Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8128, 2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584196

RESUMO

Fat loss predicts adverse outcomes in advanced heart failure (HF). Disrupted circadian clocks are a primary cause of lipid metabolic issues, but it's unclear if this disruption affects fat expenditure in HF. To address this issue, we investigated the effects of disruption of the BMAL1/REV-ERBα circadian rhythmic loop on adipose tissue metabolism in HF.50 Wistar rats were initially divided into control (n = 10) and model (n = 40) groups. The model rats were induced with HF via monocrotaline (MCT) injections, while the control group received equivalent solvent injections. After establishing the HF model, the model group was further subdivided into four groups: normal rhythm (LD), inverted rhythm (DL), lentivirus vector carrying Bmal1 short hairpin RNA (LV-Bmal1 shRNA), and empty lentivirus vector control (LV-Control shRNA) groups, each with 10 rats. The DL subgroup was exposed to a reversed light-dark cycle of 8 h: 16 h (dark: light), while the rest adhered to normal light-dark conditions (light: dark 12 h: 12 h). Histological analyses were conducted using H&E, Oil Red O, and Picrosirius red stains to examine adipose and liver tissues. Immunohistochemical staining, RT-qPCR, and Western blotting were performed to detect markers of lipolysis, lipogenesis, and beiging of white adipose tissue (WAT), while thermogenesis indicators were detected in brown adipose tissue (BAT). The LD group rats exhibited decreased levels of BMAL1 protein, increased levels of REV-ERBα protein, and disrupted circadian circuits in adipose tissue compared to controls. Additionally, HF rats showed reduced adipose mass and increased ectopic lipid deposition, along with smaller adipocytes containing lower lipid content and fibrotic adipose tissue. In the LD group WAT, expression of ATGL, HSL, PKA, and p-PKA proteins increased, alongside elevated mRNA levels of lipase genes (Hsl, Atgl, Peripilin) and FFA ß-oxidation genes (Cpt1, acyl-CoA). Conversely, lipogenic gene expression (Scd1, Fas, Mgat, Dgat2) decreased, while beige adipocyte markers (Cd137, Tbx-1, Ucp-1, Zic-1) and UCP-1 protein expression increased. In BAT, HF rats exhibited elevated levels of PKA, p-PKA, and UCP-1 proteins, along with increased expression of thermogenic genes (Ucp-1, Pparγ, Pgc-1α) and lipid transportation genes (Cd36, Fatp-1, Cpt-1). Plasma NT-proBNP levels were higher in LD rats, accompanied by elevated NE and IL-6 levels in adipose tissue. Remarkably, morphologically, the adipocytes in the DL and LV-Bmal1 shRNA groups showed reduced size and lower lipid content, while lipid deposition in the liver was more pronounced in these groups compared to the LD group. At the gene/protein level, the BMAL1/REV-ERBα circadian loop exhibited severe disruption in LV-Bmal1 shRNA rats compared to LD rats. Additionally, there was increased expression of lipase genes, FFA ß oxidation genes, and beige adipocyte markers in WAT, as well as higher expression of thermogenic genes and lipid transportation genes in BAT. Furthermore, plasma NT-proBNP levels and adipose tissue levels of NE and IL-6 were elevated in LV-Bmal1 shRNA rats compared with LD rats. The present study demonstrates that disruption of the BMAL1/REV-ERBα circadian rhythmic loop is associated with fat expenditure in HF. This result suggests that restoring circadian rhythms in adipose tissue may help counteract disorders of adipose metabolism and reduce fat loss in HF.


Assuntos
Fatores de Transcrição ARNTL , Insuficiência Cardíaca , Ratos , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Monocrotalina , Gastos em Saúde , Interleucina-6/metabolismo , Ratos Wistar , Ritmo Circadiano/genética , Tecido Adiposo Marrom/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Lipase/metabolismo , RNA Interferente Pequeno/metabolismo , Lipídeos
2.
J Gastrointest Cancer ; 55(2): 900-912, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38427147

RESUMO

BACKGROUND: Gastric cancer is one of the major public health problems worldwide. Circadian rhythm disturbances driven by circadian clock genes play a role in the development of cancer. However, whether circadian clock genes can serve as potential therapeutic targets and prognostic biomarkers for gastric cancer remains elusive. METHODS: In this study, we comprehensively analyzed the potential relationship between circadian clock genes and gastric cancer using online bioinformatics databases such as GEPIA, cBioPortal, STRING, GeneMANIA, Metascape, TIMER, TRRUST, and GEDS. RESULTS: Biological clock genes are expressed differently in human tumors. Compared with normal tissues, only PER1, CLOCK, and TIMELESS expression differences were statistically significant in gastric cancer (p < 0.05). PER1 (p = 0.0169) and CLOCK (p = 0.0414) were associated with gastric cancer pathological stage (p < 0.05). Gastric cancer patients with high expression of PER1 (p = 0.0028) and NR1D1 (p = 0.016) had longer overall survival, while those with high expression of PER1 (p = 0.042) and NR1D1 (p = 0.016) had longer disease-free survival. The main function of the biological clock gene is related to the circadian rhythms and melatonin metabolism and effects. CLOCK, NPAS2, and KAT2B were key transcription factors for circadian clock genes. In addition, we also found important correlations between circadian clock genes and various immune cells in the gastric cancer microenvironment. CONCLUSIONS: This study may establish a new gastric cancer prognostic indicator based on the biological clock gene and develop new drugs for the treatment of gastric cancer using biological clock gene targets.


Assuntos
Biomarcadores Tumorais , Proteínas CLOCK , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/mortalidade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Proteínas CLOCK/genética , Relógios Circadianos/genética , Proteínas Circadianas Period/genética , Regulação Neoplásica da Expressão Gênica , Biologia Computacional , Ritmo Circadiano/genética , Proteínas de Ciclo Celular , Peptídeos e Proteínas de Sinalização Intracelular , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares
3.
PLoS Comput Biol ; 18(9): e1010399, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36095022

RESUMO

Many genes have nycthemeral rhythms of expression, i.e. a 24-hours periodic variation, at either mRNA or protein level or both, and most rhythmic genes are tissue-specific. Here, we investigate and discuss the evolutionary origins of rhythms in gene expression. Our results suggest that rhythmicity of protein expression could have been favored by selection to minimize costs. Trends are consistent in bacteria, plants and animals, and are also supported by tissue-specific patterns in mouse. Unlike for protein level, cost cannot explain rhythm at the RNA level. We suggest that instead it allows to periodically reduce expression noise. Noise control had the strongest support in mouse, with limited evidence in other species. We have also found that genes under stronger purifying selection are rhythmically expressed at the mRNA level, and we propose that this is because they are noise sensitive genes. Finally, the adaptive role of rhythmic expression is supported by rhythmic genes being highly expressed yet tissue-specific. This provides a good evolutionary explanation for the observation that nycthemeral rhythms are often tissue-specific.


Assuntos
Ritmo Circadiano , Animais , Ritmo Circadiano/genética , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Chemosphere ; 305: 135449, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35750227

RESUMO

Behavioural disruptions are sensitive indicators of alterations to normal animal physiology and can be used for toxicity assessment. The small vertebrate zebrafish is a leading model organism for toxicological studies. The ability to continuously monitor the toxicity of drugs, pollutants, or environmental changes over several days in zebrafish can have high practical application. Although video-recordings can be used to monitor short-term zebrafish behaviour, it is challenging to videorecord prolonged experiments (e.g. circadian behaviour over several days) because of the darkness periods (nights) and the heavy data storage and image processing requirements. Alternatively, infrared-based activity monitors, widely used in invertebrate models such as drosophila, generate simple and low-storage data and could optimize large-scale prolonged behavioural experiments in zebrafish, thus favouring the implementation of high-throughput testing strategies. Here, we validate the use of a Locomotor Activity Monitor (LAM) to study the behaviour of zebrafish larvae, and we characterize the behavioural phenotypes induced by abnormal light conditions and by the Parkinsonian toxin MPP+. When zebrafish were deprived from daily light-cycle synchronization, the LAM detected various circadian disruptions, such as increased activity period, phase shifts, and decreased inter-daily stability. Zebrafish exposed to MPP+ (10, 100, 500 µM) showed a concentration-dependent decrease in activity, sleep disruptions, impaired habituation to repetitive startles (visual-motor responses), and a slower recovery to normal activity after the startle-associated stress. These phenotypes evidence the feasibility of using infrared-based LAM to assess multi-parameter behavioural disruptions in zebrafish. The procedures in this study have wide applicability and may yield standard methods for toxicity testing.


Assuntos
Ritmo Circadiano , Peixe-Zebra , Animais , Ritmo Circadiano/genética , Escuridão , Fotoperíodo , Sono , Peixe-Zebra/fisiologia
5.
J Biol Rhythms ; 37(3): 272-282, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35583112

RESUMO

The aim of the present study was to develop a Polygenic Score-based model for molecular chronotype assessment. Questionnaire-based phenotypical chronotype assessment was used as a reference. In total, 54 extremely morning/morning (MM/M; 35 females, 39.7 ± 3.8 years) and 44 extremely evening/evening (EE/E; 20 females, 27.3 ± 7.7 years) individuals donated a buccal DNA sample for genotyping by sequencing of the entire genetic variability of 19 target genes known to be involved in circadian rhythmicity and/or sleep duration. Targeted genotyping was performed using the single primer enrichment technology and a specifically designed panel of 5526 primers. Among 2868 high-quality polymorphisms, a cross-validation approach lead to the identification of 83 chronotype predictive variants, including previously known and also novel chronotype-associated polymorphisms. A large (35 single-nucleotide polymorphisms [SNPs]) and also a small (13 SNPs) panel were obtained, both with an estimated predictive validity of approximately 80%. Potential mechanistic hypotheses for the role of some of the newly identified variants in modulating chronotype are formulated. Once validated in independent populations encompassing the whole range of chronotypes, the identified panels might become useful within the setting of both circadian public health initiatives and precision medicine.


Assuntos
Ritmo Circadiano , Sono , Ritmo Circadiano/genética , Feminino , Humanos , Sono/genética , Inquéritos e Questionários
6.
Yi Chuan ; 44(4): 346-357, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35437242

RESUMO

Circadian rhythms have a cycle length of about 24 hours, i.e. a 24-hour internal clock. In order to adapt to the periodic changes of the circadian environment, almost all organisms on the earth, including algae, bacteria, plants, animals, etc., have evolved a special system-the circadian clock. It helps organisms to adapt to the daily changes in the environment and maintains the physiological process and the behavior in synchronization with the environment changes. Circadian rhythms are composed of an intracellular feedback loop that drives the expression of molecular components and their constitutive protein products to oscillate over a period of about 24 hours. Almost every aspect of the body's functions, including behavior and physiology, is regulated by the circadian clock, and shows obvious daily rhythms, such as sleep and wakefulness, alertness, body temperature fluctuations, urinary system, hormone secretion, immune regulation, and cytokine release. Circadian factors are also increasingly recognized for potentially affecting the occurrence, progression, treatment, and prognosis of a variety of diseases. This paper discusses several methods for measuring circadian behavior disorders in mice for different purposes, and shares experimental operations and analysis ideas, including the use of metabolism cage, wheel running activity, jet lag, lengthened light, bones photoperiod, as well as the T7-cycle. In addition, this paper also studies the possible reasons for variations caused by genetic backgrounds and light conditions. Given these methods, researchers can choose appropriate experiments to evaluate the influence of genetic factors, environmental factors or diseases on circadian behavior.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Ritmo Circadiano/genética , Síndrome do Jet Lag , Camundongos , Atividade Motora/fisiologia , Fotoperíodo
7.
Physiol Behav ; 250: 113787, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35346733

RESUMO

Agitation, which comprises verbal or physical aggression and hyperactivity, is one of the most frequent neuropsychiatric symptoms observed in patients with Alzheimer's disease (AD). It often co-occurs with dysregulated circadian rhythms. Current medications are associated with serious adverse effects, and novel therapeutics are therefore needed. Rodent models can be instrumental to provide a first signal for potential efficacy of novel drug candidates. Longitudinal data assessing the face validity of such models for AD-related agitation are largely missing. We employed telemeterized APPswe mice, a frequently used AD transgenic mouse line overexpressing the human beta-amyloid precursor protein (APP) with the Swedish KM670/671NL mutation, to study the occurrence and progression of changes in reactive aggressive behavior as well as the circadian profile of locomotor activity and body temperature. Analysis was conducted between 5 and 11 months of age, at regular 2-months intervals. The aggressivity of all mice was highest at 5 months and waned with increasing age. APPswe mice were more aggressive than WT at 5 and 7 months of age. The locomotor activity and body temperature of WT mice declined with increasing age, while that of APPswe mice remained rather constant. This genotype difference was solely evident during the active, dark phase. APPswe mice did not display a phase shift of their circadian rhythms. We conclude that the APPswe mouse line can recapitulate some of the behavioral disturbances observed in AD, including an agitation-relevant phenotype characterized by active phase hyperactivity and aggressivity. It does not recapitulate the nighttime disturbances (also characterized by hyperactivity) and the shift of circadian rhythms observed in AD patients. Therefore, the APPswe strain could be used at specific ages to model a subset of agitation-relevant behavioral problems and to test the modulatory effects of drugs.


Assuntos
Doença de Alzheimer , Agressão , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Ritmo Circadiano/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos
8.
PLoS Genet ; 16(10): e1009089, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33075057

RESUMO

Wearable devices have been increasingly used in research to provide continuous physical activity monitoring, but how to effectively extract features remains challenging for researchers. To analyze the generated actigraphy data in large-scale population studies, we developed computationally efficient methods to derive sleep and activity features through a Hidden Markov Model-based sleep/wake identification algorithm, and circadian rhythm features through a Penalized Multi-band Learning approach adapted from machine learning. Unsupervised feature extraction is useful when labeled data are unavailable, especially in large-scale population studies. We applied these two methods to the UK Biobank wearable device data and used the derived sleep and circadian features as phenotypes in genome-wide association studies. We identified 53 genetic loci with p<5×10-8 including genes known to be associated with sleep disorders and circadian rhythms as well as novel loci associated with Body Mass Index, mental diseases and neurological disorders, which suggest shared genetic factors of sleep and circadian rhythms with physical and mental health. Further cross-tissue enrichment analysis highlights the important role of the central nervous system and the shared genetic architecture with metabolism-related traits and the metabolic system. Our study demonstrates the effectiveness of our unsupervised methods for wearable device data when additional training data cannot be easily acquired, and our study further expands the application of wearable devices in population studies and genetic studies to provide novel biological insights.


Assuntos
Ritmo Circadiano/genética , Predisposição Genética para Doença , Transtornos do Sono-Vigília/genética , Sono/genética , Actigrafia/métodos , Ritmo Circadiano/fisiologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Cadeias de Markov , Pessoa de Meia-Idade , Sono/fisiologia , Transtornos do Sono-Vigília/patologia , Dispositivos Eletrônicos Vestíveis
9.
Psychiatr Genet ; 29(2): 29-36, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30516584

RESUMO

Circadian rhythm abnormalities have been recognized as a central feature of bipolar disorder (BD) but a coherent biological explanation for them remains lacking. Using genetic mutation of 'clock genes', robust animal models of mania and depression have been developed that elucidate key aspects of circadian rhythms and the circadian clock-mood connection. However, translation of this knowledge into humans remains incomplete. In recent years, very large genome-wide association studies (GWAS) have been conducted and the genetic underpinnings of BD are beginning to emerge. However, these genetic studies in BD do not match well with the evidence from animal studies that implicate the circadian clock in mood regulation. Even larger GWAS have been conducted for circadian phenotypes including chronotype, rhythm amplitude, sleep duration, and insomnia. These studies have identified a diverse set of associated genes, including a minority with previously well-characterized functions in the circadian clock. Taken together, the data from recent GWAS of BD and circadian phenotypes indicate that the genetic organization of the circadian clock, both in health and in BD is complex. The findings from GWAS elucidate potentially novel circadian mechanism that may be partly distinct from those identified in animal models. Pleiotropy, epistasis and nongenetic factors may play important roles in regulating circadian rhythms, some of which may underlie circadian rhythm disturbances in BD.


Assuntos
Transtorno Bipolar/metabolismo , Transtorno Bipolar/fisiopatologia , Transtornos Cronobiológicos/fisiopatologia , Animais , Transtorno Bipolar/genética , Transtornos Cronobiológicos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Genômica , Humanos , Lítio/metabolismo , Sono/genética , Sono/fisiologia
10.
PLoS One ; 12(1): e0170127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28099477

RESUMO

Offspring of murine dams chronically fed a protein-restricted diet have an increased risk for metabolic and neurobehavioral disorders. Previously we showed that adult offspring, developmentally exposed to a chronic maternal low-protein (MLP) diet, had lower body and hind-leg muscle weights and decreased liver enzyme serum levels. We conducted energy expenditure, neurobehavioral and circadian rhythm assays in male offspring to examine mechanisms for the body-weight phenotype and assess neurodevelopmental implications of MLP exposure. C57BL/6J dams were fed a protein restricted (8%protein, MLP) or a control protein (20% protein, C) diet from four weeks before mating until weaning of offspring. Male offspring were weaned to standard rodent diet (20% protein) and single-housed until 8-12 weeks of age. We examined body composition, food intake, energy expenditure, spontaneous rearing activity and sleep patterns and performed behavioral assays for anxiety (open field activity, elevated plus maze [EPM], light/dark exploration), depression (tail suspension and forced swim test), sociability (three-chamber), repetitive (marble burying), learning and memory (fear conditioning), and circadian behavior (wheel-running activity during light-dark and constant dark cycles). We also measured circadian gene expression in hypothalamus and liver at different Zeitgeber times (ZT). Male offspring from separate MLP exposed dams had significantly greater body fat (P = 0.03), less energy expenditure (P = 0.004), less rearing activity (P = 0.04) and a greater number of night-time rest/sleep bouts (P = 0.03) compared to control. MLP offspring displayed greater anxiety-like behavior in the EPM (P<0.01) but had no learning and memory deficit in fear-conditioning assay (P = 0.02). There was an effect of time on Per1, Per 2 and Clock circadian gene expression in the hypothalamus but not on circadian behavior. Thus, transplacental and early developmental exposure of dams to chronic MLP reduces food intake and energy expenditure, increases anxiety like behavior and disturbs sleep patterns but not circadian rhythm in adult male offspring.


Assuntos
Ansiedade/etiologia , Ritmo Circadiano/fisiologia , Dieta com Restrição de Proteínas/efeitos adversos , Metabolismo Energético , Sono/fisiologia , Tecido Adiposo , Animais , Comportamento Animal , Ritmo Circadiano/genética , Feminino , Expressão Gênica , Hipotálamo/fisiologia , Fígado/fisiologia , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos Endogâmicos C57BL
11.
Sleep Med Rev ; 33: 70-78, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27908540

RESUMO

In recent years, strong evidence has emerged suggesting that insufficient duration, quality, and/or timing of sleep are associated with cardiovascular disease (CVD), and various mechanisms for this association have been proposed. Such associations may be related to endophenotypic features of the sleep homeostat and the circadian oscillator, or may be state-like effects of the environment. Here, we review recent literature on sleep, circadian rhythms and CVD with a specific emphasis on differences between racial/ethnic groups. We discuss the reported differences, mainly between individuals of European and African descent, in parameters related to sleep (architecture, duration, quality) and circadian rhythms (period length and phase shifting). We further review racial/ethnic differences in cardiovascular disease and its risk factors, and develop the hypothesis that racial/ethnic health disparities may, to a greater or smaller degree, relate to differences in parameters related to sleep and circadian rhythms. When humans left Africa some 100,000 years ago, some genetic differences between different races/ethnicities were acquired. These genetic differences have been proposed as a possible predictor of CVD disparities, but concomitant differences in culture and lifestyle between different groups may equally explain CVD disparities. We discuss the evidence for genetic and environmental causes of these differences in sleep and circadian rhythms, and their usefulness as health intervention targets.


Assuntos
Doenças Cardiovasculares/genética , Ritmo Circadiano/genética , Etnicidade/genética , Sono/genética , População Negra/genética , Doenças Cardiovasculares/etiologia , Ritmo Circadiano/fisiologia , Disparidades nos Níveis de Saúde , Humanos , Estilo de Vida , Grupos Raciais/genética , Fatores de Risco , Sono/fisiologia , População Branca/genética
12.
ACS Synth Biol ; 5(6): 459-70, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-26835539

RESUMO

The engineering of transcriptional networks presents many challenges due to the inherent uncertainty in the system structure, changing cellular context, and stochasticity in the governing dynamics. One approach to address these problems is to design and build systems that can function across a range of conditions; that is they are robust to uncertainty in their constituent components. Here we examine the parametric robustness landscape of transcriptional oscillators, which underlie many important processes such as circadian rhythms and the cell cycle, plus also serve as a model for the engineering of complex and emergent phenomena. The central questions that we address are: Can we build genetic oscillators that are more robust than those already constructed? Can we make genetic oscillators arbitrarily robust? These questions are technically challenging due to the large model and parameter spaces that must be efficiently explored. Here we use a measure of robustness that coincides with the Bayesian model evidence, combined with an efficient Monte Carlo method to traverse model space and concentrate on regions of high robustness, which enables the accurate evaluation of the relative robustness of gene network models governed by stochastic dynamics. We report the most robust two and three gene oscillator systems, plus examine how the number of interactions, the presence of autoregulation, and degradation of mRNA and protein affects the frequency, amplitude, and robustness of transcriptional oscillators. We also find that there is a limit to parametric robustness, beyond which there is nothing to be gained by adding additional feedback. Importantly, we provide predictions on new oscillator systems that can be constructed to verify the theory and advance design and modeling approaches to systems and synthetic biology.


Assuntos
Redes Reguladoras de Genes/genética , Engenharia Genética/métodos , Projetos de Pesquisa/estatística & dados numéricos , Teorema de Bayes , Ciclo Celular/genética , Ritmo Circadiano/genética , Simulação por Computador , Modelos Genéticos , Método de Monte Carlo , Proteínas/genética , RNA Mensageiro/genética , Processos Estocásticos , Biologia Sintética/métodos
13.
Chronobiol Int ; 32(1): 103-12, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25187986

RESUMO

The negative health effects of shift work, including carcinogenesis, may be mediated by changes in DNA methylation, particularly in the circadian genes. Using the Infinium HumanMethylation450 Bead Array (Illumina, San Diego, CA), we compared genome-wide methylation between 65 actively working dayshift workers and 59 actively working nightshift workers in the healthcare industry. A total of 473 800 loci, including 391 loci across the 12 core circadian genes, were analyzed to identify methylation markers associated with shift work status using linear regression models adjusted for gender, age, body mass index, race, smoking status and leukocyte cell profile as measured by flow cytometry. Analyses at the level of gene, CpG island and gene region were also conducted. To account for multiple comparisons, we controlled the false discovery rate (FDR ≤0.05). Significant differences between nightshift and dayshift workers were found at 16 135 of 473 800 loci, across 3769 of 20 164 genes, across 7173 of 22 721 CpG islands and across 5508 of 51 843 gene regions. For each significant loci, gene, CpG island or gene region, average methylation was consistently found to be decreased among nightshift workers compared to dayshift workers. Twenty-one loci located in the circadian genes were also found to be significantly hypomethylated among nightshift workers. The largest differences were observed for three loci located in the gene body of PER3. A total of nine significant loci were found in the CSNK1E gene, most of which were located in a CpG island and near the transcription start site of the gene. Methylation changes in these circadian genes may lead to altered expression of these genes which has been associated with cancer in previous studies. Gene ontology enrichment analysis revealed that among the significantly hypomethylated genes, processes related to host defense and immunity were represented. Our results indicate that the health effects of shift work may be mediated by hypomethylation of a wide variety of genes, including those related to circadian rhythms. While these findings need to be followed-up among a considerably expanded group of shift workers, the data generated by this study supports the need for future targeted research into the potential impacts of shift work on specific carcinogenic mechanisms.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Ritmo Circadiano/genética , Metilação de DNA , Admissão e Escalonamento de Pessoal , Transtornos do Sono do Ritmo Circadiano/genética , Carga de Trabalho , Adulto , Ilhas de CpG , Feminino , Perfilação da Expressão Gênica/métodos , Loci Gênicos , Genoma Humano , Estudo de Associação Genômica Ampla , Setor de Assistência à Saúde , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Transtornos do Sono do Ritmo Circadiano/diagnóstico , Fatores de Tempo , Adulto Jovem
14.
Am J Clin Nutr ; 99(2): 392-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24335056

RESUMO

BACKGROUND: Circadian rhythm has been shown to be related to glucose metabolism and risk of diabetes, probably through effects on energy balance. Recent genome-wide association studies identified variants in circadian rhythm-related genes (CRY2 and MTNR1B) associated with glucose homeostasis. OBJECTIVE: We tested whether CRY2 and MTNR1B genotypes affected changes in measures of energy expenditure in response to a weight-loss diet intervention in a 2-y randomized clinical trial, the POUNDS (Preventing Overweight Using Novel Dietary Strategies) LOST Trial. DESIGN: The variants CRY2 rs11605924 (n = 721) and MTNR1B rs10830963 (n = 722) were genotyped in overweight or obese adults who were randomly assigned to 1 of 4 weight-loss diets that differed in their proportions of macronutrients. Respiratory quotient (RQ) and resting metabolic rate (RMR) were measured. RESULTS: By 2 y of diet intervention, the A allele of CRY2 rs11605924 was significantly associated with a greater reduction in RQ (P = 0.03) and a greater increase in RMR and RMR/kg (both P = 0.04). The G allele of MTNR1B rs10830963 was significantly associated with a greater increase in RQ (P = 0.01) but was not related to changes in RMR and RMR/kg. In addition, we found significant gene-diet fat interactions for both CRY2 (P-interaction = 0.02) and MTNR1B (P-interaction < 0.001) in relation to 2-y changes in RQ. CONCLUSIONS: Our data indicate that variants in the circadian-related genes CRY2 and MTNR1B may affect long-term changes in energy expenditure, and dietary fat intake may modify the genetic effects. This trial was registered at www.clinicaltrials.gov as NCT00072995.


Assuntos
Glicemia/metabolismo , Ritmo Circadiano/genética , Criptocromos/genética , Dieta Redutora , Metabolismo Energético , Receptor MT1 de Melatonina/genética , Adulto , Idoso , Alelos , Metabolismo Basal , Glicemia/genética , Criptocromos/metabolismo , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Genótipo , Homeostase/genética , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Obesidade/dietoterapia , Obesidade/genética , Sobrepeso/dietoterapia , Sobrepeso/genética , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina
16.
Hum Mol Genet ; 22(21): 4318-28, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23771028

RESUMO

Prader-Willi syndrome (PWS), a genetic disorder of obesity, intellectual disability and sleep abnormalities, is caused by loss of non-coding RNAs on paternal chromosome 15q11-q13. The imprinted minimal PWS locus encompasses a long non-coding RNA (lncRNA) transcript processed into multiple SNORD116 small nucleolar RNAs and the spliced exons of the host gene, 116HG. However, both the molecular function and the disease relevance of the spliced lncRNA 116HG are unknown. Here, we show that 116HG forms a subnuclear RNA cloud that co-purifies with the transcriptional activator RBBP5 and active metabolic genes, remains tethered to the site of its transcription and increases in size in post-natal neurons and during sleep. Snord116del mice lacking 116HG exhibited increased energy expenditure corresponding to the dysregulation of diurnally expressed Mtor and circadian genes Clock, Cry1 and Per2. These combined genomic and metabolic analyses demonstrate that 116HG regulates the diurnal energy expenditure of the brain. These novel molecular insights into the energy imbalance in PWS should lead to improved therapies and understanding of lncRNA roles in complex neurodevelopmental and metabolic disorders.


Assuntos
Ritmo Circadiano/genética , Metabolismo Energético/genética , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/fisiopatologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Autopsia , Encéfalo/fisiopatologia , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Proteínas de Ligação a DNA , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Sono/genética
17.
Behav Brain Res ; 250: 157-65, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23665119

RESUMO

Spinocerebellar Ataxia type 17 (SCA17) is an autosomal dominantly inherited, neurodegenerative disease characterized by ataxia, involuntary movements, and dementia. A novel SCA17 mouse model having a 71 polyglutamine repeat expansion in the TATA-binding protein (TBP) has shown age related motor deficit using a classic motor test, yet concomitant weight increase might be a confounding factor for this measurement. In this study we used an automated home cage system to test several motor readouts for this same model to confirm pathological behavior results and evaluate benefits of automated home cage in behavior phenotyping. Our results confirm motor deficits in the Tbp/Q71 mice and present previously unrecognized behavioral characteristics obtained from the automated home cage, indicating its use for high-throughput screening and testing, e.g. of therapeutic compounds.


Assuntos
Transtornos Mentais/diagnóstico , Transtornos Mentais/etiologia , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/genética , Proteína de Ligação a TATA-Box/genética , Expansão das Repetições de Trinucleotídeos/genética , Fatores Etários , Animais , Peso Corporal/genética , Ritmo Circadiano/genética , Modelos Animais de Doenças , Ingestão de Alimentos/genética , Processamento Eletrônico de Dados , Comportamento Exploratório/fisiologia , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Análise de Regressão , Estatísticas não Paramétricas
18.
PLoS Comput Biol ; 9(5): e1003053, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671414

RESUMO

Additive genetic variance (VA ) and total genetic variance (VG ) are core concepts in biomedical, evolutionary and production-biology genetics. What determines the large variation in reported VA /VG ratios from line-cross experiments is not well understood. Here we report how the VA /VG ratio, and thus the ratio between narrow and broad sense heritability (h(2) /H(2) ), varies as a function of the regulatory architecture underlying genotype-to-phenotype (GP) maps. We studied five dynamic models (of the cAMP pathway, the glycolysis, the circadian rhythms, the cell cycle, and heart cell dynamics). We assumed genetic variation to be reflected in model parameters and extracted phenotypes summarizing the system dynamics. Even when imposing purely linear genotype to parameter maps and no environmental variation, we observed quite low VA /VG ratios. In particular, systems with positive feedback and cyclic dynamics gave more non-monotone genotype-phenotype maps and much lower VA /VG ratios than those without. The results show that some regulatory architectures consistently maintain a transparent genotype-to-phenotype relationship, whereas other architectures generate more subtle patterns. Our approach can be used to elucidate these relationships across a whole range of biological systems in a systematic fashion.


Assuntos
Genótipo , Padrões de Herança/genética , Modelos Genéticos , Fenótipo , Animais , Ciclo Celular/genética , Ritmo Circadiano/genética , Biologia Computacional , Simulação por Computador , AMP Cíclico , Glicólise/genética , Método de Monte Carlo , Miócitos Cardíacos , Plantas
19.
PLoS One ; 8(4): e60878, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593337

RESUMO

Pyrethroids are the most used insecticide class worldwide. They target the voltage gated sodium channel (NaV), inducing the knockdown effect. In Aedes aegypti, the main dengue vector, the AaNaV substitutions Val1016Ile and Phe1534Cys are the most important knockdown resistance (kdr) mutations. We evaluated the fitness cost of these kdr mutations related to distinct aspects of development and reproduction, in the absence of any other major resistance mechanism. To accomplish this, we initially set up 68 crosses with mosquitoes from a natural population. Allele-specific PCR revealed that one couple, the one originating the CIT-32 strain, had both parents homozygous for both kdr mutations. However, this pyrethroid resistant strain also presented high levels of detoxifying enzymes, which synergistically account for resistance, as revealed by biological and biochemical assays. Therefore, we carried out backcrosses between CIT-32 and Rockefeller (an insecticide susceptible strain) for eight generations in order to bring the kdr mutation into a susceptible genetic background. This new strain, named Rock-kdr, was highly resistant to pyrethroid and presented reduced alteration of detoxifying activity. Fitness of the Rock-kdr was then evaluated in comparison with Rockefeller. In this strain, larval development took longer, adults had an increased locomotor activity, fewer females laid eggs, and produced a lower number of eggs. Under an inter-strain competition scenario, the Rock-kdr larvae developed even slower. Moreover, when Rockefeller and Rock-kdr were reared together in population cage experiments during 15 generations in absence of insecticide, the mutant allele decreased in frequency. These results strongly suggest that the Ae. aegypti kdr mutations have a high fitness cost. Therefore, enhanced surveillance for resistance should be priority in localities where the kdr mutation is found before new adaptive alleles can be selected for diminishing the kdr deleterious effects.


Assuntos
Aedes/genética , Resistência a Medicamentos/genética , Inseticidas , Mutação , Piretrinas , Canais de Sódio Disparados por Voltagem/genética , Aedes/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Aedes/fisiologia , Ração Animal , Animais , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Feminino , Fertilidade/efeitos dos fármacos , Fertilidade/genética , Frequência do Gene , Homozigoto , Inseminação/efeitos dos fármacos , Inseminação/genética , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Longevidade/efeitos dos fármacos , Longevidade/genética , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Óvulo/efeitos dos fármacos , Pupa/efeitos dos fármacos , Pupa/crescimento & desenvolvimento
20.
Bioinformatics ; 29(9): 1158-65, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23479351

RESUMO

MOTIVATION: The analysis and mechanistic modelling of time series gene expression data provided by techniques such as microarrays, NanoString, reverse transcription-polymerase chain reaction and advanced sequencing are invaluable for developing an understanding of the variation in key biological processes. We address this by proposing the estimation of a flexible dynamic model, which decouples temporal synthesis and degradation of mRNA and, hence, allows for transcriptional activity to switch between different states. RESULTS: The model is flexible enough to capture a variety of observed transcriptional dynamics, including oscillatory behaviour, in a way that is compatible with the demands imposed by the quality, time-resolution and quantity of the data. We show that the timing and number of switch events in transcriptional activity can be estimated alongside individual gene mRNA stability with the help of a Bayesian reversible jump Markov chain Monte Carlo algorithm. To demonstrate the methodology, we focus on modelling the wild-type behaviour of a selection of 200 circadian genes of the model plant Arabidopsis thaliana. The results support the idea that using a mechanistic model to identify transcriptional switch points is likely to strongly contribute to efforts in elucidating and understanding key biological processes, such as transcription and degradation.


Assuntos
Algoritmos , Modelos Genéticos , Transcrição Gênica , Arabidopsis/genética , Arabidopsis/metabolismo , Teorema de Bayes , Ritmo Circadiano/genética , Cinética , Cadeias de Markov , Método de Monte Carlo , Regiões Promotoras Genéticas , Estabilidade de RNA , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA