Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 102021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34545808

RESUMO

In fluctuating environments, switching between different growth strategies, such as those affecting cell size and proliferation, can be advantageous to an organism. Trade-offs arise, however. Mechanisms that aberrantly increase cell size or proliferation-such as mutations or chemicals that interfere with growth regulatory pathways-can also shorten lifespan. Here we report a natural example of how the interplay between growth and lifespan can be epigenetically controlled. We find that a highly conserved RNA-modifying enzyme, the pseudouridine synthase Pus4/TruB, can act as a prion, endowing yeast with greater proliferation rates at the cost of a shortened lifespan. Cells harboring the prion grow larger and exhibit altered protein synthesis. This epigenetic state, [BIG+] (better in growth), allows cells to heritably yet reversibly alter their translational program, leading to the differential synthesis of dozens of proteins, including many that regulate proliferation and aging. Our data reveal a new role for prion-based control of an RNA-modifying enzyme in driving heritable epigenetic states that transform cell growth and survival.


Cells make different proteins to perform different tasks. Each protein is a long chain of building blocks called amino acids that must fold into a particular shape before it can be useful. Some proteins can fold in more than one way, a normal form and a 'prion' form. Prions are unusual in that they can force normally folded proteins with the same amino acid sequence as them to refold into new prions. This means that a single prion can make many more that are inherited when cells divide. Some prions can cause disease, but others may be beneficial. Pus4 is a yeast protein that is typically involved in modifying ribonucleic acids, molecules that help translate genetic information into new proteins. Sometimes Pus4 can adopt a beneficial prion conformation called [BIG+]. When yeast cells have access to plenty of nutrients, [BIG+] helps them grow faster and larger, but this comes at the cost of a shorter lifespan. Garcia, Campbell et al. combined computational modeling and experiments in baker's yeast (Saccharomyces cerevisiae) to investigate the role of [BIG+]. They found that the prion accelerated protein production, leading to both faster growth and a shorter lifespan in these cells, even without any changes in gene sequence. Garcia, Campbell et al.'s findings explain the beneficial activity of prion proteins in baker's yeast cells. The results also describe how cells balance a tradeoff between growth and lifespan without any changes in the genome. This helps to highlight that genetics do not always explain the behaviors of cells, and further methods are needed to better understand cell biology.


Assuntos
Proliferação de Células , Transferases Intramoleculares/metabolismo , Meiose , Proteínas Priônicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Crescimento Celular , Epigênese Genética , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Transferases Intramoleculares/genética , Longevidade , Proteínas Priônicas/genética , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo
2.
PLoS One ; 15(10): e0225020, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33031388

RESUMO

Many microbial phenotypes are differentially or exclusively expressed on agar surfaces, including biofilms, motility, and sociality. However, agar-based assays are limited by their low throughput, which increases costs, lab waste, space requirements, and the time required to conduct experiments. Here, we demonstrate the use of wax-printed microfluidic paper-based analytical devices (µPADs) to measure linear growth rate of microbes on an agar growth media as a means of circumventing the aforementioned limitations. The main production materials of the proposed µPAD design are a wax printer, filter paper, and empty pipet boxes. A single wax-printed µPAD allowing 8 independent, agar-grown colonies costs $0.07, compared to $0.20 and $9.37 for the same number of replicates on traditional microtiter/spectrophotometry and Petri dish assays, respectively. We optimized the µPAD design for channel width (3 mm), agar volume (780 µL/channel), and microbe inoculation method (razor-blade). Comparative analyses of the traditional and proposed µPAD methods for measuring growth rate of nonmotile (Saccharomyces cerevisiae) and motile (flagellated Escherichia coli) microorganisms suggested the µPAD assays conferred a comparable degree of accuracy and reliability to growth rate measurements as their traditional counterparts. We substantiated this claim with strong, positive correlations between the traditional and µPAD assay, a significant nonzero slope in the model relating the two assays, a nonsignificant difference between the relative standard errors of the two techniques, and an analysis of inter-device reliability. Therefore, µPAD designs merit consideration for the development of enhanced-throughput, low-cost microbial growth and motility assays.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Técnicas Analíticas Microfluídicas/instrumentação , Saccharomyces cerevisiae/crescimento & desenvolvimento , Desenho de Equipamento , Dispositivos Lab-On-A-Chip/economia , Viabilidade Microbiana , Modelos Biológicos , Papel , Reprodutibilidade dos Testes , Ceras
3.
Food Funct ; 10(8): 4924-4931, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31342038

RESUMO

This work allowed the evaluation of the gastrointestinal resistance of five yeasts (Saccharomyces and non-Saccharomyces) in order to assess some biotechnological characteristics linked to the potential probiotics, using a dynamic gastrointestinal simulator (simgi®). The best results obtained were for strains Saccharomyces cerevisiae 3 and Hanseniaspora osmophila 1056. Having optimised the method, the yeasts were subsequently lyophilised, and the one that showed the least loss of viability, S. cerevisiae 3, was used in a freeze-dried form to obtain a new functional food. On the other hand, some characteristics of the product were compared with those of probiotic supplements and other commercial probiotic foods. The obtained functional product showed better parameters than the rest of the samples containing yeasts which, together with the great acceptance shown after the consumer tests, means that it can be presented as a possible commercial functional product.


Assuntos
Hanseniaspora/crescimento & desenvolvimento , Probióticos/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Adolescente , Adulto , Meios de Cultura/química , Meios de Cultura/metabolismo , Feminino , Fermentação , Alimento Funcional/análise , Alimento Funcional/economia , Trato Gastrointestinal/microbiologia , Hanseniaspora/química , Hanseniaspora/metabolismo , Humanos , Microbiologia Industrial , Masculino , Viabilidade Microbiana , Pessoa de Meia-Idade , Probióticos/economia , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Adulto Jovem
4.
Am Nat ; 192(6): 731-744, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30444659

RESUMO

Multicellularity provides multiple benefits. Nonetheless, unicellularity is ubiquitous, and there have been multiple cases of evolutionary reversal to a unicellular organization. In this article, we explore some of the costs of multicellularity as well as the possibility and dynamics of evolutionary reversals to unicellularity. We hypothesize that recently evolved multicellular organisms would face a high cost of increased competition for local resources in spatially structured environments because of larger size and increased cell densities. To test this hypothesis we conducted competition assays, computer simulations, and selection experiments using isolates of Saccharomyces cerevisiae that recently evolved multicellularity. In well-mixed environments, multicellular isolates had lower growth rates relative to their unicellular ancestor because of limitations of space and resource acquisition. In structured environments with localized resources, cells in both multicellular and unicellular isolates grew at a similar rate. Despite similar growth, higher local density of cells in multicellular groups led to increased competition and higher fitness costs in spatially structured environments. In structured environments all of the multicellular isolates rapidly evolved a predominantly unicellular life cycle, while in well-mixed environments reversal was more gradual. Taken together, these results suggest that a lack of dispersal, leading to higher local competition, might have been one of the main constraints in the evolution of early multicellular forms.


Assuntos
Evolução Biológica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Simulação por Computador , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
5.
Elife ; 72018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30334737

RESUMO

Replicative aging of Saccharomyces cerevisiae is an established model system for eukaryotic cellular aging. A limitation in yeast lifespan studies has been the difficulty of separating old cells from young cells in large quantities. We engineered a new platform, the Miniature-chemostat Aging Device (MAD), that enables purification of aged cells at sufficient quantities for genomic and biochemical characterization of aging yeast populations. Using MAD, we measured DNA accessibility and gene expression changes in aging cells. Our data highlight an intimate connection between aging, growth rate, and stress. Stress-independent genes that change with age are highly enriched for targets of the signal recognition particle (SRP). Combining MAD with an improved ATAC-seq method, we find that increasing proteasome activity reduces rDNA instability usually observed in aging cells and, contrary to published findings, provide evidence that global nucleosome occupancy does not change significantly with age.


Assuntos
Cromatina/metabolismo , Replicação do DNA , Técnicas Microbiológicas/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/isolamento & purificação , Perfilação da Expressão Gênica , Análise de Sequência de RNA
6.
Metallomics ; 10(12): 1755-1776, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30358795

RESUMO

Zinc is an essential cofactor for many proteins. A key mechanism of zinc homeostasis during deficiency is "zinc sparing" in which specific zinc-binding proteins are repressed to reduce the cellular requirement. In this report, we evaluated zinc sparing across the zinc proteome of Saccharomyces cerevisiae. The yeast zinc proteome of 582 known or potential zinc-binding proteins was identified using a bioinformatics analysis that combined global domain searches with local motif searches. Protein abundance was determined by mass spectrometry. In zinc-replete cells, we detected over 2500 proteins among which 229 were zinc proteins. Based on copy number estimates and binding stoichiometries, a replete cell contains ∼9 million zinc-binding sites on proteins. During zinc deficiency, many zinc proteins decreased in abundance and the zinc-binding requirement decreased to ∼5 million zinc atoms per cell. Many of these effects were due at least in part to changes in mRNA levels rather than simply protein degradation. Measurements of cellular zinc content showed that the level of zinc atoms per cell dropped from over 20 million in replete cells to only 1.7 million in deficient cells. These results confirmed the ability of replete cells to store excess zinc and suggested that the majority of zinc-binding sites on proteins in deficient cells are either unmetalated or mismetalated. Our analysis of two abundant zinc proteins, Fba1 aldolase and Met6 methionine synthetase, supported that hypothesis. Thus, we have discovered widespread zinc sparing mechanisms and obtained evidence of a high accumulation of zinc proteins that lack their cofactor during deficiency.


Assuntos
Proteínas de Transporte/metabolismo , Regulação Fúngica da Expressão Gênica , Proteoma/análise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Zinco/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento
7.
Biotechnol Bioeng ; 115(9): 2328-2340, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29940066

RESUMO

Recent progress in metabolic engineering and synthetic biology enables the use of microorganisms for the production of chemicals-"bio-based chemicals." However, it is still unclear which chemicals have the highest economic prospect. To this end, we develop a framework for the identification of such promising ones. Specifically, we first develop a genome-scale constraint-based metabolic modeling approach, which is used to identify a candidate pool of 209 chemicals (together with the estimated yield, productivity, and residence time for each) from the intersection of the high-production-volume chemicals and the KEGG and MetaCyc databases. Second, we design three screening criteria based on a chemical's profit margin, market volume, and market size. The total process cost, including the downstream separation cost, is systematically incorporated into the evaluation. Third, given the three aforementioned criteria, we identify 32 products as economically promising if the maximum yields can be achieved, and 22 products if the maximum productivities can be achieved. The breakeven titer that renders zero profit margin for each product is also presented. Comparisons between extracellular and intracellular production, as well as Escherichia coli and Saccharomyces cerevisiae systems are also discussed. The proposed framework provides important guidance for future studies in the production of bio-based chemicals. It is also flexible in that the databases, yield estimations, and criteria can be modified to customize the screening.


Assuntos
Produtos Biológicos/metabolismo , Biotecnologia/métodos , Engenharia Metabólica/métodos , Biologia Sintética/métodos , Produtos Biológicos/economia , Biotecnologia/economia , Biologia Computacional/métodos , Custos e Análise de Custo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Fermentação , Engenharia Metabólica/economia , Redes e Vias Metabólicas/genética , Metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
8.
Nat Commun ; 9(1): 77, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311542

RESUMO

Current limitations to on-demand drug manufacturing can be addressed by technologies that streamline manufacturing processes. Combining the production of two or more drugs into a single batch could not only be useful for research, clinical studies, and urgent therapies but also effective when combination therapies are needed or where resources are scarce. Here we propose strategies to concurrently produce multiple biologics from yeast in single batches by multiplexing strain development, cell culture, separation, and purification. We demonstrate proof-of-concept for three biologics co-production strategies: (i) inducible expression of multiple biologics and control over the ratio between biologic drugs produced together; (ii) consolidated bioprocessing; and (iii) co-expression and co-purification of a mixture of two monoclonal antibodies. We then use these basic strategies to produce drug mixtures as well as to separate drugs. These strategies offer a diverse array of options for on-demand, flexible, low-cost, and decentralized biomanufacturing applications without the need for specialized equipment.


Assuntos
Produtos Biológicos/metabolismo , Preparações Farmacêuticas/metabolismo , Saccharomyces cerevisiae/metabolismo , Tecnologia Farmacêutica/métodos , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Análise Custo-Benefício , Humanos , Preparações Farmacêuticas/isolamento & purificação , Saccharomyces cerevisiae/crescimento & desenvolvimento , Tecnologia Farmacêutica/economia , Tecnologia Farmacêutica/instrumentação
9.
Food Sci Technol Int ; 24(3): 232-241, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29199453

RESUMO

Soaking of legumes results in the loss of macronutrients, micronutrients and phytochemicals. Fibre, protein and phytochemicals found in legumes exert emulsifying activity that may improve the structure and texture of gluten-free bread. The legume soaking water of haricot beans, garbanzo chickpeas, whole green lentils, split yellow peas and yellow soybeans were tested in this study for functional properties and use as food ingredients. Composition, physicochemical properties and effect on the quality of gluten-free bread were determined for each legume soaking water. Haricot beans and split yellow peas released the highest amount of solids in the legume soaking water: 1.89 and 2.38 g/100 g, respectively. Insoluble fibre was the main constituent of haricot beans legume soaking water, while water-soluble carbohydrates and protein were the major fraction of split yellow peas. High quantities of phenolics (∼400 µg/g) and saponins (∼3 mg/g) were found in the legume soaking water of haricot beans, whole green lentils and split yellow peas. High emulsifying activity (46 and 50%) was found for the legume soaking water of garbanzo chickpeas and split yellow peas, probably due to their protein content and high ratio of water-soluble carbohydrates to dry matter. Such activity resulted in softer texture of the gluten-free bread. A homogeneous structure of crumb pores was found for split yellow peas, opposing that of whole green lentils. A balance between the contents of yeast nutrients and antinutrients was the likely basis of the different appearances.


Assuntos
Pão/análise , Culinária , Dieta Livre de Glúten , Emulsificantes/química , Fabaceae/química , Sementes/química , Água/química , Pão/economia , Pão/microbiologia , Culinária/economia , Dieta Livre de Glúten/economia , Carboidratos da Dieta/análise , Carboidratos da Dieta/economia , Fibras na Dieta/análise , Fibras na Dieta/economia , Proteínas Alimentares/análise , Proteínas Alimentares/química , Proteínas Alimentares/economia , Emulsificantes/análise , Emulsificantes/economia , Fabaceae/metabolismo , Fermentação , Qualidade dos Alimentos , Indústria de Processamento de Alimentos/economia , Humanos , Resíduos Industriais/análise , Resíduos Industriais/economia , Nova Zelândia , Valor Nutritivo , Fenóis/análise , Fenóis/química , Fenóis/economia , Pigmentos Biológicos/análise , Pigmentos Biológicos/biossíntese , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saponinas/análise , Saponinas/química , Saponinas/economia , Sementes/metabolismo , Especificidade da Espécie
10.
Curr Microbiol ; 75(2): 231-236, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29022067

RESUMO

Live monitoring of microorganisms growth in liquid medium is a desired parameter for many research fields. A wildly used approach for determining microbial liquid growth quantification is based on light scattering as the result of the physical interaction of light with microbial cells. These measurements are generally achieved using costly table-top instruments; however, a live, reliable, and straight forward instrument constructed using parts that are inexpensive may provide opportunities for many researchers. Here, such an instrument has been constructed and tested. It consists of modular test tube holding chambers, each with a low power monochromatic light-emitting diode, and a monolithic photodiode. A microcontroller connects to all modular chambers to control the diodes, and send the live data to either an LCD screen, or a computer. This work demonstrate that this modular instrument can determine precise cell concentrations for the bacteria Escherichia coli and Pseudomonas syringae pv. tomato DC3000, as well as Saccharomyces cerevisiae yeast.


Assuntos
Carga Bacteriana/instrumentação , Carga Bacteriana/métodos , Contagem de Colônia Microbiana/instrumentação , Contagem de Colônia Microbiana/métodos , Escherichia coli/crescimento & desenvolvimento , Pseudomonas syringae/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Pseudomonas syringae/isolamento & purificação , Saccharomyces cerevisiae/isolamento & purificação
11.
Yeast ; 34(9): 371-382, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28568773

RESUMO

The common method for liberating proteins from Saccharomyces cerevisiae cells involves mechanical cell disruption using glass beads and buffer containing inhibitors (protease, phosphatase and/or kinase inhibitors), followed by centrifugation to remove cell debris. This procedure requires the use of costly inhibitors and is laborious, in particular when many samples need to be processed. Also, enzymatic reactions can still occur during harvesting and cell breakage. As a result low-abundance and labile proteins may be degraded, and enzymes such as kinases and phosphatases may still modify proteins during and after cell lysis. We believe that our rapid sample preparation method helps overcome the above issues and offers the following advantages: (a) it is cost-effective, as no inhibitors and breaking buffer are needed; (b) cell breakage is fast (about 15 min) since it only involves a few steps; (c) the use of formaldehyde inactivates endogenous proteases prior to cell lysis, dramatically reducing the risk of protein degradation; (d) centrifugation steps only occur prior to cell lysis, circumventing the problem of losing protein complexes, in particular if cells were treated with formaldehyde intended to stabilize and capture large protein complexes; and (e) since formaldehyde has the potential to instantly terminate protein activity, this method also allows the study of enzymes in live cells, i.e. in their true physiological environment, such as the short-term effect of a drug on enzyme activity. Taken together, the rapid sample preparation procedure provides a more accurate snapshot of the cell's protein content at the time of harvesting. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Métodos Analíticos de Preparação de Amostras/economia , Western Blotting , Fator de Iniciação 2 em Eucariotos/análise , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/química , Análise Custo-Benefício , Eletroforese em Gel de Poliacrilamida , Fator de Iniciação 2 em Eucariotos/isolamento & purificação , Formaldeído/química , Fosforilação , Proteólise , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/análise
12.
Traffic ; 17(6): 689-703, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26939796

RESUMO

Saccharomyces cerevisiae is a well-established model organism to study the mechanisms of longevity. One of the two aging paradigms studied in yeast is termed chronological lifespan (CLS). CLS is defined by the amount of time non-dividing yeast cells can survive at stationary phase. Here, we propose new approaches that allow rapid and efficient quantification of survival rates in aging yeast cultures using either a fluorescent cell counter or microplate imaging. We have generated a software called analysr (Analytical Algorithm for Yeast Survival Rates) that allows automated and highly reproducible analysis of cell survival in aging yeast cultures using fluorescent data. To demonstrate the efficiency of our new experimental tools, we tested the previously characterized ability of caloric restriction to extend lifespan. Interestingly, we found that this process is independent of the expression of three central yeast heat shock proteins (Hsp26, Hsp42, Hsp104). Finally, our new assay is easily adaptable to other types of toxicity studies. Here, we assessed the toxicity of various concentrations of acetic acid, a known contributor of yeast chronological aging. These assays provide researchers with cost-effective, low- and high-content assays that can serve as an efficient complement to the time-consuming colony forming unit assay usually used in CLS studies.


Assuntos
Proliferação de Células , Saccharomyces cerevisiae/crescimento & desenvolvimento , Software , Ácido Acético/toxicidade , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
J Sci Food Agric ; 96(9): 2998-3006, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26399367

RESUMO

BACKGROUND: Deferriferrichrysin (Dfcy) is a siderophore found in foods fermented by Aspergillus oryzae and is a promising candidate for an antioxidant food additive because of its high binding constant toward iron. However, the Dfcy concentration is typically low in foods and cultures. RESULTS: We optimised culture conditions to improve Dfcy production to 2800 mg L(-1) from 22.5 mg L(-1) under typical conditions. Then, we evaluated the potential of Dfcy as a food additive by measuring its safety, stability, and antioxidant activity. Dfcy was sufficiently stable that over 90% remained after pasteurisation at 63 °C for 30 min at pH 3-11, or after sterilisation at 120 °C for 4 min at pH 4-6. Dfcy showed high antioxidant activity in an oil-in-water model, where inhibition of lipid oxidation was measured by peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) assays. Dfcy decreased PV and TBARS by 83% and 75%, respectively. Antioxidant activity of Dfcy was equal to or higher than that of the synthetic chelator EDTA. CONCLUSION: Our study provides the first practical method for production of Dfcy. Dfcy can be a novel food-grade antioxidant and the first natural alternative to the synthesised iron chelator EDTA. © 2015 Society of Chemical Industry.


Assuntos
Antioxidantes/isolamento & purificação , Aspergillus oryzae/química , Conservantes de Alimentos/isolamento & purificação , Quelantes de Ferro/isolamento & purificação , Modelos Químicos , Peptídeo Hidrolases/metabolismo , Peptídeos Cíclicos/isolamento & purificação , Animais , Antioxidantes/efeitos adversos , Antioxidantes/química , Antioxidantes/economia , Aspergillus oryzae/crescimento & desenvolvimento , Aspergillus oryzae/metabolismo , Fermentação , Conservantes de Alimentos/efeitos adversos , Conservantes de Alimentos/química , Conservantes de Alimentos/economia , Indústria de Processamento de Alimentos/economia , Proteínas Fúngicas/metabolismo , Temperatura Alta/efeitos adversos , Resíduos Industriais/análise , Resíduos Industriais/economia , Quelantes de Ferro/efeitos adversos , Quelantes de Ferro/química , Quelantes de Ferro/economia , Japão , Testes de Mutagenicidade , Oryza/química , Peptídeos Cíclicos/efeitos adversos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/economia , Proteínas de Vegetais Comestíveis/química , Proteínas de Vegetais Comestíveis/economia , Proteínas de Vegetais Comestíveis/isolamento & purificação , Proteínas de Vegetais Comestíveis/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/economia , Hidrolisados de Proteína/isolamento & purificação , Hidrolisados de Proteína/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Sementes/química , Testes de Toxicidade Aguda , Vinho/análise , Vinho/microbiologia
14.
J Biosci Bioeng ; 121(4): 457-63, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26481161

RESUMO

The major bottlenecks in achieving competitive bioethanol fuel are the high cost of feedstock, energy and enzymes employed in pretreatment prior to fermentation. Lignocellulosic biomass has been proposed as an alternative feedstock, but because of its complexity, economic viability is yet to be realized. Therefore, research around non-conventional feedstocks and deployment of bioconversion approaches that downsize the cost of energy and enzymes is justified. In this study, a non-conventional feedstock, inedible wild cassava was used for bioethanol production. Bioconversion of raw starch from the wild cassava to bioethanol at low temperature was investigated using both a co-culture of Aspergillus sp. and Saccharomyces cerevisiae, and a monoculture of the later with enzyme preparation from the former. A newly isolated strain of Aspergillus sp. MZA-3 produced raw starch-degrading enzyme which displayed highest activity of 3.3 U/mL towards raw starch from wild cassava at 50°C, pH 5.5. A co-culture of MZA-3 and S. cerevisiae; and a monoculture of S. cerevisiae and MZA-3 enzyme (both supplemented with glucoamylase) resulted into bioethanol yield (percentage of the theoretical yield) of 91 and 95 at efficiency (percentage) of 84 and 96, respectively. Direct bioconversion of raw starch to bioethanol was achieved at 30°C through the co-culture approach. This could be attractive since it may significantly downsize energy expenses.


Assuntos
Aspergillus/enzimologia , Biocombustíveis/provisão & distribuição , Etanol/metabolismo , Farinha , Manihot/química , Amido/metabolismo , Aspergillus/classificação , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Biocombustíveis/economia , Técnicas de Cocultura , Etanol/economia , Fermentação , Farinha/economia , Glucana 1,4-alfa-Glucosidase/metabolismo , Concentração de Íons de Hidrogênio , Manihot/economia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Amido/economia , Temperatura
15.
Crit Rev Food Sci Nutr ; 56(1): 70-81, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25000472

RESUMO

Extending the shelf-life of bakery products has been an important requirement resulting from the mechanization of this industry and the need to increase the distance for the distribution of final products, caused by the increase in production and consumer demand. Technologies based on the interruption of the breadmaking process represent an alternative to overcome product staling and microbiological deterioration. The production of par-baked breads is one of these technologies. It consists of baking the bread in two stages, and due to the possibility of retarding the second stage, it can be said that the bread can always be offered fresh to the consumer. The technology inserts logistics as part of the production process and creates the "hot point" concept, these being the locations where the bread is finalized, such as in the consumers' homes or sales locations. In this work, a review of the papers published on this subject was carried out, and aspects related to both the formulation and the process were considered. This technology still faces a few challenges, such as solving bread quality problems that appear due to process modifications, and these will also be considered. The market for these breads has grown rapidly and the bakery industry searches innovations related to par-baked bread technology.


Assuntos
Pão/análise , Culinária , Qualidade dos Alimentos , Pão/economia , Pão/microbiologia , Fast Foods/análise , Fast Foods/economia , Fast Foods/microbiologia , Fermentação , Embalagem de Alimentos/tendências , Armazenamento de Alimentos , Alimentos Congelados/análise , Alimentos Congelados/economia , Alimentos Congelados/microbiologia , Humanos , Controle de Qualidade , Refrigeração , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Mudança Social
16.
PLoS One ; 10(10): e0139195, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26437026

RESUMO

Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749-3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.


Assuntos
Biocombustíveis/análise , Biomassa , Cymbopogon/química , Etanol/isolamento & purificação , Lignina/química , Óleos Voláteis/isolamento & purificação , Terpenos/isolamento & purificação , Bentonita , Biocombustíveis/economia , Parede Celular , Cromatografia Líquida de Alta Pressão , Cymbopogon/crescimento & desenvolvimento , Fermentação , Fertilizantes , Cromatografia Gasosa-Espectrometria de Massas , Nitratos , Óleos Voláteis/análise , Óleos Voláteis/economia , Panicum/química , Panicum/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Enxofre , Terpenos/análise
17.
J Therm Biol ; 52: 117-29, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26267506

RESUMO

Canonized view on temperature effects on growth rate of microorganisms is based on assumption of protein denaturation, which is not confirmed experimentally so far. We develop an alternative concept, which is based on view that limits of thermal tolerance are based on imbalance of cellular energy allocation. Therefore, we investigated growth suppression of yeast Saccharomyces cerevisiae in the supraoptimal temperature range (30-40°C), i.e. above optimal temperature (Topt). The maximal specific growth rate (µmax) of biomass, its concentration and yield on glucose (Yx/glc) were measured across the whole thermal window (5-40°C) of the yeast in batch anaerobic growth on glucose. Specific rate of glucose consumption, specific rate of glucose consumption for maintenance (mglc), true biomass yield on glucose (Yx/glc(true)), fractional conservation of substrate carbon in product and ATP yield on glucose (Yatp/glc) were estimated from the experimental data. There was a negative linear relationship between ATP, ADP and AMP concentrations and specific growth rate at any growth conditions, whilst the energy charge was always high (~0.83). There were two temperature regions where mglc differed 12-fold, which points to the existence of a 'low' (within 5-31°C) and a 'high' (within 33-40°C) metabolic mode regarding maintenance requirements. The rise from the low to high mode occurred at 31-32°C in step-wise manner and it was accompanied with onset of suppression of µmax. High mglc at supraoptimal temperatures indicates a significant reduction of scope for growth, due to high maintenance cost. Analysis of temperature dependencies of product formation efficiency and Yatp/glc revealed that the efficiency of energy metabolism approaches its lower limit at 26-31°C. This limit is reflected in the predetermined combination of Yx/glc(true), elemental biomass composition and degree of reduction of the growth substrate. Approaching the limit implies a reduction of the safety margin of metabolic efficiency. We hypothesize that a temperature increase above Topt (e.g. >31°C) triggers both an increment in mglc and suppression of µmax, which together contribute to an upshift of Yatp/glc from the lower limit and thus compensate for the loss of the safety margin. This trade-off allows adding 10 more degrees to Topt and extends the thermal window up to 40°C, sustaining survival and reproduction in supraoptimal temperatures. Deeper understanding of the limits of thermal tolerance can be practically exploited in biotechnological applications.


Assuntos
Biomassa , Saccharomyces cerevisiae/metabolismo , Temperatura , Nucleotídeos de Adenina/metabolismo , Trifosfato de Adenosina/metabolismo , Algoritmos , Anaerobiose , Custos e Análise de Custo , Metabolismo Energético , Etanol/análise , Etanol/metabolismo , Glucose/metabolismo , Cinética , Saccharomyces cerevisiae/crescimento & desenvolvimento
18.
PLoS One ; 10(7): e0133384, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26197065

RESUMO

BACKGROUND: Continuous culture devices can be used for various purposes such as establishing reproducible growth conditions or maintaining cell populations under a constant environment for long periods. However, commercially available instruments are expensive, were not designed to handle small volumes in the milliliter range, and can lack the flexibility required for the diverse experimental needs found in several laboratories. METHODOLOGY/PRINCIPAL FINDINGS: We developed a versatile continuous culture system and provide detailed instructions as well as a graphical user interface software for potential users to assemble and operate their own instrument. Three culture chambers can be controlled simultaneously with the proposed configuration, and all components are readily available from various sources. We demonstrate that our continuous culture device can be used under different modes, and can easily be programmed to behave either as a turbidostat or chemostat. Addition of fresh medium to the culture vessel can be controlled by a real-time feedback loop or simply calibrated to deliver a defined volume. Furthermore, the selected light-emitting diode and photodetector enable the use of phenol red as a pH indicator, which can be used to indirectly monitor the bulk metabolic activity of a cell population rather than the turbidity. CONCLUSIONS/SIGNIFICANCE: This affordable and customizable system will constitute a useful tool in many areas of biology such as microbial ecology as well as systems and synthetic biology.


Assuntos
Divisão Celular/fisiologia , Técnicas Microbiológicas/instrumentação , Técnicas Microbiológicas/métodos , Modelos Teóricos , Entomoplasmataceae/citologia , Entomoplasmataceae/crescimento & desenvolvimento , Desenho de Equipamento , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Técnicas Microbiológicas/economia , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento
19.
PLoS Biol ; 13(1): e1002041, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25626068

RESUMO

Maximizing growth and survival in the face of a complex, time-varying environment is a common problem for single-celled organisms in the wild. When offered two different sugars as carbon sources, microorganisms first consume the preferred sugar, then undergo a transient growth delay, the "diauxic lag," while inducing genes to metabolize the less preferred sugar. This delay is commonly assumed to be an inevitable consequence of selection to maximize use of the preferred sugar. Contrary to this view, we found that many natural isolates of Saccharomyces cerevisiae display short or nonexistent diauxic lags when grown in mixtures of glucose (preferred) and galactose. These strains induce galactose utilization (GAL) genes hours before glucose exhaustion, thereby "preparing" for the transition from glucose to galactose metabolism. The extent of preparation varies across strains, and seems to be determined by the steady-state response of GAL genes to mixtures of glucose and galactose rather than by induction kinetics. Although early GAL gene induction gives strains a competitive advantage once glucose runs out, it comes at a cost while glucose is still present. Costs and benefits correlate with the degree of preparation: strains with higher expression of GAL genes prior to glucose exhaustion experience a larger upfront growth cost but also a shorter diauxic lag. Our results show that classical diauxic growth is only one extreme on a continuum of growth strategies constrained by a cost-benefit tradeoff. This type of continuum is likely to be common in nature, as similar tradeoffs can arise whenever cells evolve to use mixtures of nutrients.


Assuntos
Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/metabolismo , Metabolismo dos Carboidratos , Meios de Cultura , Metabolismo Energético , Galactose/metabolismo , Genes Fúngicos , Glucose/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ativação Transcricional
20.
ACS Synth Biol ; 4(1): 32-8, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25036317

RESUMO

Engineered biological circuits are often disturbed by a variety of environmental factors. In batch culture, where the majority of synthetic circuit characterization occurs, environmental conditions vary as the culture matures. Turbidostats are powerful characterization tools that provide static culture environments; however, they are often expensive, especially when purchased in custom configurations, and are difficult to design and construct in a lab. Here, we present a low cost, open source multiplexed turbidostat that can be manufactured and used with minimal experience in electrical or software engineering. We demonstrate the utility of this system to profile synthetic circuit behavior in S. cerevisiae. We also demonstrate the flexibility of the design by showing that a fluorometer can be easily integrated.


Assuntos
Biologia Sintética/instrumentação , Desenho de Equipamento , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Redes Reguladoras de Genes , Técnicas Microbiológicas/instrumentação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA