Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Environ Manage ; 359: 121057, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718606

RESUMO

Brine, a by-product of desalination and industrial facilities, is becoming more and more of an environmental issue. This comprehensive techno-economic assessment (TEA), focusing on the technical and economic aspects, investigates the performance and viability of a novel hybrid desalination brine treatment system known as zero liquid discharge (ZLD). Notably, this research represents the first instance of evaluating the feasibility and effectiveness of integrating three distinct desalination processes, namely brine concentrator (BC), high-pressure reverse osmosis (HPRO), and membrane-promoted crystallization (MPC), within a ZLD framework. The findings of this study demonstrate an exceptional water recovery rate of 97.04%, while the energy requirements stand at a reasonable level of 17.53 kWh/m3. Financially, the ZLD system proves to be at least 3.28 times more cost-effective than conventional evaporation ponds and offers comparable cost efficiency to alternatives such as land application and deep-well injection. Moreover, the ZLD system exhibits profitability potential by marketing both drinking water and solid salt or solely desalinated water. The daily profit from the sale of generated water varies from US$194.08 to US$281.41, with Greece and Cyprus attaining the lowest and highest profit, respectively. When considering the sale of both salt and water, the profit rises by 8% across all locations.


Assuntos
Purificação da Água , Purificação da Água/métodos , Purificação da Água/economia , Osmose , Sais/química
2.
J Environ Manage ; 360: 121192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781880

RESUMO

The global demand for valuable metals and minerals necessitates the exploration of alternative, sustainable approaches to mineral recovery. Seawater mining has emerged as a promising option, offering a vast reserve of minerals and an environmentally friendly alternative to land-based mining. Among the various techniques, Nanofiltration (NF) has gained significant attention as a preliminary treatment step in Minimum Liquid Discharge (MLD) and Zero Liquid Discharge (ZLD) schemes. This study focused on the potential of two underexplored commercial polyamide based NF membranes, Synder NFX and Vontron VNF1, with enhanced divalent over monovalent separation factors, in optimizing the extraction of magnesium hydroxide (Mg(OH)2) from seawater and seawater reverse osmosis (SWRO) brines. The research encompassed a thorough characterization of the membranes utilizing advanced physic-chemical analytical techniques, followed by rigorous experimental assessments using synthetic seawater and SWRO brine in concentration configuration. The findings highlighted the superior selectivity of NFX for magnesium recovery from SWRO brine and the promising concentration factors of VNF1 for seawater treatment. Cross-validation of experimental data with a mathematical model demonstrated the model's reliability as a process design tool in predicting membrane performance. A comprehensive techno-economic evaluation demonstrates the potential of NFX, operating optimally at 23 bar pressure and 70% permeate recovery rate, to yield an estimated annual revenue of 5.683 M€/yr through Mg(OH)2 production from SWRO brine for a plant with a nominal capacity of 0.8 Mm3/y. This research shed light on the promising role of NF membranes in enhancing mineral recovery taking benefit of their separation factors and emphasizes the economic viability of leveraging NF technology for maximizing magnesium recovery from seawater and SWRO brines.


Assuntos
Filtração , Magnésio , Água do Mar , Água do Mar/química , Magnésio/química , Filtração/métodos , Membranas Artificiais , Osmose , Sais
3.
Chemosphere ; 358: 142055, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641292

RESUMO

The impact of desalination brine on the marine environment is a global concern. Regarding this, salinity is generally accepted as the major environmental factor in desalination concentrate. However, recent studies have shown that the influence of organic contaminants in brine cannot be ignored. Therefore, a non-targeted screening method based on comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC × GC-qMS) was developed for identifying organic contaminants in the desalination brine. A total of 404 compounds were tentatively identified from four seawater desalination plants (three reverse osmosis plants and one multiple effect distillation plant) in China. The identified compounds were prioritized based on their persistence, bioaccumulation, ecotoxicity, usage, and detection frequency. Twenty-one (21) compounds (seven phthalates, ten pesticides, four trihalomethanes) were then selected for further quantitative analysis and ecological risk assessment, including compounds from the priority list along with substances from the same chemical classes. Ecologically risky substances in brine include diisobutylphthalate and bis(2-Ethylhexyl) phthalate, atrazine and acetochlor, and bromoform. Most of the contaminants come from raw seawater, and no high risk contaminants introduced by the desalination process have been found except for disinfection by-products. In brine discharge management, people believed that all pollution in raw seawater was concentrated by desalination process. This study shows that not all pollutants are concentrated during the desalination process. In this study, the total concentration of pesticide in the brine increased by 58.42%. The concentration of ∑PAEs decreased by 13.65% in reverse osmosis desalination plants and increased by 10.96% in the multi-effect distillation plant. The concentration of trihalomethane increased significantly in the desalination concentrate. The change in the concentration of pollutants in the desalination concentrate was related to the pretreatment method and the chemical characteristics of the contaminants. The method and results given in this study hinted a new idea to identify and control the environmental impact factors of brine.


Assuntos
Salinidade , Água do Mar , Poluentes Químicos da Água , Purificação da Água , Água do Mar/química , Poluentes Químicos da Água/análise , Medição de Risco , Purificação da Água/métodos , China , Monitoramento Ambiental/métodos , Praguicidas/análise , Cromatografia Gasosa-Espectrometria de Massas , Sais/química , Ácidos Ftálicos/análise , Trialometanos/análise
4.
J Med Microbiol ; 73(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506718

RESUMO

Introduction. Acinetobacter baumannii is a nosocomial pathogen with a high potential to cause food-borne infections. It is designated as a critical pathogen by the World Health Organization due to its multi-drug resistance and mortalities reported. Biofilm governs major virulence factors, which promotes drug resistance in A. baumannii. Thus, a compound with minimum selection pressure on the pathogen can be helpful to breach biofilm-related virulence.Hypothesis/Gap Statement. To identify anti-biofilm and anti-virulent metabolites from extracts of wild Mangifera indica (mango) brine pickle bacteria that diminishes pathogenesis and resistance of A. baumannii.Aim. This study reports anti-biofilm and anti-quorum sensing (QS) efficacy of secondary metabolites from bacterial isolates of fermented food origin.Method. Cell-free supernatants (CFS) of 13 bacterial isolates from fermented mango brine pickles were screened for their efficiency in inhibiting biofilm formation and GC-MS was used to identify its metabolites. Anti-biofilm metabolite was tested on early and mature biofilms, pellicle formation, extra polymeric substances (EPS), cellular adherence, motility and resistance of A. baumannii. Gene expression and in silico studies were also carried out to validate the compounds efficacy.Results. CFS of TMP6b identified as Bacillus vallismortis, inhibited biofilm production (83.02 %). Of these, major compound was identified as 2,4-Di-tert-butyl phenol (2,4-DBP). At sub-lethal concentrations, 2,4-DBP disrupted both early and mature biofilm formation. Treatment with 2,4-DBP destructed in situ biofilm formed on glass and plastic. In addition, key virulence traits like pellicle (77.5 %), surfactant (95.3 %), EPS production (3-fold) and cell adherence (65.55 %) reduced significantly. A. baumannii cells treated with 2,4-DBP showed enhanced sensitivity towards antibiotics, oxide radicals and blood cells. Expression of biofilm-concomitant virulence genes like csuA/B, pgaC, pgaA, bap, bfmR, katE and ompA along with QS genes abaI, abaR significantly decreased. The in silico studies further validated the higher binding affinity of 2,4-DBP to the AbaR protein than the cognate ligand molecule.Conclusion. To our knowledge, this is the first report to demonstrate 2,4- DBP has anti-pathogenic potential alone and with antibiotics by in vitro, and in silico studies against A. baumannii. It also indicates its potential use in therapeutics and bio-preservatives.


Assuntos
Acinetobacter baumannii , Sais , Biofilmes , Fenóis/farmacologia , Antibacterianos/farmacologia
5.
Int J Toxicol ; 43(2_suppl): 5S-69S, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279815

RESUMO

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 27 inorganic and organometallic zinc salts as used in cosmetic formulations; these salts are specifically of the 2+ (II) oxidation state cation of zinc. These ingredients included in this report have various reported functions in cosmetics, including hair conditioning agents, skin conditioning agents, cosmetic astringents, cosmetic biocides, preservatives, oral care agents, buffering agents, bulking agents, chelating agents, and viscosity increasing agents. The Panel reviewed the relevant data for these ingredients, and concluded that these 27 ingredients are safe in cosmetics in the present practices of use and concentration described in this safety assessment when formulated to be non-irritating.


Assuntos
Cosméticos , Fármacos Dermatológicos , Sais , Qualidade de Produtos para o Consumidor , Cosméticos/toxicidade , Quelantes/toxicidade , Medição de Risco
6.
Water Res ; 251: 121096, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184912

RESUMO

With the proliferation of reverse osmosis technology, seawater reverse osmosis desalination has been heralded as the solution to water scarcity for coastal regions. However, the large volume of desalination brine produced may pose an adverse environmental impact when directly discharged into the sea and result in energy wastage as the seawater pumped out is dumped back into the sea. Recently, zero liquid discharge has been extensively studied as a way to eliminate the aquatic ecotoxicity impact completely, despite being expensive and having a high carbon footprint. In this work, we propose a new strategy towards the treatment of brine to seawater level for disposal, dubbed reclaimed seawater discharge (RSD). This process is coupled with existing resource recovery techniques and waste alkali CO2 capture processes to produce an economically viable waste treatment process with minimal CO2 emissions. In this work, we placed significant focus on the electrolysis of brine, which simultaneously lowers the salinity of the desalination brine (56.0 ± 2.1 g/L) to seawater level (32.0 ± 1.4 g/L), generates alkali brine from seawater (pH 13.6) to remove impurities in brine (Mg2+ and Ca2+ to below ppm level), and recovers magnesium hydroxide, calcium carbonate, chlorine, bromine, and hydrogen gas as valuable resources. The RSD is further chemically dechlorinated and neutralised to pH 7.3 to be safe to discharge into the sea. The excess alkali brine is used to capture additional CO2 in the form of bicarbonates, achieving net abatement in climate change impact (9.90 CO2 e/m3) after product carbon abatements are accounted.


Assuntos
Sais , Purificação da Água , Purificação da Água/métodos , Dióxido de Carbono , Osmose , Água do Mar , Salinidade , Álcalis
7.
Sci Total Environ ; 912: 168733, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38013097

RESUMO

A novel third-generation biorefinery approach, including two paths of Ethanol/methane production pathway (EMP) and the direct methane production pathway (DMP), for astaxanthin and ethanol and biogas production from the freshwater microalgae Haematococcus pluvialis was developed previously. To ensure its environmental sustainability, a comprehensive life cycle assessment (LCA) study was conducted based on 1-GJ energy generation from biomethane as the functional unit. Results indicate that the EMP pathway had higher environmental impacts on all categories due to more stages and chemicals/energy consumption (at least five times greater effect). Results showed that while the enzymatic hydrolysis step followed by the fermentation stage was the main contributor to all environmental categories in the EMP route, astaxanthin induction dominated all environmental categories in the DMP route. The results showed that sodium nitrate, phosphate salts, inoculum sludge, acetone, and electricity had considerable environmental impacts. Moreover, despite low enzyme usage in enzymatic hydrolysis, these proteins significantly impacted all environmental categories in this stage. The baseline analysis concluded that to produce 1 GJ energy from methane, about 88 kg and 13 kg CO2 were generated from the EMP and DMP pathways, respectively. A sensitivity analysis was also conducted to compare various ratios of chemicals, such as phosphate salts, with high contributions to enzymatic hydrolysis and astaxanthin induction stages in the EMP and DMP routes, respectively. Finally, the LCA results revealed that the DMP pathway is more environmentally friendly with the same economic value of biomethane and astaxanthin production. This LCA study updated the data related to the environmental assessment of processes to utilize H. pluvialis to produce biofuels and astaxanthin simultaneously.


Assuntos
Biocombustíveis , Sais , Meio Ambiente , Etanol , Metano , Fosfatos , Xantofilas
8.
J Environ Manage ; 348: 119300, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37862889

RESUMO

Landfill mining has received major attention in recent years for the reclamation of waste disposal sites, including in developing countries such as India where significant efforts are being made to manage sites in this way. The bulk of the material obtained from landfill mining consists of fine-grained soil-like material (SLM) but its direct reuse in off-site applications is restricted due to the presence of harmful heavy metals, soluble salts and other pollutants. In this study, appropriate techniques for managing SLM to permit recovery and reuse are assessed. As a result, experimental investigation explores the efficacy of two remediation techniques considered appropriate for SLM management: electrokinetic remediation and phytoremediation. These were applied to SLM from a recently mined landfill and their ability to reduce heavy metal and other soluble salt burdens assessed. Electrokinetic remediation has shown considerable potential to mobilise and transport heavy metals and soluble salts through and from the SLM over an eight-week period. Phytoremediation experiments also demonstrated mobilisation and uptake of metals from the SLM over a similar duration although relatively low amounts were recovered as a result of the low biomass produced over this period. Both technologies have demonstrated potential for recovery of metals from SLM, as well as recovering the SLM itself as a potential resource.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Sais , Instalações de Eliminação de Resíduos , Mineração , Biodegradação Ambiental
9.
J Clin Hypertens (Greenwich) ; 25(12): 1079-1085, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37864815

RESUMO

Low sodium salt (LSS) is an effective way to reduce the primary source of sodium from home cooking. To investigate the availability, price and characteristics of LSS, price gap between LSS and regular salt, and the potential size of subsidy needed to equalize the price of LSS and regular salt. A market survey of salts was conducted using two major online shopping sites JD and Taobao from November to December 2022. Of 360 salts, 76 (21.1%) are LSS and 284 (78.9%) are regular salt. The average proportion of potassium chloride is low (16.8%), and half of the brands contain less than 15% and only 6.6% contains ≥25%. The mean price of LSS is slightly but not significantly higher than that of regular salts (1.82 versus 1.67 yuan/100 g, p = .07). In the lowest quartile by price, the cost of LSS is significantly higher than regular salts (difference 0.13, p = .0048). Further, when comparing the lowest price LSS to the lowest price regular since within the same brand, the mean price LSS is 2.11-fold that of the regular salt (1.66 versus 0.79 yuan/100 g, p < .05). The price of iodized LSS is also significantly higher than that of iodized regular salt (1.86 verse 1.44 yuan/100 g, p = .044). An annual subsidy based on the difference in price in the first quartile would cost 4.75 yuan per capita. A variety of LSS are available in China's salt market.


Assuntos
Hipertensão , Sais , Humanos , Cloreto de Sódio na Dieta , Cloreto de Sódio , Sódio , China/epidemiologia
10.
Mol Pharm ; 20(10): 5160-5172, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37646101

RESUMO

Organic solvent-free process or green chemistry is needed for manufacturing pharmaceutical salts to avoid various environmental, safety, and manufacturing cost issues involved. In this study, a cinnarizine (CNZ) salt with malic acid at a 1:1 molar ratio was successfully prepared by twin screw extrusion (TSE) with water assistance. The feasibility of salt formation was first evaluated by screening several carboxylic acids by neat grinding (NG) and liquid-assisted grinding (LAG) using a mortar and pestle, which indicated that malic acid and succinic acid could form salts with CNZ. Further studies on salt formation were conducted using malic acid. The examination by hot-stage microscopy revealed that the addition of water could facilitate the formation and crystallization of CNZ-malic acid salt even though CNZ is poorly water-soluble. The feasibility of salt formation was confirmed by determining the pH-solubility relationship between CNZ and malic acid, where a pHmax of 2.7 and a salt solubility of 2.47 mg/mL were observed. Authentic salt crystals were prepared by solution crystallization from organic solvents for examining crystal properties and structure by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) spectroscopy, solid-state 13C and 15N nuclear magnetic resonance (NMR), and single-crystal X-ray diffraction (SXD). These techniques also established that a salt, and not a cocrystal, was indeed formed. The CNZ salt crystals were then prepared by TSE of a 1:1 CNZ-malic acid mixture, where the addition of small amounts of water resulted in a complete conversion of the mixture into the salt form. The salts prepared by solvent crystallization and water-assisted TSE had identical properties, and their moisture sorption profiles were also similar, indicating that TSE is a viable method for salt preparation by green chemistry. Since TSE can be conducted in a continuous manner, the results of the present investigation, if combined with other continuous processes, suggest the possibility of continuous manufacturing of drug products from the synthesis of active pharmaceutical ingredients (APIs) to the production of final dosage forms.


Assuntos
Cinarizina , Malatos , Tecnologia Farmacêutica , Água , Varredura Diferencial de Calorimetria , Cinarizina/síntese química , Cinarizina/química , Composição de Medicamentos/métodos , Preparações Farmacêuticas , Sais/síntese química , Cloreto de Sódio , Solubilidade , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Difração de Raios X , Malatos/química , Indústria Farmacêutica , Tecnologia Farmacêutica/métodos
11.
Pharmacoepidemiol Drug Saf ; 32(10): 1178-1183, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37345505

RESUMO

PURPOSE: Immediate-release forms of generic mixed amphetamine salts (MAS) have been the subject of passive surveillance reports signaling lack of effectiveness. We examined switching patterns that might suggest whether long-term users of specific MAS are more likely to switch away or switch back after use of the MAS of interest in the FDA's Sentinel Distributed Database. METHODS: We required at least 60-day continuous supply of selected MAS grouped by Abbreviated New Drug Application (ANDA) to describe patterns of switching away from and to generics approved under the ANDAs of interest among individuals ages 15-64 years with attention deficit hyperactivity disorder or narcolepsy during 2013-2019. RESULTS: We observed the greatest number of treatment episodes for ANDA 040422 (n = 525 771), followed by ANDA 202424 (n = 181 693), ANDA 040439 (n = 62 363), ANDA 040440 (n = 21 143), and ANDA 040480 (n = 8792). Of those with switches away from their original ANDA, episodes initiated on generic products under ANDA 040422 (48.6%) and ANDA 202424 (43.0%) were most likely to switch back, while those initiated on generic product under ANDA 040480 were least likely (24.1%). Of those episodes with switches to a generic under an ANDA of interest, about one-third (range 27.1% to 37.0%) switched back to the same product. These switches back had a median time to switch of about 30 days. CONCLUSIONS: These descriptive analyses, although subject to limitations, did not suggest increased switching away or switching back after use of the generics of interest. Continued post-marketing surveillance is warranted.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Narcolepsia , Humanos , Estados Unidos/epidemiologia , Anfetamina/uso terapêutico , Sais/uso terapêutico , Medicaid , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Medicamentos Genéricos/uso terapêutico
12.
Food Chem Toxicol ; 175: 113698, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36889431

RESUMO

In this study, the characterization of microplastics of table salts (n = 36) was determined by FT - IR. Then, individuals' exposure to microplastics from table salt consumption was calculated with a deterministic model, and finally, a risk assessment of table salt was performed using the polymer risk index. On average, 44 ± 26, 38 ± 40, 28 ± 9, and 39 ± 30 microplastics/kg were detected in rock salts (n = 16), lake salts (n = 12), sea salts (n = 8), and all salts (n = 36). Microplastics with 10 different polymer types (CPE, VC-ANc, HDPE, PET, Nylon-6, PVAc, EVA, PP, PS, Polyester), 7 different colors (black, red, colorless, blue, green, brown, white, gray), and 3 different shapes (fiber, granulated, film) were found in table salts. The daily, annual and lifetime (70-year) exposures to microplastics from table salt consumption in 15+-year-old individuals (general) were calculated to be 0.41 microplastic particles/day, 150 microplastic particles/year and 10,424 microplastic particles/70-year, respectively. The average microplastic polymer risk index of all table salts was calculated as 182 ± 144 and the risk level is in the medium. In order to minimize microplastic contamination in table salts, protective measures should be taken at the source of the salt, and production processes should be improved.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Adolescente , Plásticos/toxicidade , Cloreto de Sódio na Dieta/análise , Sais , Turquia , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Medição de Risco
13.
Environ Sci Pollut Res Int ; 30(2): 4570-4581, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35972657

RESUMO

The current study has been designed to observe the coloring efficacy of wild turmeric-based natural yellowish colorant for wool dyeing under microwave (MW) treatments. Extracts and fabrics have been exposed to MW treatment for up to 10 min. Surface morphology and changes in the fabric's chemical nature before and after radiation have been studied through SEM and FTIR, respectively. The results obtained after a series of experiments show that using 45 mL of aqueous extract (pH = 5) in the presence of 1.5g/100mL of table salt as an exhausting agent at 75°C for 45 min has displayed outstanding color depth (K/S) onto microwave-treated wool fabric. On applying biomordants, it has been found that acacia extract (1.5%), pomegranate (2%), and pistachio extracts (1.5%) before dyeing, whereas acacia (1%), pomegranate (1%), and pistachio extracts (2%) after dyeing, have shown colorfast shades of high strength. Comparatively, salts of Al (1.5%) and Fe (1%), and T.A (2%) before dyeing, while salts of Al (1%) and Fe (1.5%) and T.A (1.5%) after dyeing, have given the best results. Generally, it has been originated that salt of Fe (1.5%) as a post-chemical mordant and pomegranate extract (1.5%) as a post-bio-mordant have displayed wonderful color strength. It very well may be inferred that MW treatment, being naturally protected, has just superior the varying strength of colorants on wool fabric. Adding biomordants has transformed the strategy into a more sustainable one.


Assuntos
Corantes , Curcumina , Animais , Curcuma , Fibra de Lã , Sais ,
14.
Ecotoxicol Environ Saf ; 247: 114260, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343455

RESUMO

The occurrence of microplastics (MPs) has been widely reported in human foodstuffs, and their potential negative effects on human health have been brought into focus. Processed foods are more susceptible to MPs as contamination can be introduced during processing and packaging. However, the risk posed by MPs in processed foods remained unclear. This work aims to critically review the available data for MPs in 11 types of possessed foods and to conduct a preliminary risk assessment of MPs in processed foods. For a comprehensive evaluation, three indicators were selected and determined, namely chemical risk, pollution load, and estimated daily intake (EDI). Our results suggest that nori has the highest chemical risk, followed by canned fish, beverages, table salt, and other food items. In the case of pollution load, nori and milk fall into the risk category of Ⅳ and Ⅲ respectively. Table salts, bottled water, and sugar exhibited lower MPs pollution load (risk category of Ⅱ), whereas the pollution loads of other foods were calculated to be category Ⅰ. Moreover, a correlation between the pollution load of sea salts and MPs pollution level in ambient seawater was found. Regarding EDI of MPs from different processed foods, MPs intakes through bottled water (14.3 ± 3.4 n kg-1 d-1) and milk (6.6 ± 2.4 n kg-1 d-1) are significantly higher than that of the other foods (< 1 n kg-1 d-1). The probabilistic estimation of MPs daily intake indicated that children (19.7 n kg-1 d-1) are at a higher health risk than adults (female: 17.6 n kg-1 d-1, male: 12.6 n kg-1 d-1). Nevertheless, the exposure dose used in toxicological studies was about 10 times higher than the MPs intake via processed foods. Therefore, we argued that MPs in processed foods only carry limited risk. Overall, this study would provide the basis for risk management of MPs in processed food products.


Assuntos
Água Potável , Porphyra , Humanos , Feminino , Masculino , Adulto , Criança , Animais , Microplásticos , Plásticos , Polímeros , Sais , Medição de Risco , Leite , Verduras , Cloreto de Sódio na Dieta
15.
Artigo em Inglês | MEDLINE | ID: mdl-36294013

RESUMO

Human exposure to microplastics (MPs) through drinking water has drawn serious concern recently because of the potential adverse health effects. Although there are reports on the occurrence of MPs in bottled water, little is known about the abundance of a whole spectrum of MPs with sizes ranging from 1 µm to 5 mm due to the restrictions of conventional MPs detection methods. Some studies using micro-Raman spectroscopy can achieve MPs with a size of <10 µm, however, quantitation of all MPs was extremely time consuming and only a small portion (<10%) of MPs would be analyzed. The present study quantified MPs from nine brands of bottled water using fluorescence microscopy and flow cytometry for MPs with a size of ≥50 µm and a size of <50 µm, respectively. The average abundance of MPs with a size of ≥50 µm in bottled water samples was found ranging from 8-50 particles L-1, while MPs with a size of <50 µm were found to be 1570-17,817 particles L-1, where the MPs abundance from mineral water samples were significantly more than distilled and spring water samples. The modal size and shape of MPs were found at 1 µm and fragments, respectively. Besides, three tap water samples obtained locally were analyzed and compared with the bottled water samples, where less MPs were found in tap water samples. In addition, contamination of MPs from bottle and cap and interference by addition of mineral salts were studied, where no significant difference from all these processes to the control sample was found, suggesting the major contamination of MPs was from other manufacturing processes. Estimated daily intake (EDI) of MPs increased substantially when data of small MPs are included, suggesting that previously reports on exposure of MPs from drinking water might be underestimated, as only large MPs were considered.


Assuntos
Água Potável , Águas Minerais , Poluentes Químicos da Água , Humanos , Microplásticos , Água Potável/análise , Plásticos , Monitoramento Ambiental , Hong Kong , Poluentes Químicos da Água/análise , Sais , Águas Minerais/análise , Minerais
16.
J Environ Manage ; 324: 116239, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174468

RESUMO

Brine (saline wastewater/water) from desalination, salt lakes, and industrial activities (e.g., pharmaceutical industries, oil & gas industries) has received a lot of attention around the world due to its adverse impact on the environment. Currently, several disposal methods have been applied; however, these methods are nowadays unsustainable. To tackle this problem, brine treatment and valorization is considered a promising strategy to eliminate brine discharge and recover valuable resources such as water, minerals, salts, metals, and energy. Brine valorization and resource recovery can be achieved via minimal and zero liquid discharge (MLD & ZLD) desalination systems. Commercially successful technologies such as reverse osmosis (RO) and distillation cannot be adopted as standalone technologies due to restrictions (e.g., osmotic pressure, high-energy/corrosion). Nonetheless, novel technologies such as forward osmosis (FO), membrane distillation (MD) can treat brine of high salinity and present high recovery rates. The extraction of several ions from brines is technically feasible. The minerals/salts composed of major ions (i.e., Na+, Cl-, Mg2+, Ca2+) can be useful in a variety of sectors, and their sale prices are reasonable. On the other hand, the extraction of scarce metals such as lithium, rubidium, and cesium can be extremely profitable as their sale prices are extremely higher compared to the sale prices of common salts. Nonetheless, the extraction of such precious metals is currently restricted to a laboratory scale. The MLD/ZLD systems have high energy consumption and thus are associated with high GHGs emissions as fossil fuels are commonly burned to produce the required energy. To make the MLD/ZLD systems more eco-friendly and carbon-neutral, the authors suggest integrating renewable energy sources such as solar energy, wind energy, geothermal energy, etc. Besides water, minerals, salts, metals, and energy can be harvested from brine. In particular, salinity gradient power can be generated. Salinity gradient power technologies have shown great potential in several bench-scale and pilot-scale implementations. Nonetheless, several improvements are required to promote their large-scale feasibility and viability. To establish a CO2-free and circular global economy, intensive research and development efforts should continue to be directed toward brine valorization and resource recovery using MLD/ZLD systems.


Assuntos
Sais , Purificação da Água , Destilação , Osmose , Água
17.
Am J Trop Med Hyg ; 107(4): 766-772, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36067990

RESUMO

From August 15, 2015 to March 5, 2016, Tanzania reported 16,521 cholera cases and 251 deaths, with 4,596 cases and 44 deaths in its largest city, Dar es Salaam. To evaluate outbreak response efforts, we conducted a household survey with drinking water testing in the five most affected wards in Dar es Salaam. We interviewed 641 households 6 months after the beginning of the outbreak. Although most respondents knew that cholera causes diarrhea (90%) and would seek care if suspecting cholera (95%), only 45% were aware of the current outbreak in the area and only 5% would use oral rehydration salts (ORS) if ill. Of 200 (31%) respondents reporting no regular water treatment, 46% believed treatment was unnecessary and 18% believed treatment was too expensive. Fecal contamination was found in 45% of water samples and was associated with water availability (P = 0.047). Only 11% of samples had detectable free chlorine residual, which was associated with water availability (P = 0.025), reported current water treatment (P = 0.006), and observed free chlorine product in the household (P = 0.015). The provision of accessible, adequately chlorinated water supply, and implementation of social mobilization campaigns advocating household water treatment and use of ORS should be prioritized to address gaps in cholera prevention and treatment activities.


Assuntos
Cólera , Água Potável , Humanos , Cloro , Cólera/epidemiologia , Cólera/prevenção & controle , Eletrólitos , Sais , Tanzânia/epidemiologia
18.
Chemosphere ; 308(Pt 2): 136395, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36096307

RESUMO

In aquatic environments, microplastics (MPs) are pervasive which could have a considerable negative impact on the environment, organisms and pose a risk to human health. However, knowledge about the exposure and ecological risk of MPs in the coastal ecosystems of developing countries is limited. In this study, we analyzed salt samples from five commonly consumed processed and unprocessed sea salts of different commercial brands originated from 15 salt pans in Bangladesh to assess the abundance, characteristics and potential risks of MPs. The quantities of MPs in unprocessed salts (average 195 ± 56 item/kg) were higher than those in the processed salts (average 157 ± 34 item/kg). One-way analysis of variance (ANOVA) showed significant (p < 0.05) differences among the average numbers of MPs in both processed and unprocessed salts. MP levels in this study were 2-3 times higher than those reported from some other countries. Fiber-shaped and transparent MPs were dominant in both cases. MPs less than 0.5 mm in size were the most abundant in both unprocessed (58.2%) and processed (62.2%) salts. Fourier-transform infrared spectroscopy (FTIR) analysis confirmed five types of polymers, including polyethylene terephthalate (PET-35%), polypropylene (PP-27.5%), polyethylene (PE-25%), polystyrene (PS-10%), and Nylon (2.5%) in the studied salts. The sea salts were classified as potential hazard index (PHI) levels IV to V, indicating serious MP contamination, whereas potential ecological risk factor (Ei), potential ecological risk index (RI), and pollutant load index (PLI) indicated moderate levels of pollution of MPs. Domestic and municipal wastewater effluents to Bay of Bengal and fishing activities may attributed to presence of MPs in the sea salt. These findings can be used by consumers, salt industries and policy makers to reduce MPs levels during consumption, production and policymaking.


Assuntos
Microplásticos , Poluentes Químicos da Água , Países em Desenvolvimento , Ecossistema , Monitoramento Ambiental , Humanos , Nylons , Plásticos/química , Polietileno/análise , Polietilenotereftalatos , Polímeros , Polipropilenos/análise , Poliestirenos/análise , Medição de Risco , Sais/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise
19.
Bioresour Technol ; 361: 127717, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35926559

RESUMO

Modified biochar is a feasible adsorbent to solve cadmium pollution in water. However, few studies could elucidate the mechanism of cadmium adsorption by biochar from a molecular perspective. Furthermore, traditional modification methods are costly and have the risk of secondary contamination. Hence, several environmentally friendly sodium salts were used to modify the water chestnut shell-based biochar and employ it in the Cd2+ adsorption in this work. The modification of sodium salt could effectively improve the specific surface area and aromaticity of biochar. Na3PO4 modified biochar exhibited the highest Cd2+ adsorption capacity (112.78 mg/g). The adsorption of Cd2+ onto biochar was an endothermic, monolayer, chemisorption process accompanied by intraparticle diffusion. Microscopically, the enhancement of aromatization after modification made Cd2+ more likely to interact with the regions rich in π electrons and lone pair electrons. This study provided a new research perspective and application guidance for heavy metal adsorption on biochar.


Assuntos
Cádmio , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Cinética , Sais , Sódio , Poluentes Químicos da Água/análise
20.
Environ Pollut ; 312: 119906, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987290

RESUMO

The area of agricultural wastes valorisation to fertilizers is attracting growing attention because of the increasing fertilizer prices of fertilizers and the higher costs of waste utilization. Despite the scientific and political interest in the concept of circular economy, few studies have considered the practical approach towards the implementation of elaborated technologies. This article outlines innovative strategies for the valorisation of different biobased wastes into fertilizers. The present work makes a significant contribution to the field of new ideas for waste biomass management to recover significant fertilizer nutrients. These results emphasize the importance of the biomass use as a base of renewable resources, which has recently gained special importance, especially in relation to the outbreak of pandemia and war. Broken supply chains and limited access to deposits of raw materials used in fertilizer production (natural gas, potassium salts) meant that now, as never before, it has become more important and feasible to implement the idea of a circular economy and a green deal. We have obtained satisfactory results that demonstrate that appropriate management of biological waste (originating from agriculture, food processing, aquaculture, forest, pharmaceutical industry, and other branches of industry, sewage sludge) will not only reduce environmental nuisance (reducing waste heaps), but will also allow recovery of valuable materials, such as nitrogen (especially valuable amino acids), phosphorus, potassium, microelements, and biologically active substances with properties that stimulate plant growth. The results reported here provide information on production of biobased plant protection products (bioagrochemicals) from agri-food waste. This work reports an overview of biopesticides and biofertilisers production technologies and summarizes their properties and the mechanisms of action.


Assuntos
Fertilizantes , Eliminação de Resíduos , Aminoácidos , Agentes de Controle Biológico , Alimentos , Gás Natural , Nitrogênio , Fósforo , Potássio , Sais , Esgotos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA