance against biotrophic Hyaloperonospora arabidopsidis (Hpa). A range of resistance-inducing compounds were identified, of which (R)-ß-homoserine (RBH) was the most effective. Surprisingly, RBH acted through different pathways than BABA. RBH-induced resistance (RBH-IR) against Hpa functioned independently of salicylic acid, partially relied on camalexin, and was associated with augmented cell wall defense. RBH-IR against necrotrophic Plectosphaerella cucumerina acted via priming of ethylene and jasmonic acid defenses. RBH-IR was also effective in tomato against Botrytis cinerea. Metabolic profiling revealed that RBH, unlike BABA, does not majorly affect plant metabolism. RBH primes distinct defense pathways against biotrophic and necrotrophic pathogens without stunting plant growth, signifying strong potential for exploitation in crop protection.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Desenvolvimento Vegetal , Imunidade Vegetal , Aminobutiratos/farmacologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Simulação por Computador , Resistência à Doença/efeitos dos fármacos , Etilenos/metabolismo , Fungos/fisiologia , Homosserina/farmacologia , Indóis/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Mutação/genética , Desenvolvimento Vegetal/efeitos dos fármacos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Domínios Proteicos , Ácido Salicílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA