Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Ophthalmol ; 250: 103-110, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36764426

RESUMO

PURPOSE: To evaluate disease progression using static perimetry (SP) in patients with USH2A-related retinal degeneration, including Usher syndrome type 2 (USH2) and nonsyndromic autosomal recessive retinitis pigmentosa. DESIGN: Prospective, observational cohort study. METHODS: A total of 102 patients with biallelic disease-causing sequence variants in USH2A with baseline best-corrected visual acuity (BCVA) letter score ≥54 were recruited from 16 clinical sites in Europe and North America. SP, BCVA, full-field stimulus thresholds, spectral domain optical coherence tomography macular scans, and fundus-guided mesopic microperimetry were performed at baseline and annually. The main outcome measures were total hill of vision (VTOT), hill of vision in the central 30° (V30), VTOT minus V30 (VPERIPH), and mean sensitivity. RESULTS: The average decline (95% CI) was 2.05 (1.40, 2.70) decibel-steradian (dB-sr)/y for VTOT, 0.48 (0.32, 0.65) dB-sr/y for V30, 1.53 (0.97, 2.08) dB-sr/y for VPERIPH, and 0.55 (0.40, 0.71) dB/y for mean sensitivity. Average percentage decline per year was 8.3 (5.5, 11.1) for VTOT, 5.2 (3.0, 7.4) for V30, 16.0 (9.5, 22.0) for VPERIPH, and 5.1 (3.5, 6.7) for mean sensitivity. Changes from baseline to year 2 in all SP measures were highly correlated (r's ranging from 0.52 [V30 vs VPERIPH] to 0.98 [VTOT vs VPERIPH]). CONCLUSIONS: Quantitative measures of SP declined significantly over 2 years in USH2A-related retinal degeneration. The annual percentage rate of change was greatest for VTOT and VPERIPH, whereas V30 and mean sensitivity changed least, reflecting earlier and more severe peripheral degeneration compared with central loss.


Assuntos
Degeneração Retiniana , Síndromes de Usher , Humanos , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/genética , Testes de Campo Visual/métodos , Estudos Prospectivos , Campos Visuais , Acuidade Visual , Tomografia de Coerência Óptica , Proteínas da Matriz Extracelular/genética
2.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203967

RESUMO

A substantial proportion of subjects with autosomal recessive retinitis pigmentosa (arRP) or Usher syndrome type II (USH2) lacks a genetic diagnosis due to incomplete USH2A screening in the early days of genetic testing. These cases lack eligibility for optimal genetic counseling and future therapy. USH2A defects are the most frequent cause of USH2 and are also causative in individuals with arRP. Therefore, USH2A is an important target for genetic screening. The aim of this study was to assess unscreened or incompletely screened and unexplained USH2 and arRP cases for (likely) pathogenic USH2A variants. Molecular inversion probe (MIP)-based sequencing was performed for the USH2A exons and their flanking regions, as well as published deep-intronic variants. This was done to identify single nucleotide variants (SNVs) and copy number variants (CNVs) in 29 unscreened or partially pre-screened USH2 and 11 partially pre-screened arRP subjects. In 29 out of these 40 cases, two (likely) pathogenic variants were successfully identified. Four of the identified SNVs and one CNV were novel. One previously identified synonymous variant was demonstrated to affect pre-mRNA splicing. In conclusion, genetic diagnoses were obtained for a majority of cases, which confirms that MIP-based sequencing is an effective screening tool for USH2A. Seven unexplained cases were selected for future analysis with whole genome sequencing.


Assuntos
Análise Custo-Benefício , Éxons/genética , Proteínas da Matriz Extracelular/genética , Sondas Moleculares/metabolismo , Sítios de Splice de RNA/genética , Retinose Pigmentar/genética , Análise de Sequência de DNA , Síndromes de Usher/genética , Sequência de Bases , Variações do Número de Cópias de DNA/genética , Deleção de Genes , Humanos , Polimorfismo de Nucleotídeo Único/genética , Retinose Pigmentar/economia , Síndromes de Usher/economia
3.
Adv Exp Med Biol ; 1185: 91-96, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884594

RESUMO

Mutations in USH2A gene account for most cases of Usher syndrome type II (USH2), characterized by a combination of congenital hearing loss and progressive vision loss. In particular, approximately 30% of USH2A patients harbor a single base pair deletion, c.2299delG, in exon 13 that creates a frameshift and premature stop codon, leading to a nonfunctional USH2A protein. The USH2A protein, also known as usherin, is an extremely large transmembrane protein (5202 aa), which limits the use of conventional AAV-mediated gene therapy; thus development of alternative approaches is required for the treatment of USH2A patients. As usherin contains multiple repetitive domains, we hypothesize that removal of one or more of those domains encoded by mutant exon(s) in the USH2A gene may reconstitute the reading frame and restore the production of a shortened yet adequately functional protein. In this study, we deleted the exon 12 of mouse Ush2a gene (corresponding to exon 13 of human USH2A) using CRISPR/Cas9-based exon-skipping approach and revealed that a shortened form of Ush2a that lacks exon 12 (Ush2a-∆Ex12) is produced and localized correctly in the cochlea. When the Ush2a-∆Ex12 allele is expressed on an Ush2a null background, the Ush2a-∆Ex12 protein can successfully restore the impaired hair cell structure and the auditory function in the Ush2a-/- mice. These results demonstrate that CRISPR/Cas9-based exon-skipping strategy holds a great therapeutic potential for the treatment of USH2A patients.


Assuntos
Proteínas da Matriz Extracelular/genética , Síndromes de Usher/terapia , Animais , Sistemas CRISPR-Cas , Éxons , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutação , Síndromes de Usher/genética
4.
BMC Med Genomics ; 12(1): 157, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699113

RESUMO

BACKGROUND: Preimplantation genetic testing for monogenic defects (PGT-M) has been available in clinical practice. This study aimed to validate the applicability of targeted capture sequencing in developing personalized PGT-M assay. METHODS: One couple at risk of transmitting Usher Syndrome to their offspring was recruited to this study. Customized capture probe targeted at USH2A gene and 350 kb flanking region were designed for PGT-M. Eleven blastocysts were biopsied and amplified by using multiple displacement amplification (MDA) and capture sequencing. A hidden Markov model (HMM) assisted haplotype analysis was performed to deduce embryo's genotype by using single nucleotide polymorphisms (SNPs) identified in each sample. The embryo without paternal rare variant was implanted and validated by conventional prenatal or postnatal diagnostic means. RESULTS: Four embryos were diagnosed as free of father's rare variant, two were transferred and one achieved a successful pregnancy. The fetal genotype was confirmed by Sanger sequencing of fetal genomic DNA obtained by amniocentesis. The PGT-M and prenatal diagnosis results were further confirmed by the molecular diagnosis of the baby's genomic DNA sample. The auditory test showed that the hearing was normal. CONCLUSIONS: Targeted capture sequencing is an effective and convenient strategy to develop customized PGT-M assay.


Assuntos
Diagnóstico Pré-Implantação/métodos , Síndromes de Usher/genética , Adulto , Líquido Amniótico/metabolismo , Aberrações Cromossômicas , DNA/química , DNA/genética , DNA/metabolismo , Embrião de Mamíferos/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Fertilização in vitro , Sangue Fetal/metabolismo , Genótipo , Haplótipos , Heterozigoto , Humanos , Cadeias de Markov , Linhagem , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Síndromes de Usher/diagnóstico
5.
Sci Rep ; 6: 20948, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26864517

RESUMO

Enrichment capture methods for NGS are widely used, however, they evolve rapidly and it is necessary to periodically measure their strengths and weaknesses before transfer to diagnostic services. We assessed two recently released custom DNA solution-capture enrichment methods for NGS, namely Illumina NRCCE and Agilent SureSelect(QXT), against a reference method NimbleGen SeqCap EZ Choice on a similar gene panel, sharing 678 kb and 110 genes. Two Illumina MiSeq runs of 12 samples each have been performed, for each of the three methods, using the same 24 patients (affected with sensorineural disorders). Technical outcomes have been computed and compared, including depth and evenness of coverage, enrichment in targeted regions, performance in GC-rich regions and ability to generate consistent variant datasets. While we show that the three methods resulted in suitable datasets for standard DNA variant discovery, we describe significant differences between the results for the above parameters. NimbleGen offered the best depth of coverage and evenness, while NRCCE showed the highest on target levels but high duplicate rates. SureSelect(QXT) showed an overall quality close to that of NimbleGen. The new methods exhibit reduced preparation time but behave differently. These findings will guide laboratories in their choice of library enrichment approach.


Assuntos
Perda Auditiva Funcional/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Retinose Pigmentar/genética , Síndromes de Usher/genética , Composição de Bases , Genes Recessivos , Perda Auditiva Funcional/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Humanos , Retinose Pigmentar/diagnóstico , Análise de Sequência de DNA , Síndromes de Usher/diagnóstico
6.
Adv Exp Med Biol ; 801: 725-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24664764

RESUMO

Usher syndrome type 1B, which is characterized by congenital deafness and progressive retinal degeneration, is caused by the loss of the function of MYO7A. Prevention of the retinal degeneration should be possible by delivering functional MYO7A to retinal cells. Although this approach has been used successfully in clinical trials for Leber congenital amaurosis (LCA2), it remains a challenge for Usher 1B because of the large size of the MYO7A cDNA. Different viral vectors have been tested for use in MYO7A gene therapy. Here, we review approaches with lentiviruses, which can accommodate larger genes, as well as attempts to use adeno-associated virus (AAV), which has a smaller packaging capacity. In conclusion, both types of viral vector appear to be effective. Despite concerns about the ability of lentiviruses to access the photoreceptor cells, a phenotype of the photoreceptors of Myo7a-mutant mice can be corrected. And although MYO7A cDNA is significantly larger than the nominal carrying capacity of AAV, AAV-MYO7A in single vectors also corrected Myo7a-mutant phenotypes in photoreceptor and RPE cells. Interestingly, however, a dual AAV vector approach was found to be much less effective.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Lentivirus/genética , Miosinas/genética , Síndromes de Usher/terapia , Animais , Vetores Genéticos , Humanos , Camundongos , Camundongos Knockout , Miosina VIIa , Síndromes de Usher/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA