Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 114(1): 84-92, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37486097

RESUMO

Citrus greening disease, or Huanglongbing (HLB), has devastated citrus crops globally in recent years. The causal bacterium, 'Candidatus Liberibacter asiaticus', presents a sampling issue for qPCR diagnostics and results in a high false negative rate. In this work, we compared six metabolomics assays to identify HLB-infected citrus trees from leaf tissue extracted from 30 control and 30 HLB-infected trees. A liquid chromatography-mass spectrometry-based assay was most accurate. A final partial least squares-discriminant analysis (PLS-DA) model was trained and validated on 690 leaf samples with corresponding qPCR measures from three citrus varieties (Rio Red grapefruit, Hamlin sweet orange, and Valencia sweet orange) from orchards in Florida and Texas. Trees were naturally infected with HLB transmitted by the insect vector Diaphorina citri. In a randomized validation set, the assay was 99.9% accurate to classify diseased from nondiseased samples. This model was applied to samples from trees receiving plant defense-inducer compounds or biological treatments to prevent or cure HLB infection. From two trials, HLB-related metabolite abundances and PLS-DA scores were tracked longitudinally and compared with those of control trees. We demonstrate how our assay can assess tree health and the efficacy of HLB treatments and conclude that no trialed treatment was efficacious.


Assuntos
Citrus sinensis , Citrus , Hemípteros , Liberibacter , Rhizobiaceae , Citrus/microbiologia , Rhizobiaceae/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Árvores
2.
Phytopathology ; 111(5): 808-818, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32976056

RESUMO

In 2019, citrus production in Florida declined by more than 70%, mostly because of Huanglongbing (HLB), which is caused by the bacterium 'Candidatus Liberibacter asiaticus' (CLas). Thermotherapy for HLB-affected trees was proposed as a short-term management solution to maintain field productivity. It was hypothesized that thermotherapy could eliminate HLB from affected branches; therefore, the study objectives were to show which time-temperature combinations eliminated CLas from woody tissues. Hardening, rounded Valencia twigs collected from HLB-affected field trees were treated in a steam chamber at different time-temperature combinations (50°C for 60 s; 55°C for 0, 30, 60, 90, and 120 s; 60°C for 30 s; and an untreated control). Three independent repetitions of 13 branches per treatment were grafted onto healthy rootstocks and tested to detect CLas after 6, 9, and 12 months. For the RNA-based CLas viability assay, three branches per treatment were treated and bark samples were peeled for RNA extraction and subsequent gene expression analyses. During the grafting study, at 12 months after grafting, a very low frequency of trees grafted with twigs treated at 55°C for 90 s and 55°C for 120 s had detectable CLas DNA. In the few individuals with CLas, titers were significantly lower (P ≤ 0.0001) and could have been remnants of degrading DNA. Additionally, there was a significant decrease (P ≤ 0.0001) in CLas 16S rRNA expression at 55°C for 90 s, 55°C for 120 s, and 60°C for 30 s (3.4-fold change, 3.4-fold change, and 2.3-fold change, respectively) in samples 5 days after treatment. Heat injury, not total CLas kill, could explain the limited changes in transcriptional activity; however, failed recovery and eventual death of CLas resulted in no CLas detection in most of the grafted trees treated with the highest temperatures or longest durations.


Assuntos
Citrus , Hipertermia Induzida , Rhizobiaceae , Liberibacter , Doenças das Plantas , RNA Ribossômico 16S , Rhizobiaceae/genética
3.
Sci Rep ; 10(1): 15857, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985587

RESUMO

In our former research, we succeeded in using agar, alginate, and perlite as immobilization materials to maintain long-term survival of the inoculant, Ensifer fredii LP2/20, in a controlled glasshouse. Therefore the information on the establishment and activity of the inoculant to promote plant growth under field conditions, the effects of the inoculant on the soil microbial communities and specific microbial taxa, and the association between the inoculant and soil elements merit further studies. Here, we found that agar was the most suitable material that supported the establishment of the inoculant under field conditions. RNA-based analysis showed that E. fredii LP2/20 immobilized in agar was still metabolically active at day 50 after being introduced into soil. Inoculation of E. fredii LP2/20 immobilized in agar conferred the highest plant dry weight (up to 89.94%) and all plant elements including total N (9.55%), P (17.94%), K (68.42%), Ca (39.77%), Mg (30.76%), Fe (29.85%), and Zn (22.44%). Inoculation of E. fredii LP2/20 immobilized in agar increased soil chemicals including soil organic matter (99.02%), total N (272.48%), P (31.75%), K (52.74%), Fe (51.06%), and Zn (63.10%). High-throughput next-generation sequencing of bacterial 16S rRNA amplicons showed that the Proteobacteria, Acidobacteria, Bacteroidetes, and Firmicutes were dominant phyla in Chinese kale field soil. Inoculation of E. fredii LP2/20 significantly affected the soil bacterial community structure by decreasing total bacterial richness and diversity. The numbers of alpha- and gamma-Proteobacteria were significantly increased while the number of delta-Proteobacteria was significantly decreased due to E. fredii LP2/20 establishment. Soil total P, K, and Ca and soil pH were the important factors that shaped the soil bacterial community composition.


Assuntos
Ágar/química , Ágar/farmacologia , Brassica/microbiologia , Rhizobiaceae/química , Rhizobiaceae/crescimento & desenvolvimento , Microbiologia do Solo , Solo/química , Biodiversidade , Rhizobiaceae/efeitos dos fármacos , Rhizobiaceae/genética , Desenvolvimento Sustentável
4.
Sci Rep ; 10(1): 5395, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214166

RESUMO

In this study, newly identified small molecules were examined for efficacy against 'Candidatus Liberibacter asiaticus' in commercial groves of sweet orange (Citrus sinensis) and white grapefruit (Citrus paradisi) trees. We used benzbromarone and/or tolfenamic acid delivered by trunk injection. We evaluated safety and efficacy parameters by performing RNAseq of the citrus host responses, 16S rRNA gene sequencing to characterize citrus-associated microbial communities during treatment, and qRT-PCR as an indirect determination of 'Ca. L. asiaticus' viability. Analyses of the C. sinensis transcriptome indicated that each treatment consistently induced genes associated with normal metabolism and growth, without compromising tree viability or negatively affecting the indigenous citrus-associated microbiota. It was found that treatment-associated reduction in 'Ca. L. asiaticus' was positively correlated with the proliferation of several core taxa related with citrus health. No symptoms of phytotoxicity were observed in any of the treated trees. Trials were also performed in commercial groves to examine the effect of each treatment on fruit productivity, juice quality and efficacy against 'Ca. L. asiaticus'. Increased fruit production (15%) was observed in C. paradisi following twelve months of treatment with benzbromarone and tolfenamic acid. These results were positively correlated with decreased 'Ca. L. asiaticus' transcriptional activity in root samples.


Assuntos
Benzobromarona/farmacologia , Rhizobiaceae/efeitos dos fármacos , ortoaminobenzoatos/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Benzobromarona/metabolismo , Citrus/genética , Doenças das Plantas/genética , Doenças das Plantas/terapia , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética , Rhizobiaceae/genética , ortoaminobenzoatos/metabolismo
5.
Bull Entomol Res ; 110(4): 512-520, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32046801

RESUMO

Insecticide resistance is an increasing problem in citrus production. The Asian citrus psyllid, Diaphornia citri Kuwayama, is recognized as one of the most important citrus pests worldwide and it has developed resistance in areas where insecticides have been overused. The development of insecticide resistance is often associated with fitness costs that only become apparent in the absence of selection pressure. Here, the fitness costs associated with resistance to thiamethoxam and imidacloprid were investigated in three agricultural populations of D. citri as compared with susceptible laboratory colonies. Results showed that all field populations had greater resistance than laboratory susceptible colonies. For both thiamethoxam and imidacloprid, a Candidatus Liberibacter asiaticus-positive (CLas+) colony was more susceptible than the CLas- colony. Resistance ratios ranged from 7.65-16.11 for imidacloprid and 26.79-49.09 for thiamethoxam in field populations as compared with a susceptible, CLas- laboratory strain. Among three resistant field populations, a significantly reduced net reproductive rate and finite rate of population increase were observed in a population from Lake Wales, FL as compared to both susceptible strains. The fecundity of field populations from Lake Wales, FL was statistically lower than both laboratory susceptible populations. Certain changes in morphological characteristics were observed among resistant, as compared, with susceptible strains. Our data suggest fitness disadvantages associated with insecticide resistance in D. citri are related to both development and reproduction. The lower fitness of D. citri populations that exhibit resistance to neonicotinoid insecticides should promote recovery of sensitivity when those populations are no longer exposed to thiamethoxam and/or imidacloprid in the field. The results are congruent with a strategy of insecticide rotation for resistance management.


Assuntos
Hemípteros/genética , Hemípteros/fisiologia , Resistência a Inseticidas/genética , Rhizobiaceae , Animais , Citrus , Florida , Inseticidas , Neonicotinoides , Nitrocompostos , Doenças das Plantas/microbiologia , Crescimento Demográfico , Reprodução/fisiologia , Tiametoxam
6.
Microbiol Res ; 231: 126356, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31722286

RESUMO

In Rhizobium-legume symbiosis, the nodule is the most frequently studied compartment, where the endophytic/symbiotic microbiota demands critical investigation for development of specific inocula. We identified the bacterial diversity within root nodules of mung bean from different growing areas of Pakistan using Illumina sequencing of 16S rRNA gene. We observed specific OTUs related to specific site where Bradyrhizobium was found to be the dominant genus comprising of 82-94% of total rhizobia in nodules with very minor fraction of sequences from other rhizobia at three sites. In contrast, Ensifer (Sinorhizobium) was single dominant genus comprising 99.9% of total rhizobial sequences at site four. Among non-rhizobial sequences, the genus Acinetobacter was abundant (7-18% of total sequences), particularly in Bradyrhizobium-dominated nodule samples. Rhizobia and non-rhizobial PGPR isolated from nodule samples include Ensifer, Bradyrhizobium, Acinetobacter, Microbacterium and Pseudomonas strains. Co-inoculation of multi-trait PGPR Acinetobacter sp. VrB1 with either of the two rhizobia in field exhibited more positive effect on nodulation and plant growth than single-strain inoculation which favors the use of Acinetobacter as an essential component for development of mung bean inoculum. Furthermore, site-specific dominance of rhizobia and non-rhizobia revealed in this study may contribute towards decision making for development and application of specific inocula in different habitats.


Assuntos
Rhizobiaceae , Nódulos Radiculares de Plantas/microbiologia , Vigna/microbiologia , Acinetobacter/genética , Acinetobacter/isolamento & purificação , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , DNA Bacteriano/genética , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Microbiota/genética , Paquistão , Filogenia , Pseudomonas/genética , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S , Rhizobiaceae/classificação , Rhizobiaceae/genética , Sinorhizobium/genética , Sinorhizobium/isolamento & purificação
7.
Sci Rep ; 9(1): 18962, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831765

RESUMO

Huanglongbing (HLB) is a worldwide deadly citrus disease caused by the phloem-limited bacteria 'Candidatus Liberibacter asiaticus' (CLas) vectored by Asian citrus psyllids. In order to effectively manage this disease, it is crucial to understand the relationship among the bacterial isolates from different geographical locations. Whole genome sequencing approaches will provide more precise molecular characterization of the diversity among populations. Due to the lack of in vitro culture, obtaining the whole genome sequence of CLas is still a challenge, especially for medium to low titer samples. Hundreds of millions of sequencing reads are needed to get good coverage of CLas from an HLB positive citrus sample. In order to overcome this limitation, we present here a new method, Agilent SureSelect XT HS target enrichment, which can specifically enrich CLas from a metagenomic sample while greatly reducing cost and increasing whole genome coverage of the pathogen. In this study, the CLas genome was successfully sequenced with 99.3% genome coverage and over 72X sequencing coverage from low titer tissue samples (equivalent to 28.52 Cq using Li 16 S qPCR). More importantly, this method also effectively captures regions of diversity in the CLas genome, which provides precise molecular characterization of different strains.


Assuntos
Genoma Bacteriano , Rhizobiaceae/genética , Sequenciamento Completo do Genoma , Rhizobiaceae/classificação
8.
J Food Sci ; 84(10): 2925-2931, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31546283

RESUMO

This study provides phenotypic and molecular analyses of the antibiotic resistance of Ensifer adhaerens strain YX1 (CICC 11008s), a strain that was identified using a polyphasic taxonomy approach. The antibiotic resistance profile of E. adhaerens YX1 was assessed using the Clinical & Laboratory Standards Inst. (CLSI) method. The strain was susceptible to ciprofloxacin, levofloxacin, norfloxacin, ofloxacin, gentamicin, tobramycin, chloramphenicol, tetracycline, imipenem, and ceftazidime, and resistant to kanamycin, streptomycin, fosfomycin, and nitrofurantoin. The antibiotic resistance genes nsfA, nsfB, fosA, aph, and aadA1 were not detected in E. adhaerens YX1 via PCR using gene-specific primers. Subsequently, the genome sequence of E. adhaerens was screened for antibiotic genes. Although no antibiotic resistance genes were identified using the ResFinder database, five genes copies of one resistance gene, adeF, were detected using the Comprehensive Antibiotic Resistance Database (CARD). The results of this study will be useful for understanding the phenotypic and genotypic aspects of E. adhaerens antibiotic resistance. No safety issues were identified for E. adhaerens YX1 in terms of antibiotic resistance. Performing similar studies will be conducive to the safety assessment and control of the use of E. adhaerens in the food and feed industry. PRACTICAL APPLICATION: Few relevant reports are currently available regarding antibiotic resistance assessments or other safety evaluations for Ensifer adhaerens. Because of a lack of relevant information on the safety of this bacterium, including the genetic basis of antibiotic resistance in the production strain, it has not been recommended for use in the "qualified presumption of safety" (QPS) list and subsequent updated lists. The current study shows no safety issue of E. adhaerens YX1 in terms of its antibiotic resistance. These results are important as they provide an initial basis for an understanding of the antibiotic resistance/susceptibility of E. adhaerens YX1 (CICC 11008s), which produces vitamin B12 and is widely used in the food and feed industry.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Rhizobiaceae/efeitos dos fármacos , Vitamina B 12/metabolismo , Ração Animal/microbiologia , Cloranfenicol/farmacologia , Ciprofloxacina/farmacologia , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Rhizobiaceae/metabolismo , Tetraciclina/farmacologia
9.
Microbiol Res ; 219: 12-25, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30642462

RESUMO

Phosphorus is one of the main macronutrients for plant development. Despite its large deposits in soils, it is scarcely available for plants. Phosphate-solubilizing bacteria, belonging to the group of plant growth-promoting rhizobacteria (PGPR), are capable of mobilizing deposits of insoluble phosphates in the soil. The use of PGPR as inoculants provides an environmentally sustainable approach to increase crop production. The effectiveness of inoculants depends on their proper production, formulation and storage in order to ensure the application of the required number of viable microbial cells. In order to develop inexpensive technology, low-cost compounds for biomass production and protection should be used. After the biomass production process, the product should be formulated in a liquid or a solid form, taking into account required storage time, use of protectors/carriers, storage conditions (temperature, humidity, etc.), ease of application and maintenance of beneficial effects on crops. Careful determination of these optimal conditions would ensure a low-cost efficient inoculant that would promote the growth and yield of various crops.


Assuntos
Produtos Agrícolas/microbiologia , Desenvolvimento Vegetal/fisiologia , Pseudomonas/metabolismo , Rhizobiaceae/metabolismo , Agricultura/métodos , Micorrizas/metabolismo , Fósforo/química , Pseudomonas/classificação , Rizosfera , Solo/química , Microbiologia do Solo
10.
Sci Rep ; 8(1): 13828, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30218023

RESUMO

The uniformity of crop yield is extremely important for consumers and of as much relevance to the grower as overall yield. However, size inequality within a plant population is rarely measured and has never before been considered in relation to the use of beneficial microbes for yield enhancement. For the first time, we show that addition of soil bacteria to calabrese plants significantly increased size inequality. These effects were usually more apparent in above-ground biomass. This was caused by some (but not all) plants growing very large when inoculated with bacteria, while control plants were mostly small. We suggest that the main reason is the incompatibility of the inoculated bacteria with those already present in the rhizosphere. In some cases the inoculum matched the indigenous community, providing a benefit to plant growth, while often it did not and plants remained relatively small. We conclude that analyses of size inequality should be an integral part of experiments using microbial soil amendments. These analyses can help to inform the production of more effective microbial products and to ensure that the integration of beneficial microbes into sustainable production systems does not impair uniformity in yield.


Assuntos
Brassica/crescimento & desenvolvimento , Rhizobiaceae/metabolismo , Rizosfera , Bacillus/metabolismo , Bacillus/patogenicidade , Brassica/microbiologia , Desenvolvimento Vegetal/fisiologia , Raízes de Plantas/microbiologia , Plantas/microbiologia , Solo , Microbiologia do Solo
11.
Phytopathology ; 107(8): 928-936, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28440700

RESUMO

A study was designed to screen individual strains of plant growth-promoting rhizobacteria (PGPR) for broad-spectrum disease suppression in vitro and in planta. In a preliminary screen, 28 of 196 strains inhibited eight different tested pathogens in vitro. In a secondary screen, these 28 strains showed broad spectrum antagonistic activity to six different genera of pathogens, and 24 of the 28 strains produced five traits reported to be related to plant growth promotion, including nitrogen fixation, phosphate solubilization, indole-3-acetic acid production, siderophore production, and biofilm formation. In advanced screens, the 28 PGPR strains selected in vitro were tested in planta for biological control of multiple plant diseases including bacterial spot of tomato caused by Xanthomonas axonopodis pv. vesicatoria, bacterial speck of tomato caused by Pseudomonas syringae pv. tomato, damping-off of pepper caused by Rhizoctonia solani, and damping-off of cucumber caused by Pythium ultimum. In all, 5 of the 28 tested strains significantly reduced three of the four tested diseases, and another 19 strains showed biological control to two tested diseases. To understand the observed broad-spectrum biocontrol capacity, antiSMASH was used to predict secondary metabolite clusters of selected strains. Multiple gene clusters encoding for secondary metabolites, e.g., bacillibactin, bacilysin, and microcin, were detected in each strain. In conclusion, selected individual PGPR strains showed broad-spectrum biocontrol activity to multiple plant diseases.


Assuntos
Agentes de Controle Biológico , Doenças das Plantas/prevenção & controle , Plantas/microbiologia , Rhizobiaceae/fisiologia , Fungos , Doenças das Plantas/microbiologia
12.
PLoS One ; 11(10): e0165204, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27780257

RESUMO

INTRODUCTION: Biological communities present in soil are essential to sustainable and productive agricultural practices; however, an accurate determination of the ecological status of agricultural soils remains to date an elusive task. An ideal indicator should be pervasive, play a relevant role in the ecosystem, show a rapid and proportional answer to external perturbations and be easily and economically measurable. Rhizobacteria play a major role in determining soil properties, becoming an attractive candidate for the detection of ecological indicators. The application of massive sequencing technologies to metagenomic analysis is providing an increasingly more precise view of the structure and composition of soil communities. In this work, we analyse soil rhizobacterial composition under various stress levels to search for potential ecological indicators. GENERAL BIODIVERSITY INDICATORS: Our results suggest that the Shannon index requires observation of a relatively large number of individuals to be representative of the true population diversity, and that the Simpson index may underestimate rare taxa in rhizobacterial environments. TAXONOMICAL CLASSIFICATION METHODS: Detection of indicator taxa requires comparison of taxonomical classification of sequences. We have compared RDP classifier, RTAX and similarity-based taxonomical classification and selected the latter for taxonomical assignment because it provides larger detail. TAXONOMY-BASED ECOLOGICAL INDICATORS: The study of significant variations in common, clearly identified, taxa, using paired datasets allows minimization of non-treatment effects and avoidance of false positives. We have identified taxa associated to specific perturbations as well as taxa generally affected in treated soils. Changes in these taxa, or combinations of them, may be used as ecological indicators of soil health. The overall number and magnitude of changes detected in taxonomic groups does also increase with stress. These changes constitute an alternative indicator to measuring specific taxa, although their determination requires large sample sizes, better obtained by massive sequencing. SUMMARY: The main ecological indicators available are the Shannon index, OTU counts and estimators, overall detection of the number and proportion of changes, and changes of specific indicator taxa. Massive sequencing remains the most accurate tool to measure rhizobacterial ecological indicators. When massive sequencing is not an option, various cultivable taxonomic groups, such as specific groups in the Actinobacteria tree, are attractive as potential indicators of large disruptions to the rhizobiome.


Assuntos
Metagenômica/métodos , RNA Ribossômico 16S/genética , Rhizobiaceae/classificação , Solo/química , Produtos Agrícolas/crescimento & desenvolvimento , DNA Ribossômico/genética , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação , Análise de Sequência de DNA/métodos , Microbiologia do Solo
13.
Phytopathology ; 105(7): 929-36, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25894320

RESUMO

Zebra chip (ZC) of potato is putatively caused by the fastidious, phloem-limited bacterium 'Candidatus Liberibacter solanacearum' (Lso), which is transmitted by the potato psyllid (Bactericera cockerelli). The disease, which significantly impacts both crop yield and quality, was first identified in the United States from south Texas in 2000. It reached epidemic levels in north Texas and certain production areas in Colorado, Nebraska, and New Mexico from 2004 to 2007 and it caused severe losses in fields in Oregon, Washington, and Idaho in 2011. The potato plant is susceptible to infection at all developmental stages, but disease management programs have focused on vector control through early and repeated insecticide applications, in an effort to minimize early to midseason infections which are most damaging. Growers often terminate spray programs 2 to 3 weeks prior to crop harvest due to lack of visible treatment effects on crop yield or quality. However, recent studies on vector transmission and host-pathogen interactions have revealed that late-season infections pose a significant, previously unrecognized, threat to crop quality. The pathogen can move from an infected leaf to tubers within 2 days; however, tubers infected less than 1 week before harvest will remain asymptomatic and the pathogen will be undetectable. When these tubers are placed into storage they are assumed to be disease free. However, Lso can continue to multiply in respiring tubers during storage, resulting in reduced tuber quality. Likewise, if plants become infected a few days before vines are killed, ZC can continue to develop in infected tubers before they are harvested. Perspectives on the significance of late-season infections and some of the more important issues associated with those infections are discussed.


Assuntos
Hemípteros/microbiologia , Rhizobiaceae/fisiologia , Solanum tuberosum/microbiologia , Animais , Interações Hospedeiro-Patógeno , Controle de Insetos , Insetos Vetores , Doenças das Plantas , Estações do Ano
14.
Pest Manag Sci ; 70(3): 415-26, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23666807

RESUMO

BACKGROUND: Huanglongbing (HLB) or citrus greening is a bacterial disease vectored by the Asian citrus psyllid (ACP) causing tree decline, and yield loss. Vector control and foliar nutrition are used in Florida to slow the spread of HLB and mitigate debilitating effects of the disease. A four year replicated field study was initiated February 2008 in a 5.2-ha commercial block of young 'Valencia' orange trees employing a factorial design to evaluate individual and compound effects of vector management and foliar nutrition. Insecticides were sprayed during tree dormancy and when psyllid populations exceeded a nominal threshold. A mixture consisting primarily of micro- and macro-nutrients was applied three times a year corresponding to the principal foliar flushes. RESULTS: Differences in ACP numbers from five- to 13-fold were maintained in insecticide treated and untreated plots. Incidence of HLB estimated by polymerase chain reaction (PCR), rose from 30% at the beginning of the study to 95% in only 18 months. Highest yields all four years were seen from trees receiving both foliar nutrition and vector control. Production for these trees in the fourth year was close to the pre-HLB regional average for 10 year old 'Valencia' on 'Swingle'. Nevertheless, at current juice prices, the extra revenue generated from the combined insecticide and nutritional treatment did not cover the added treatment costs. CONCLUSIONS: This experiment demonstrated that vector control, especially when combined with enhanced foliar nutrition, could significantly increase yields in a citrus orchard with high incidence of HLB. Economic thresholds for both insecticide and nutrient applications are needed under different market and environmental conditions.


Assuntos
Citrus/microbiologia , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologia , Agricultura/economia , Animais , Citrus/economia , Citrus/crescimento & desenvolvimento , Fertilizantes/análise , Florida , Frutas/economia , Frutas/crescimento & desenvolvimento , Frutas/microbiologia , Hemípteros/efeitos dos fármacos , Controle de Insetos/economia , Insetos Vetores/efeitos dos fármacos , Doenças das Plantas/economia , Rhizobiaceae/fisiologia
15.
J Econ Entomol ; 106(3): 1440-5, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23865212

RESUMO

This study provides a protocol for rapid DNA isolation from psyllid vectors (Bactericera cockerelli and Diaphorina citri) that can be used directly with DNA-based methods for the detection of 'Candidatus (Ca.) Liberibacter solanacearum,' the bacterial causal agent of potato zebra chip disease and eventually for 'Ca. Liberibacter asiaticus' the causal agent of huanglongbing disease in citrus. The fast DNA extraction protocol was designed to work with conventional polymerase chain reaction (cPCR) DNA amplification as well as Loop mediated PCR DNA amplification. Direct cPCR of the psyllid 28S rDNA gene from samples prepared using the fast DNA extraction method was as reliable as from samples prepared using standard DNA purification (> 97% from live insects) as tested in B. cockerelli. However, samples prepared using the fast DNA extraction method had to be diluted 1:100 in sterile water for reliable amplification, presumably to dilute PCR inhibitors in the crude extract. Similarly, both cPCR and loop mediated PCR DNA amplification detected 'Ca. Liberibacter' in psyllids infected with either the zebra chip or huanglongbing pathogen equally well from diluted samples prepared using the fast DNA extraction method or from samples prepared using a DNA purification step. In addition to being reliable, the time required to complete the fast DNA extraction for 10 samples was on average approximately 5 min and required no special reagents or laboratory equipment. Thus, the fast DNA extraction method shows strong promise as a rapid, reliable, and expedient method when coupled with PCR-based analyses for detection of 'Ca. Liberibacter' pathogens in psyllids.


Assuntos
DNA Bacteriano/isolamento & purificação , Hemípteros/microbiologia , Reação em Cadeia da Polimerase/métodos , Rhizobiaceae/isolamento & purificação , Animais , DNA Bacteriano/genética , DNA Ribossômico/genética , DNA Ribossômico/isolamento & purificação , Insetos Vetores/microbiologia , Técnicas de Amplificação de Ácido Nucleico , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase/economia , Reprodutibilidade dos Testes , Rhizobiaceae/genética , Especificidade da Espécie , Fatores de Tempo
16.
Syst Appl Microbiol ; 36(5): 351-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23578959

RESUMO

Agrobacteria are common soil bacteria that interact with plants as commensals, plant growth promoting rhizobacteria or alternatively as pathogens. Indigenous agrobacterial populations are composites, generally with several species and/or genomic species and several strains per species. We thus developed a recA-based PCR approach to accurately identify and specifically detect agrobacteria at various taxonomic levels. Specific primers were designed for all species and/or genomic species of Agrobacterium presently known, including 11 genomic species of the Agrobacterium tumefaciens complex (G1-G9, G13 and G14, among which only G2, G4, G8 and G14 still received a Latin epithet: pusense, radiobacter, fabrum and nepotum, respectively), A. larrymoorei, A. rubi, R. skierniewicense, A. sp. 1650, and A. vitis, and for the close relative Allorhizobium undicola. Specific primers were also designed for superior taxa, Agrobacterium spp. and Rhizobiaceace. Primer specificities were assessed with target and non-target pure culture DNAs as well as with DNAs extracted from composite agrobacterial communities. In addition, we showed that the amplicon cloning-sequencing approach used with Agrobacterium-specific or Rhizobiaceae-specific primers is a way to assess the agrobacterial diversity of an indigenous agrobacterial population. Hence, the agrobacterium-specific primers designed in the present study enabled the first accurate and rapid identification of all species and/or genomic species of Agrobacterium, as well as their direct detection in environmental samples.


Assuntos
Técnicas Bacteriológicas/métodos , Biota , Reação em Cadeia da Polimerase/métodos , Recombinases Rec A/genética , Rhizobiaceae/classificação , Rhizobiaceae/genética , Primers do DNA/genética , Plantas/microbiologia , Rhizobiaceae/isolamento & purificação , Microbiologia do Solo
17.
Phytopathology ; 103(6): 524-37, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23268582

RESUMO

An overview is provided for the aspects of history, biology, genomics, genetics, and epidemiology of zebra chip (ZC), a destructive disease of potato (Solanum tuberosum) that represents a major threat to the potato industries in the United States as well as other potato-production regions in the world. The disease is associated with a gram-negative, phloem-limited, insect-vectored, unculturable prokaryote, 'Candidatus Liberibacter solanacearum', that belongs to the Rhizobiaceae family of α-Proteobacteria. The closest cultivated relatives of 'Ca. L. solanacearum' are members of the group of bacteria known as the α-2 subgroup. In spite of the fact that Koch's postulates sensu stricto have not been fulfilled, a great deal of progress has been made in understanding the ZC disease complex since discovery of the disease. Nevertheless, more research is needed to better understand vector biology, disease mechanisms, host response, and epidemiology in the context of vector-pathogen-plant interactions. Current ZC management strategies focus primarily on psyllid control. The ultimate control of ZC likely relies on host resistance. Unfortunately, all commercial potato cultivars are susceptible to ZC. Elucidation of the 'Ca. L. solanacearum' genome sequence has provided insights into the genetic basis of virulence and physiological and metabolic capability of this organism. Finally, the most effective, sustainable management of ZC is likely to be based on integrated strategies, including removal or reduction of vectors or inocula, improvement of host resistance to the presumptive pathogen and psyllid vectors, and novel gene-based therapeutic treatment.


Assuntos
Variação Genética , Insetos/fisiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/genética , Rhizobiaceae/fisiologia , Solanum tuberosum/microbiologia , Animais , Especiação Genética , Genoma Bacteriano , Insetos Vetores , Insetos/classificação , Rhizobiaceae/classificação
18.
Mol Plant Microbe Interact ; 22(12): 1624-34, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19888827

RESUMO

The citrus disease Huanglongbing (HLB) is highly destructive in many citrus-growing regions of the world. The putative causal agent of this disease, 'Candidatus Liberibacter asiaticus', is difficult to culture, and Koch's postulates have not yet been fulfilled. As a result, efforts have focused on obtaining the genome sequence of 'Ca. L. asiaticus' in order to give insight on the physiology of this organism. In this work, three next-generation high-throughput sequencing platforms, 454, Solexa, and SOLiD, were used to obtain metagenomic DNA sequences from phloem tissue of Florida citrus trees infected with HLB. A culture-independent, polymerase chain reaction (PCR)-independent analysis of 16S ribosomal RNA sequences showed that the only bacterium present within the phloem metagenome was 'Ca L. asiaticus'. No viral or viroid sequences were identified within the metagenome. By reference assembly, the phloem metagenome contained sequences that provided 26-fold coverage of the 'Ca. L. asiaticus' contigs in GenBank. By the same approach, phloem metagenomic data yielded less than 0.2-fold coverage of five other alphaproteobacterial genomes. Thus, phloem metagenomic DNA provided a PCR-independent means of verifying the presence of 'Ca L. asiaticus' in infected tissue and strongly suggests that no other disease agent was present in phloem. Analysis of these metagenomic data suggest that this approach has a detection limit of one 'Ca. Liberibacter' cell for every 52 phloem cells. The phloem sample sequenced here is estimated to have contained 1.7 'Ca. Liberibacter' cells per phloem cell.


Assuntos
Citrus/microbiologia , Floema/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/classificação , Rhizobiaceae/genética , Vírus de DNA/isolamento & purificação , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Variação Genética , Genômica , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Rhizobiaceae/isolamento & purificação
20.
Genome Biol ; 3(12): RESEARCH0076, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12537565

RESUMO

BACKGROUND: In the rhizobia, a group of symbiotic Gram-negative soil bacteria, RpoN (sigma54, sigmaN, NtrA) is best known as the sigma factor enabling transcription of the nitrogen fixation genes. Recent reports, however, demonstrate the involvement of RpoN in other symbiotic functions, although no large-scale effort has yet been undertaken to unravel the RpoN-regulon in rhizobia. We screened two complete rhizobial genomes (Mesorhizobium loti, Sinorhizobium meliloti) and four symbiotic regions (Rhizobium etli, Rhizobium sp. NGR234, Bradyrhizobium japonicum, M. loti) for the presence of the highly conserved RpoN-binding sites. A comparison was also made with two closely related non-symbiotic members of the Rhizobiales (Agrobacterium tumefaciens, Brucella melitensis). RESULTS: A highly specific weight-matrix-based screening method was applied to predict members of the RpoN-regulon, which were stored in a highly annotated and manually curated dataset. Possible enhancer-binding proteins (EBPs) controlling the expression of RpoN-dependent genes were predicted with a profile hidden Markov model. CONCLUSIONS: The methodology used to predict RpoN-binding sites proved highly effective as nearly all known RpoN-controlled genes were identified. In addition, many new RpoN-dependent functions were found. The dependency of several of these diverse functions on RpoN seems species-specific. Around 30% of the identified genes are hypothetical. Rhizobia appear to have recruited RpoN for symbiotic processes, whereas the role of RpoN in A. tumefaciens and B. melitensis remains largely to be elucidated. All species screened possess at least one uncharacterized EBP as well as the usual ones. Lastly, RpoN could significantly broaden its working range by direct interfering with the binding of regulatory proteins to the promoter DNA.


Assuntos
Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Genes Bacterianos , Regulon/genética , Rhizobiaceae/genética , Fator sigma/genética , Proteínas de Ligação a DNA/genética , Cadeias de Markov , Valor Preditivo dos Testes , Regiões Promotoras Genéticas/genética , RNA Polimerase Sigma 54 , Transdução de Sinais/genética , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA