Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Environ Res ; 194: 106339, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182500

RESUMO

Increased atmospheric CO2 concentrations not only change the components of inorganic carbon system in seawater, resulting in ocean acidification, but also lead to decreased seawater pH, resulting in ocean acidification. Consequently, increased inorganic carbon concentrations in seawater provide a sufficient carbon source for macroalgal photosynthesis and growth. Increased domestic sewage and industrial wastewater discharge into coastal areas has led to nutrient accumulation in coastal seawaters. Combined with elevated pCO2 (1200 ppmv), increased nutrient availability always stimulates the growth of non-calcifying macroalgae, such as red economical macroalga Gracilariopsis lemaneiformis. Here, we evaluated the interactive effects of nutrients with elevated pCO2 on the economically important marine macroalga Kappaphycus alvarezii (Rhodophyta) in a factorial 21-day coupling experiment. The effects of increased nutrient availability on photosynthesis and photosynthetic pigments of K. alvarezii were greater than those of pCO2 concentration. The highest Fv/Fm values (0.660 ± 0.019 and 0.666 ± 0.030, respectively) were obtained at 2 µmol L-1 of NO3-N at two pCO2 levels. Under the elevated pCO2 condition, the Chl-a content was lowest (0.007 ± 0.004 mg g-1) at 2 µmol L-1 of NO3-N and highest (0.024 ± 0.002 mg g-1) at 50 µmol L-1 of NO3-N. The phycocyanin content was highest (0.052 ± 0.012 mg g-1) at 150 µmol L-1 of NO3-N under elevated pCO2 condition. The malondialdehyde content declined from 32.025 ± 4.558 nmol g-1 to 26.660 ± 3.124 nmol g-1 with the increased nutrients at under low pCO2. To modulate suitable adjustments, soluble biochemical components such as soluble carbohydrate, soluble protein, free amino acids, and proline were abundantly secreted and were likely to protect the integrity of cellular structures under elevated nutrient availability. Our findings can serve as a reference for cultivation and bioremediation methods under future environmental conditions.


Assuntos
Algas Comestíveis , Rodófitas , Alga Marinha , Água do Mar/química , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Dióxido de Carbono/metabolismo , Rodófitas/fisiologia , Fotossíntese/fisiologia , Carbono/metabolismo , Nutrientes
2.
Sci Rep ; 7(1): 16937, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208978

RESUMO

Habitat degradation alters the chemical landscape through which information about community dynamics is transmitted. Olfactory information is crucial for risk assessment in aquatic organisms as predators release odours when they capture prey that lead to an alarm response in conspecific prey. Recent studies show some coral reef fishes are unable to use alarm odours when surrounded by dead-degraded coral. Our study examines the spatial and temporal dynamics of this alarm odour-nullifying effect, and which substratum types may be responsible. Field experiments showed that settlement-stage damselfish were not able to detect alarm odours within 2 m downcurrent of degraded coral, and that the antipredator response was re-established 20-40 min after transferral to live coral. Laboratory experiments indicate that the chemicals from common components of the degraded habitats, the cyanobacteria, Okeania sp., and diatom, Pseudo-nitzschia sp.prevented an alarm odour response. The same nullifying effect was found for the common red algae, Galaxauria robusta, suggesting that the problem is of a broader nature than previously realised. Those fish species best able to compensate for a lack of olfactory risk information at key times will be those potentially most resilient to the effects of coral degradation that operate through this mechanism.


Assuntos
Recifes de Corais , Peixes , Phaeophyceae/fisiologia , Rodófitas/fisiologia , Animais , Austrália , Cianobactérias , Diatomáceas , Proliferação Nociva de Algas/fisiologia , Odorantes , Medição de Risco/métodos , Análise Espaço-Temporal
3.
Protist ; 163(1): 76-90, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21741306

RESUMO

Most photosynthetic dinoflagellates harbour a red alga-derived secondary plastid. In the dinoflagellate Karlodinium micrum, this plastid was replaced by a subsequent endosymbiosis, resulting in a tertiary plastid derived from a haptophyte. Evolution of endosymbionts entails substantial relocation of endosymbiont genes to the host nucleus: a process called endosymbiotic gene transfer (EGT). In K. micrum, numerous plastid genes from the haptophyte nucleus are found in the host nucleus, providing evidence for EGT in this system. In other cases of endosymbiosis, notably ancient primary endosymbiotic events, EGT has been inferred to contribute to remodeling of other cell functions by expression of proteins in compartments other than the endosymbiont from which they derived. K. micrum provides a more recently derived endosymbiotic system to test for evidence of EGT and gain of function in non-plastid compartments. In this study, we test for gain of haptophyte-derived proteins for mitochondrial function in K. micrum. Using molecular phylogenies we have analysed whether nucleus-encoded mitochondrial proteins were inherited by EGT from the haptophyte endosymbiont, or vertically inherited from the dinoflagellate host lineage. From this dataset we found no evidence of haptophyte-derived mitochondrial genes, and the only cases of non-vertical inheritance were genes derived from lateral gene transfer events.


Assuntos
Núcleo Celular/genética , Dinoflagellida/genética , Proteínas Mitocondriais/genética , Proteínas de Protozoários/genética , Rodófitas/genética , Simbiose , Dinoflagellida/classificação , Dinoflagellida/fisiologia , Transferência Genética Horizontal , Dados de Sequência Molecular , Filogenia , Plastídeos/genética , Rodófitas/fisiologia
4.
PLoS One ; 6(12): e29359, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22216258

RESUMO

In comparison with terrestrial plants the mechanistic knowledge of chemical defences is poor for marine macroalgae. This restricts our understanding in the chemically mediated interactions that take place between algae and other organisms. Technical advances such as metabolomics, however, enable new approaches towards the characterisation of the chemically mediated interactions of organisms with their environment. We address defence responses in the red alga Gracilaria vermiculophylla using mass spectrometry based metabolomics in combination with bioassays. Being invasive in the north Atlantic this alga is likely to possess chemical defences according to the prediction that well-defended exotics are most likely to become successful invaders in systems dominated by generalist grazers, such as marine macroalgal communities. We investigated the effect of intense herbivore feeding and simulated herbivory by mechanical wounding of the algae. Both processes led to similar changes in the metabolic profile. Feeding experiments with the generalist isopod grazer Idotea baltica showed that mechanical wounding caused a significant increase in grazer resistance. Structure elucidation of the metabolites of which some were up-regulated more than 100 times in the wounded tissue, revealed known and novel eicosanoids as major components. Among these were prostaglandins, hydroxylated fatty acids and arachidonic acid derived conjugated lactones. Bioassays with pure metabolites showed that these eicosanoids are part of the innate defence system of macroalgae, similarly to animal systems. In accordance with an induced defence mechanism application of extracts from wounded tissue caused a significant increase in grazer resistance and the up-regulation of other pathways than in the activated defence. Thus, this study suggests that G. vermiculophylla chemically deters herbivory by two lines of defence, a rapid wound-activated process followed by a slower inducible defence. By unravelling involved pathways using metabolomics this work contributes significantly to the understanding of activated and inducible defences for marine macroalgae.


Assuntos
Metabolômica , Rodófitas/fisiologia , Bioensaio , Cromatografia Gasosa , Cromatografia Líquida , Espectrometria de Massas , Rodófitas/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA