Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 11(1): 7632, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828310

RESUMO

Tumoral hypoxia correlates with worse outcomes in glioblastoma (GBM). While bevacizumab is routinely used to treat recurrent GBM, it may exacerbate hypoxia. Evofosfamide is a hypoxia-targeting prodrug being tested for recurrent GBM. To characterize resistance to bevacizumab and identify those with recurrent GBM who may benefit from evofosfamide, we ascertained MRI features and hypoxia in patients with GBM progression receiving both agents. Thirty-three patients with recurrent GBM refractory to bevacizumab were enrolled. Patients underwent MR and 18F-FMISO PET imaging at baseline and 28 days. Tumor volumes were determined, MRI and 18F-FMISO PET-derived parameters calculated, and Spearman correlations between parameters assessed. Progression-free survival decreased significantly with hypoxic volume [hazard ratio (HR) = 1.67, 95% confidence interval (CI) 1.14 to 2.46, P = 0.009] and increased significantly with time to the maximum value of the residue (Tmax) (HR = 0.54, 95% CI 0.34 to 0.88, P = 0.01). Overall survival decreased significantly with hypoxic volume (HR = 1.71, 95% CI 1.12 to 12.61, p = 0.01), standardized relative cerebral blood volume (srCBV) (HR = 1.61, 95% CI 1.09 to 2.38, p = 0.02), and increased significantly with Tmax (HR = 0.31, 95% CI 0.15 to 0.62, p < 0.001). Decreases in hypoxic volume correlated with longer overall and progression-free survival, and increases correlated with shorter overall and progression-free survival. Hypoxic volume and volume ratio were positively correlated (rs = 0.77, P < 0.0001), as were hypoxia volume and T1 enhancing tumor volume (rs = 0.75, P < 0.0001). Hypoxia is a key biomarker in patients with bevacizumab-refractory GBM. Hypoxia and srCBV were inversely correlated with patient outcomes. These radiographic features may be useful in evaluating treatment and guiding treatment considerations.


Assuntos
Glioblastoma/metabolismo , Recidiva Local de Neoplasia/metabolismo , Hipóxia Tumoral/fisiologia , Adulto , Idoso , Bevacizumab/metabolismo , Bevacizumab/uso terapêutico , Biomarcadores Farmacológicos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Volume Sanguíneo Cerebral/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/mortalidade , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Misonidazol/análogos & derivados , Misonidazol/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Intervalo Livre de Progressão , Adulto Jovem
2.
PLoS Comput Biol ; 15(2): e1006770, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30779730

RESUMO

The presence of treatment-resistant cells is an important factor that limits the efficacy of cancer therapy, and the prospect of resistance is considered the major cause of the treatment strategy. Several recent studies have employed mathematical models to elucidate the dynamics of generating resistant cancer cells and attempted to predict the probability of emerging resistant cells. The purpose of this paper is to present numerical approach to compute the number of resistant cells and the emerging probability of resistance. Stochastic model was designed and developed a method to approximately but efficiently compute the number of resistant cells and the probability of resistance. To model the progression of cancer, a discrete-state, two-dimensional Markov process whose states are the total number of cells and the number of resistant cells was employed. Then exact analysis and approximate aggregation approaches were proposed to calculate the number of resistant cells and the probability of resistance when the cell population reaches detection size. To confirm the accuracy of computed results of approximation, relative errors between exact analysis and approximation were computed. The numerical values of our approximation method were very close to those of exact analysis calculated in the range of small detection size M = 500, 100, and 1500. Then computer simulation was performed to confirm the accuracy of computed results of approximation when the detection size was M = 10000,30000,50000,100000 and 1000000. All the numerical results of approximation fell between the upper level and the lower level of 95% confidential intervals and our method took less time to compute over a broad range of cell size. The effects of parameter change on emerging probabilities of resistance were also investigated by computed values using approximation method. The results showed that the number of divisions until the cell population reached the detection size is important for emerging the probability of resistance. The next step of numerical approach is to compute the emerging probabilities of resistance under drug administration and with multiple mutation. Another effective approximation would be necessary for the analysis of the latter case.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Cadeias de Markov , Modelos Teóricos , Fenômenos Bioquímicos , Simulação por Computador , Humanos , Modelos Genéticos , Modelos Estatísticos , Mutação , Neoplasias , Probabilidade
3.
AAPS PharmSciTech ; 19(8): 3839-3849, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30280350

RESUMO

A folic acid-conjugated paclitaxel (PTX)-doxorubicin (DOX)-loaded nanostructured lipid carrier(s) (FA-PTX-DOX NLCs) were prepared by using emulsion-evaporation method and extensively characterized for particle size, polydispersity index, zeta potential, and % entrapment efficiency which were found to be 196 ± 2.5 nm, 0.214 ± 0.04, +23.4 ± 0.3 mV and 88.3 ± 0.2% (PTX), and 89.6 ± 0.5% (DOX) respectively. In vitro drug release study of optimized formulation was carried out using dialysis tube method. FA-conjugated PTX-DOX-loaded NLCs showed 75.6 and 78.4% (cumulative drug release) of PTX and DOX respectively in 72 h in PBS (pH 7.4)/methanol (7:3), while in the case of FA-conjugated PTX-DOX-loaded NLCs, cumulative drug release recorded was 80.4 and 82.8% of PTX and DOX respectively in 72 h in PBS (pH 4.0)/methanol (7:3). Further, the formulation(s) were evaluated for ex vivo cytotoxicity study. The cytotoxicity assay in doxorubicin-resistant human breast cancer MCF-7/ADR cell lines revealed lowest GI50 value of FA-D-P NLCs which was 1.04 ± 0.012 µg/ml, followed by D-P NLCs and D-P solution with GI50 values of 3.12 ± 0.023 and 3.89 ± 0.007 µg/ml, respectively. Findings indicated that the folic acid-conjugated PTX and DOX co-loaded NLCs exhibited lower GI50 values as compared to unconjugated PTX and DOX co-loaded NLCs; thus, they have relatively potential anticancer efficacy against resistant tumor.


Assuntos
Doxorrubicina/química , Portadores de Fármacos/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanoestruturas/química , Paclitaxel/química , Animais , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/administração & dosagem , Doxorrubicina/toxicidade , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Quimioterapia Combinada/métodos , Feminino , Humanos , Lipídeos/química , Células MCF-7 , Camundongos , Nanoestruturas/administração & dosagem , Nanoestruturas/toxicidade , Paclitaxel/administração & dosagem , Paclitaxel/toxicidade , Tamanho da Partícula
4.
J Pharmacol Exp Ther ; 330(2): 423-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19423841

RESUMO

P-glycoprotein (Pgp), a member of the ATP-binding cassette transporter family, is one of the major causes for multidrug resistance (MDR). We report using confocal microscopy to study the roles of Pgp in mediating the efflux of the anticancer agent mitoxantrone and the reversal of MDR by the specific Pgp inhibitor valspodar (PSC833). The net uptake and efflux of mitoxantrone and the effect of PSC833 were quantified and compared in Pgp-expressing human cancer MDA-MB-435 (MDR) cells and in parental wild-type cells. The MDR cells, transduced with the human Pgp-encoding gene MDR1 construct, were approximately 8-fold more resistant to mitoxantrone than the wild-type cells. Mitoxantrone accumulation in the MDR cells was 3-fold lower than that in the wild-type cells. The net uptake of mitoxantrone in the nuclei and cytoplasm of MDR cells was only 58 and 67% of that in the same intracellular compartment of the wild-type cells. Pretreatment with PSC833 increased the accumulation of mitoxantrone in the MDR cells to 85% of that in the wild-type cells. In living animals, the accumulation of mitoxantrone in MDA-MB-435mdr xenograft tumors was 61% of that in the wild-type tumors. Administration of PSC833 to animals before mitoxantrone treatment increased the accumulation of mitoxantrone in the MDR tumors to 94% of that in the wild-type tumors. These studies have added direct in vitro and in vivo visual information on how Pgp processes anticancer compounds and how Pgp inhibitors modulate MDR in resistant cancer cells.


Assuntos
Ciclosporinas/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mitoxantrona/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular Tumoral , Ciclosporinas/metabolismo , Resistência a Múltiplos Medicamentos/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Humanos , Camundongos , Camundongos Nus , Mitoxantrona/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
5.
Curr Cancer Drug Targets ; 8(1): 47-52, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18288943

RESUMO

Oral anticancer drug treatment represents a significant change to current oncology practice. Support for oral anticancer treatment is driven by issues of pharmacoeconomics, accommodating the need for protracted drug administration for many emerging cytostatic therapies, response to patient preference and in improving patient quality of life. Much focus has concentrated on defining the cellular mechanisms underlying the pharmacokinetic limitations associated with the oral route of administration. However, the potential effects of oral anticancer drugs on gut associated host mediated immunity have been overlooked. Given that the immune system is central for tumour rejection, an assessment of the potential effects oral anticancer drugs may have at this level, and the impact of this on the treatment of gastrointestinal malignancy is of significant clinical importance. P-glycoprotein is a multidrug transporter that contributes to the reduced bioavailability of many orally administered medications. P-glycoprotein achieves this by virtue of its drug efflux capacity at the level of the gut epithelia. P-glycoprotein is also notorious for contributing to the multidrug resistance phenotype observed in many drug refractory human cancers. Likewise, this drug transporter serves a role in the cells of the immune system; particularly in dendritic cell maturation and function. This multifaceted involvement in drug disposition, cancer drug resistance and regulation of the immune response makes P-glycoprotein an attractive target for the optimization of oral anticancer drug treatment strategies. This review introduces and discusses for the first time the potential impact that oral anticancer drugs may have on P-glycoprotein expression and function and the potential consequences of this on dendritic cell function in relation to human cancer. This review also aims to foster a better understanding of the host mediated immunological mechanisms which may be potentially manipulated in cancer patients undergoing oral chemotherapy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Bucais/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Administração Oral , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Neoplasias Bucais/tratamento farmacológico
6.
NMR Biomed ; 19(8): 1035-42, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16894643

RESUMO

The ultimate goal of any cancer therapy is to target the elimination of neoplastic cells. Although newer therapeutic strategies are in constant development, therapeutic assessment has been hampered by the inability to assess, rapidly and quantitatively, efficacy in vivo. Diffusion imaging and, more recently, sodium MRI have demonstrated their distinct abilities to detect therapy-induced alterations in tumor cellularity, which has been demonstrated to be indicative of therapeutic efficacy. More importantly, both imaging modalities detect tumor response much earlier than traditional methodologies that rely on macroscopic volumetric changes. In this study, the correlation between tumor sodium and diffusion was further tested to demonstrate the sensitivity of sodium imaging to gauge tumor response to therapy by using a 9L rat gliosarcoma treated with varying doses of BCNU [1,3-bis(2-chloroethyl)-1-nitrosourea]. This orthotopic model has been demonstrated to display variability in response to BCNU therapy where initial insult has been shown to lead to drug-resistance. In brief, a single 26.6 mg/kg BCNU dose yielded dramatic responses in both diffusion and sodium MRI. However, a second equivalent BCNU dose yielded a much smaller change in diffusion and sodium, suggesting a drop in tumor sensitivity to BCNU. The MRI responses of animals treated with 13.3 mg/kg BCNU were much lower and similar responses were observed after the initial and secondary applications of BCNU. Furthermore, these results were further validated using volumetric measurements of the tumor and also ex vivo determination of tumor sensitivity to BCNU. Overall, these experiments demonstrate the sensitivity and applicability of sodium and diffusion MRI as tools for dynamic assessment of tumor response to therapy.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Carmustina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Gliossarcoma/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Animais , Antineoplásicos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Difusão , Gliossarcoma/patologia , Masculino , Prótons , Ratos , Ratos Endogâmicos F344 , Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA