Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 48(21): 4519-27, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19351176

RESUMO

The reactivity of the acido Ru(II) complexes cis-[RuCl(2)(LL)(2)], [RuCO(3)(LL)(2)], cis-[RuCO(3)-(bquin)(2)] (LL = 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen); bquin = 2,2'-biquinoline) and cyclometalated Ru(II) derivatives of 2-phenylpyridine and 4-(2-tolyl)pyridine [Ru(o-C(6)H(4)-2-py)(phen)(2)]PF(6) (1), [Ru(o-C(6)H(3)-p-R-2-py)(bpy)(MeCN)(2)]PF(6) (2), and [Ru(o-C(6)H(3)-p-R-2-py)(phen)(MeCN)(2)]PF(6) (3) (R = H (a), Me (b)) toward laccase from Coriolus hirsutus has been investigated by conventional UV-vis spectroscopy at pH 3-7 and 25 degrees C. The acido and cyclometalated complexes are readily oxidized into the corresponding Ru(III) species, but the two types of complexes differ substantially in reactivity and obey different rate laws. The acido complexes are oxidized more slowly and the second-order kinetics, first-order in laccase and Ru(II), holds with the rate constants around 5 x 10(4) M(-1) s(-1) at pH 4.5 and 25 degrees C. The cyclometalated complexes 1-3 react much faster and the hyperbolic Michaelis-Menten kinetics holds. However, it is not due to formation of an enzyme-substrate complex but rather because of the ping-pong mechanism of catalysis, viz. E(ox) + Ru(II) --> E(red) + Ru(III) (k(1)); E(red) + 1/4O(2) --> E(ox) (k(2)), with the rate constants k(1) in the range (2-9) x 10(7) M(-1) s(-1) under the same conditions. The huge values of k(1) move the enzymatic oxidation toward a kinetic regime when the dioxygen half-reaction becomes the rate-limiting step. Cyclometalated compounds 1-3 can therefore be used for routine estimation of k(2), that is, the rate constant for reoxidation for laccases by dioxygen. The mechanism proposed was confirmed by the direct stopped-flow measurements of the k(2) rate constant (8.1 x 10(5) M(-1) s(-1) at 26 degrees C) and supported by the theoretical modeling of interaction between the bpy analogue of 1 and Coriolus hirsutes laccase using Monte Carlo simulations.


Assuntos
Biocatálise , Lacase/metabolismo , Modelos Moleculares , Compostos Organometálicos/metabolismo , Rutênio/química , Rutênio/metabolismo , Trametes/enzimologia , Domínio Catalítico , Cinética , Lacase/química , Conformação Molecular , Método de Monte Carlo , Compostos Organometálicos/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA