Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 744
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12715, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830984

RESUMO

To assess the concentration characteristics and ecological risks of potential toxic elements (PTEs) in water and sediment, 17 water samples and 17 sediment samples were collected in the Xiyu River to analyze the content of Cr, Ni, As, Cu, Zn, Pb, Cd and Hg, and the environmental risks of PTEs was evaluated by single-factor pollution index, Nemerow comprehensive pollution index, potential ecological risk, and human health risk assessment. The results indicated that Hg in water and Pb, Cu, Cd in sediments exceeded the corresponding environmental quality standards. In the gold mining factories distribution river section (X8-X10), there was a significant increase in PTEs in water and sediments, indicating that the arbitrary discharge of tailings during gold mining flotation is the main cause of PTEs pollution. The increase in PTEs concentration at the end of the Xiyu River may be related to the increased sedimentation rate, caused by the slowing of the riverbed, and the active chemical reactions at the estuary. The single-factor pollution index and Nemerow pollution index indicated that the river water was severely polluted by Hg. Potential ecological risk index indicated that the risk of Hg in sediments was extremely high, the risk of Cd was high, and the risk of Pb and Cu was moderate. The human health risk assessment indicated that As in water at point X10 and Hg in water at point X9 may pose non-carcinogenic risk to children through ingestion, and As at X8-X10 and Cd at X14 may pose carcinogenic risk to adults through ingestion. The average HQingestion value of Pb in sediments was 1.96, indicating that the ingestion of the sediments may poses a non-carcinogenic risk to children, As in the sediments at X8-X10 and X15-X17 may pose non-carcinogenic risk to children through ingestion.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Ouro , Mineração , Rios , Poluentes Químicos da Água , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , China , Medição de Risco , Rios/química , Poluentes Químicos da Água/análise , Humanos , Monitoramento Ambiental/métodos , Metais Pesados/análise , Metais Pesados/toxicidade
2.
J Hazard Mater ; 476: 134959, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38925053

RESUMO

Microplastics (MPs) are pervasive environmental contaminants that have infiltrated even the most remote ecosystems. Despite their widespread distribution, the transfer patterns and impacts of MPs in remote lakes remain poorly understood. This study aimed to address the knowledge gap regarding the pathways and consequences of MP pollution in these isolated environments. Focusing on Kyêbxang Co, a remote salt lake in Tibet, this study investigated the transfer patterns, sources and ecological impacts of MPs, providing insights into their mobility and fate in pristine ecosystems. Water, sediment and biota (brine shrimp) samples from Kyêbxang Co, collected during the summer of 2020, were analyzed using µ-Raman spectroscopy to determine MP abundances, polymer types and potential sources. Findings indicated significant MP contamination in all examined media, with concentrations highlighting the role of runoff in transporting MPs to remote locations. The majority of detected MPs were small fragments (<0.5 mm), constituting over 93 %, with polypropylene being the predominant polymer type. The presence of a halocline may slow the descent of MPs, potentially increasing the exposure and ingestion risk to brine shrimp. Despite the currently low ecological risk estimated for MPs, this study underscores the need for long-term monitoring and development of a comprehensive ecological risk assessment model for MPs.


Assuntos
Artemia , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/análise , Microplásticos/toxicidade , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Medição de Risco , Artemia/efeitos dos fármacos , Tibet , Monitoramento Ambiental/métodos
3.
J Water Health ; 22(6): 1017-1032, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935453

RESUMO

Microplastic has emerged as a global threat owing to its chronic ubiquity and persistence. Microplastics' small size expedites their ingestion at each trophic level causing biomagnification and bioaccumulation, which has raised public concerns. The present study isolated, quantified and characterized the abundance, shape, size, color, and chemical composition of the microplastics from water and sediments of the Hirakud Reservoir through a scanning electron microscope and FTIR. The ecological risk associated with the microplastics was assessed using the species sensitivity distribution (SSD) method to derive the Predicted No-Effect Concentration (PNEC) value and risk quotient (RQ). The abundance of microplastics in the surface water and sediments of the Hirakud Reservoir was estimated at 82-89 particles/L and 159-163 particles/kg, respectively. Fiber-shaped microplastics dominated both surface water (46.21%) and sediment samples (44.86%). Small-sized microplastics (53-300 µm) prevailed in all samples. Color delineation exhibited an abundance of transparent microplastics. Chemical characterization indicated the dominance of polypropylene (38%), followed by high-density polyethylene, low-density polyethylene, and polystyrene. The calculated PNEC value was 3,954 particles/m3, and the RQ was estimated to be 0.02073-0.04122 indicating negligible ecological risk to freshwater species in all the sampling sites.


Assuntos
Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Microplásticos/toxicidade , Índia , Poluentes Químicos da Água/análise , Medição de Risco , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Água Doce/química , Água Doce/análise
4.
Environ Geochem Health ; 46(7): 236, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849629

RESUMO

The significant increase in the pollution of heavy metals and organic pollutants, their stable nature, and their high toxicity are gradually becoming a global crisis. In a recent study, a comprehensive assessment of the spatial distribution of heavy metals and total petroleum hydrocarbons (TPHs), as well as an assessment of their ecological risks in the sediments of 32 stations located in commercial and industrial areas (Mainly focusing on petrochemical and power industries, desalination plants and transit Ports) of Hormozgan province (East and West of Jask, Bandar Abbas, Qeshm, and Bandar Lengeh) was performed during 2021-2022. The sediment samples were digested with HNO3, HCl and HF solvents. The concentration of heavy metals was determined with furnace and flame systems of atomic absorption spectrometer. The concentration of heavy metals showed significant spatial changes between stations. The ecological assessment indices between the regions indicated that the stations located in Shahid Bahonar Port, Suru Beach, and Khor gorsouzuan had a higher intensity of pollution than other places and significant risks of pollution, especially in terms of Cr and Ni. The average contamination degree (CD) (14.89), modified contamination degree (MCD) (2.48), pollution load index (PLI) (2.32), and potential ecological risk index (PERI) (100.30) showed the sediments in the area of Shahid Bahonar Port, Suru beach and Khor gorsouzuan, experience significant to high levels of pollution, especially Cr and Ni. Using contamination factor (CF) and Geoaccumulation index (Igeo), Cr was considered the most dangerous metal in the studied areas. Based on the global classification of marine sediment quality for the concentrations of TPHs, the sediments of the studied stations were classified as non-polluted to low pollution. In all regions, indices of the PELq (General toxicity) and CF (Contamination factor) were much lower than 0.1 and 1 respectively, showing the absence of adverse biological effects caused by TPHs in sediments. It is necessary to consider comprehensive and impressive strategies to control and reduce pollution of heavy metals, especially in the areas of Shahid Bahonar Port, Suru Beach, and Khor gorsouzuan, so that the sources of this pollution are required to be identified and managed.


Assuntos
Sedimentos Geológicos , Hidrocarbonetos , Metais Pesados , Petróleo , Poluentes Químicos da Água , Metais Pesados/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Irã (Geográfico) , Medição de Risco , Hidrocarbonetos/análise , Poluentes Químicos da Água/análise , Petróleo/análise , Monitoramento Ambiental , Poluição por Petróleo/análise
5.
J Environ Manage ; 359: 120943, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701583

RESUMO

Historical reconstruction of heavy metals (HMs) contamination in sediments is a key for understanding the effects of anthropogenic stresses on water bodies and predicting the variation trends of environmental state. In this work, eighteen sediment cores from the Pearl River Estuary (PRE) were collected to determine concentrations and geochemical fractions of HMs. Then, their potential sources and the relative contributions during different time periods were quantitatively identified by integrating lead-210 (210Pb) radioisotope dating technique into positive matrix factorisation (PMF) method. Pollution levels and potential ecological risks (PERs) caused by HMs were accurately assessed by enrichment factors (EF) based on establishment of their geochemical baselines (GCBs) and multiparameter evaluation index (MPE). HMs concentrations generally showed a particle size- and organic matter-dependent distribution pattern. During the period of 1958-1978, HMs concentrations remained at low levels with agricultural activities and natural processes being identified as the predominant sources and averagely contributing >60%. Since the reform and opening-up in 1978, industrial and traffic factors become the primary anthropogenic sources of HMs (such as Cu, Zn, Cd, Pb, Cr, and Ni), averagely increasing from 22.1% to 28.1% and from 11.6% to 23.4%, respectively. Conversely, the contributions of agricultural and natural factors decreased from 37.0% to 28.5% and from 29.3% to 20.0%, respectively. Subsequently, implementation of environmental preservation policies was mainly responsible for the declining trend of HMs after 2010. Little enrichment of sediment Cu, Zn, Pb, Cr and Ni with EFs (0.15-1.43) was found in the PRE, whereas EFs of Cd (1.16-2.70) demonstrated a slight to moderate enrichment. MPE indices of Cu (50.7-252), Pb (52.0-147), Zn (35.5-130), Ni (19.6-71.5), Cr (14.2-68.8) and Cd (0-9.90) highlighted their potential ecological hazards due to their non-residual fractions and anthropogenic sources.


Assuntos
Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Metais Pesados , Rios , Poluentes Químicos da Água , Metais Pesados/análise , Medição de Risco , China , Rios/química , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise
6.
Environ Res ; 253: 119176, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38768887

RESUMO

This study investigates spatiotemporal dynamics in metal sedimentation in the North American Great Lakes and their underlying biogeochemical controls. Bulk geochemical and isotope analyses of n = 72 surface and core sediment samples show that metal (Cu, Zn, Pb) concentrations and their isotopic compositions vary spatially across oligotrophic to mesotrophic settings, with intra-lake heterogeneity being similar or higher than inter-lake (basin-scale) variability. Concentrations of Cu, Zn, and Pb in sediments from Lake Huron and Lake Erie vary from 5 to 73 mg/kg, 18-580 mg/kg, and 5-168 mg/kg, respectively, but metal enrichment factors were small (<2) across the surface- and core sediments. The isotopic signatures of surface sediment Cu (δ65Cu between -1.19‰ and +0.96‰), Zn (δ66Zn between -0.09‰ and +0.41‰) and Pb (206/207Pb from 1.200 to 1.263) indicate predominantly lithogenic metal sourcing. In addition, temporal trends in sediment cores from Lake Huron and Lake Erie show uniform metal concentrations, minor enrichment, and Zn and Pb isotopic signatures suggestive of negligible in-lake biogeochemical fractionation. In contrast, Cu isotopic signatures and correlation to chlorophyll and macronutrient levels suggest more differentiation from source variability and/or redox-dependent fractionation, likely related to biological scavenging. Our results are used to derive baseline metal sedimentation fluxes and will help optimize water quality management and strategies for reducing metal loads and enrichment in the Great Lakes and beyond.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Poluentes Químicos da Água , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Lagos/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Isótopos/análise , Great Lakes Region , Metais Pesados/análise
7.
J Environ Manage ; 361: 121266, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38815423

RESUMO

Within the Huaihe River Basin, Guohe River, as its second-largest tributary, serves as a critical water supply source. Recent industrial and agricultural advancements have led to increased trace element contamination, adversely impacting the water quality within Guohe River Basin. Therefore, this study aimed to investigate the distribution characteristics, sources, water quality and risk assessment of trace elements in the surface water, groundwater, and sediments across the basin. The results showed that the spatial distribution of trace elements in the surface water and groundwater of Guohe River Basin was that most of the high concentrations appeared in Qiaocheng District of Bozhou City, the mean concentration of Fe in Guohe River sediments was the highest, the mean concentration of Sb was the lowest. The PMF source analysis results showed that the main source of trace elements in Guohe River Basin was natural geological processes, followed by human activities. The sodium adsorption ratio (SAR) indicated that the surface water samples of Guohe River in two seasons had high sodium and salinity hazards. The water quality index (WQI) showed that surface water and groundwater samples in the northwestern of Guohe River Basin had poor water quality. The results of the risk assessment showed that As and Mn posed great ecological risks to surface water and groundwater, respectively, and that F- was the pollutant with the most potential health risk hazard in the basin. The Geo-accumulation index (Igeo) results showed that Cd, Se and As should be taken seriously as the main contaminants of the sediments in Guohe River Basin. KEYWARDS: Trace elements; Source analysis; Sodium adsorption ratio; Water quality index; Risk assessment; Geo-accumulation index.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Rios , Oligoelementos , Poluentes Químicos da Água , Qualidade da Água , Medição de Risco , Rios/química , Oligoelementos/análise , Água Subterrânea/química , Água Subterrânea/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , China
8.
Environ Geochem Health ; 46(6): 205, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695945

RESUMO

The eastern coastline of Gresik, located in East Java, Indonesia, experienced significant industrialization, leading to the development of numerous diverse sectors. These diverse industrial activities, in addition to other human activities, result in the contamination of sediment across the eastern coast of Gresik with a variety of metals. Metals like arsenic (As), cadmium (Cd), copper (Cu), and zinc (Zn) have exceeded the international standards for sediment quality, potentially causing significant harm to the aquatic ecosystem in this coastal region. The results of the multivariate analysis indicate that the metals found in the sediment are related to a combination of anthropogenic inputs, specifically those originating from industrial effluents in the area under study. Based on the assessment of enrichment factor, contamination factor, geo-accumulation index, degree of contamination, ecological risk index, and pollution load index, it can be concluded that the metals examined displayed different degrees of sediment contamination, ranging from minimal to severely contaminated.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Poluentes Químicos da Água , Indonésia , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Medição de Risco , Desenvolvimento Industrial , Metais/análise
9.
Appl Radiat Isot ; 210: 111358, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38776733

RESUMO

In this study, concentrations of 9 heavy metals (Cr, Fe, Co, Ni, Cu, Zn, As, Cd, and Pb) in water and sediments of the Kaptai Lake were determined by neutron activation analysis and atomic absorption spectrometry techniques to study their distribution and contamination in the lake. Average concentrations of Cr and Co in sediments, and Fe and Pb in water were higher than those of some international guideline values. Different environmental pollution indexes (individual and synergistic) suggested that the sediments of Kaptai Lake are minorly enriched by As and Zn, and have low severity of contamination at most of the sampling sites. For residential receptors exposed to the heavy metals in lake water, both non-carcinogenic and carcinogenic hazards were assessed which indicated that there is no carcinogenic risk for As while Cr shows a slightly carcinogenic risk. Moreover, estimated potential ecological risks and different SQGs suggested low ecotoxicological risks in the sediments of Kaptai Lake. Multivariate statistical analyses revealed the correlation among the studied heavy metals and indicated that the origin of most of the metals is mainly lithogenic and a small number of metals (Cu and Pb) from anthropogenic sources. The results of this study will be helpful in developing a pollution control strategy for the lake.


Assuntos
Sedimentos Geológicos , Lagos , Metais Pesados , Poluentes Químicos da Água , Metais Pesados/análise , Medição de Risco , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Bangladesh , Humanos , Monitoramento Ambiental/métodos , Espectrofotometria Atômica
10.
J Contam Hydrol ; 263: 104339, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38564944

RESUMO

Plastic particles, measuring <5 mm in size, mainly originate from larger plastic debris undergoing degradation, fragmenting into even smaller fragments. The goal was to analyze the spatial diversity and polymer composition of microplastics (MPs) in North Chennai, South India, aiming to evaluate their prevalence and features like composition, dimensions, color, and shape. In 60 sediment samples, a combined count of 1589 particles were detected, averaging 26 particles per 5 g-1 of dry sediment. The water samples from the North Chennai vicinity encompassed a sum of 1588 particles across 71 samples, with an average of 22 items/L. The majority of MPs ranged in size from 1 mm to 500 µm. The ATR-FTIR results identified the predominant types of MPs as polystyrene, polyvinyl chloride, polyethylene, polyethylene terephthalate, and polypropylene in sediment and water. The spatial variation analysis revealed high MPs concentration in landfill sites, areas with dense populations, and popular tourist destinations. The pollution load index in water demonstrated that MPs had contaminated all stations. Upon evaluating the polymeric and pollution risks, it was evident that they ranged from 5.13 to 430.15 and 2.83 to 15,963.2, which is relatively low to exceedingly high levels. As the quantity of MPs and hazardous polymers increased, the level of pollution and corresponding risks also escalated significantly. The existence of MPs in lake water, as opposed to open well water, could potentially pose a cancer risk for both children and adults who consume it. Detecting MPs in water samples highlights the significance of implementing precautionary actions to alleviate the potential health hazards they create.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Índia , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Humanos , Medição de Risco , Plásticos/análise
11.
J Environ Qual ; 53(3): 340-351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595076

RESUMO

The primary drivers of eutrophication in lakes following the reduction of external nutrient inputs are the release of N and P from sediments. Constructed wetlands play a pivotal role in ameliorating N, P, and other biogenic element levels. However, the presence of large vegetation in these wetlands also substantially contributes to nutrient accumulation in sediments, a phenomenon influenced by seasonal variations. In this study, a typical constructed wetland was selected as the research site. The research aimed to analyze the forms of N and P in sediments during both summer and winter. Simultaneously, a comprehensive pollution assessment and analysis were conducted within the study area. The findings indicate that elevated summer temperatures, together with the presence of wetland vegetation, promote the release of N through the nitrification process. Additionally, seasonal variations exert a significant impact on the distribution of P storage. Furthermore, the role of constructed wetlands in the absorption and release of N and P is primarily controlled by the influence of organic matter on nitrate-nitrogen, nitrite-nitrogen, and available phosphorus, and is also subject to seasonal fluctuations. In summary, under the comprehensive influence of constructed wetlands, vegetation types, and seasons, sediments within the lake generally exhibit a state of mild or moderate pollution. Therefore, targeted measures should be adopted to optimally adjust vegetation types, and human intervention is necessary, involving timely sediment harvesting during the summer to reduce N and P loads, and enhancing sediment adsorption and retention capacity for N and P during the winter.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Nitrogênio , Fósforo , Estações do Ano , Poluentes Químicos da Água , Áreas Alagadas , Lagos/química , Fósforo/análise , Nitrogênio/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Eutrofização , Inundações
12.
Environ Res ; 252(Pt 2): 118977, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649017

RESUMO

Seafood is an essential protein source for coastal communities. However, they can accumulate heavy metals from human activities which could pose a potential health risk to consumers. In this study, we investigated the distribution, bioaccumulation, trophic transfer and potential human health risk of heavy metals in sediments, shell and fin fish collected from the Escravos Estuary in southern Nigeria. Heavy metals (Ni, Cd, V, Pb and Cu) in sediments, periwinkles and tongue soles from the two study sites were lower than the permissible limits for fishery products. The metal distribution in fish tissues was in the decreasing order of liver > gills > muscles > gonads > rest of the fish. Moderate to high BSAF (>1) was reported for Cd, Pb and Cu. All the studied metals, except Pb, showed evidence of biomagnification from periwinkle to tongue sole. The estimated daily intake (EDI) and hazard ratio (HR) for metals in periwinkles from both study sites were lower or within the USEPA reference doses (RfD) for the respective daily intake and HR value < 1, except for Cd, V and Pb for children. In contrast, EDI values in the muscle of tongue soles were higher than the RfD values for heavy metals except for Ni and Pb, whereas HR values > 1 except for Ni, Cd and V. In the whole fish, EDI and HR values were disproportionately high in both study sites with higher values reported for children. This study provides the first insights on the trophic transfer and risk assessment of heavy metals from petroleum and gas operations impacting the Escravos Estuary and the implications to public health.


Assuntos
Estuários , Metais Pesados , Alimentos Marinhos , Poluentes Químicos da Água , Metais Pesados/análise , Medição de Risco , Animais , Poluentes Químicos da Água/análise , Alimentos Marinhos/análise , Humanos , Peixes/metabolismo , Nigéria , Contaminação de Alimentos/análise , Monitoramento Ambiental , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Cadeia Alimentar
13.
PLoS One ; 19(4): e0294642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630745

RESUMO

The Cikijing River is one of the rivers of the Citarik River Basin, which empties into the Citarum River and crosses Bandung Regency and Sumedang Regency, Indonesia. One of the uses of the Cikijing River is as a source of irrigation for rice fields in the Rancaekek area, but the current condition of the water quality of the Cikijing river has decreased, mainly due to the disposal of wastewater from the Rancaekek industrial area which is dominated by industry in the textile and textile products sector. This study aims to determine the potential ecological risks and water quality of the Cikijing River based on the content of heavy metals (Cr, Cu, Pb, and Zn). Sampling was carried out twice, during the dry and rainy seasons at ten different locations. The selection of locations took into account the ease of sampling and distribution of land use. Based on the results of this study, it was found that the water quality of the Cikijing River was classified as good based on the content of heavy metals (Cr, Cu, Pb, and Zn) with a Pollution Index 0.272 (rainy season) and 0.196 (dry season), while for the sediment compartment of the Cikijing River, according to the geoaccumulation index (Igeo) were categorized as unpolluted for heavy metals in rainy and dry seasons Cr (-3.16 and -6.97) < Cu (-0.59 and -1.05), and Pb (-1.68 and -1.91), heavily to very heavily polluted for heavy metals Zn (4.7 and 4.1) . The pollution load index (PLI) shows that the Cikijing River is classified as polluted by several heavy metals with the largest pollution being Zn> Cu > Pb > Cr. Furthermore, the results of the analysis using the Potential Ecological Risk Index (PERI) concluded that the Cikijing River has a mild ecological risk potential in rainy season (93.94) and dry season (96.49). The correlation test results concluded that there was a strong and significant relationship between the concentrations of heavy metals Pb and Zn and total dissolved solids, salinity, and electrical conductivity in the water compartment.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Rios , Indonésia , Chumbo/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/análise , Qualidade da Água , Metais Pesados/análise , Medição de Risco , China
14.
Environ Res ; 252(Pt 1): 118795, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555082

RESUMO

The Çanakkale Strait is exposed to various pollutants due to its strategic location. It is thought that stream inputs may contribute significantly to metal and phosphorus (P) accumulation in the strait. In this study, the spatial distribution, pollution status, ecological risks and possible sources of twelve metals and P in the sediments of seven important streams emptying into the strait were analyzed. The results showed that Zn (226 mg/kg), Ba (67.2 mg/kg) and Pb (10.4 mg/kg) concentrations were higher in the Umurbey Stream due to mining activities, while P concentration (295 mg/kg) was higher in the Çanakkale Stream due to both agricultural activities and domestic wastewater discharges. Modified hazard quotient (mHQ), enrichment factor (EF) and contamination factor (Cf) values revealed that Zn and Pb showed high and moderate contamination in the US3 and US4 sampling sites of the Umurbey Stream, respectively. Similarly, P showed moderate contamination in the ÇS3 site of the Çanakkale Stream. Nemerow pollution index (NPI) showed that the US3 (2.41) and US4 (4.28) sites of the Umurbey Stream were slightly and moderately polluted, respectively. Toxic risk index (TRI) values demonstrated that the sediments in only the US4 site (5.17) of the Umurbey Stream may pose a low toxic risk due to high Zn content. Similarly, based on comparison results with sediment quality guidelines (SQGs), it was found that high Zn content may lead to adverse effects on sediment-dwelling organisms in the US4 site. In addition, the PEC-quotient value in the US4 site exceeded 0.5, confirming the finding that the sediments in this site could be toxic to benthic organisms. Finally, correlation, cluster and factor analyzes were used to determine possible sources of elements. Mining activities, natural sources and mixed sources (agricultural activities and natural sources) were identified as the main sources of elements in the sediments of the streams. This study can provide an important reference for evaluating stream sediment pollution and managing marine pollution.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Fósforo , Rios , Poluentes Químicos da Água , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Medição de Risco , Rios/química , Poluentes Químicos da Água/análise , Fósforo/análise , Monitoramento Ambiental/métodos , Metais/análise , Metais/toxicidade
15.
Environ Manage ; 73(5): 932-945, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367028

RESUMO

Contamination of the environment by microplastics (MPs), polymer particles of <5 mm in diameter, is an emerging concern globally due to their ubiquitous nature, interactions with pollutants, and adverse effects on aquatic organisms. The majority of studies have focused on marine environments, with freshwater systems only recently attracting attention. The current study investigated the presence, abundance, and distribution of MPs and potentially toxic elements (PTEs) in sediments of the River Kelvin, Scotland, UK. Sediment samples were collected from eight sampling points along the river and were extracted by density separation with NaCl solution. Extracted microplastics were characterised for shape and colour, and the polymer types were determined through attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Pollution status and ecological risks were assessed for both the microplastics and PTEs. Abundance of MPs generally increased from the most upstream location (Queenzieburn, 50.0 ± 17.3 particles/kg) to the most downstream sampling point (Kelvingrove Museum, 244 ± 19.2 particles/kg). Fibres were most abundant at all sampling locations, with red, blue, and black being the predominant colours found. Larger polymer fragments were identified as polypropylene and polyethylene. Concentrations of Cr, Cu, Ni, Pb and Zn exceeded Scottish background soil values at some locations. Principal component and Pearson's correlation analyses suggest that As, Cr, Pb and Zn emanated from the same anthropogenic sources. Potential ecological risk assessment indicates that Cd presents a moderate risk to organisms at one location. This study constitutes the first co-investigation of MPs and PTEs in a river system in Scotland.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos , Monitoramento Ambiental/métodos , Chumbo/análise , Escócia , Reino Unido , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Medição de Risco
16.
Environ Res ; 250: 118465, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367839

RESUMO

Estuaries in South Africa are very important for biodiversity conservation and serve as focal points for leisure and tourism activities. The organophosphate flame retardants (OPFRs) levels in these aquatic systems haven't been documented in any studies as of yet. Due to the negative effects of persistent organic pollutants in South African estuaries, we examined the occurrence of eight OPFRs in sediments of two estuaries by studying their spatiotemporal distribution, season variation, and ecological risks. The Sundays Estuary (SDE), a semi-urbanized agricultural surrounding system, recorded an ∑8OPFR concentration in sediments that ranged from 0.71 to 22.5 ng/g dw, whereas Swartkops Estuary, a largely urbanized system, recorded a concentration that ranged from 0.61 to 119 ng/g dw. Alkyl-OPFRs were the prevalent homologue in both estuaries compared to the chlorinated and aryl groups. While TBP, TCPP, and TCrP were the most abundant compounds among the homologue groups. There was no distinct seasonal trend of ∑8OPFR concentration in either estuary, with summer and autumn seasons recording the highest concentrations in SDE and SWE, respectively. Ecological risks in the majority of the study sites for the detected compounds were at low (RQ < 0.1) and medium levels (0.1 ≤ RQ < 1) for certain species of fish, Daphnia magna and algae. However, the cumulative RQs for all the compounds had ∑RQs ≥1 for most sites in both estuaries, indicating that these organisms, if present in both estuaries, may be exposed to potential ecological concerns due to accumulated OPFR chemicals. The scope of future studies should be broadened to include research areas that are not only focus on the bioaccumulation patterns of these compounds but also find sustainable ways to reduce them from these estuarine environments.


Assuntos
Monitoramento Ambiental , Estuários , Retardadores de Chama , Sedimentos Geológicos , Estações do Ano , Poluentes Químicos da Água , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , África do Sul , Medição de Risco , Retardadores de Chama/análise , Organofosfatos/análise , Organofosfatos/toxicidade , Animais
17.
Mar Pollut Bull ; 200: 116123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330814

RESUMO

The compound effects of anthropogenic disturbances on global and local scales threaten coral reef ecosystems of the Arabian Sea. The impacts of organic pollutants on the coral reefs and associated organisms have received less attention and are consequently less understood. This study examines the background levels, sources, and ecological implications of polycyclic aromatic hydrocarbons (PAHs) in the coral reef ecosystems of Lakshadweep Archipelago. Water and particulate matter were collected from four coral Islands (Kavaratti, Agatti, Bangaram and Perumal Par) of Lakshadweep Archipelago during January and December 2022 and analysed for 15 PAHs priority pollutants. The 15 PAHs congeners generally ranged from 2.77 to 250.47 ng/L in the dissolved form and 0.44 to 6469.86 ng/g in the particulate form. A comparison of available data among the coral reef ecosystems worldwide revealed relatively lower PAHs concentrations in the Lakshadweep coral ecosystems. The isomeric ratios of individual PAH congeners and principal component analysis (PCA) indicate mixed sources of PAHs in the water column derived from pyrogenic, low-temperature combustion and petrogenic. The risk quotient (RQ) values in the dissolved form indicate moderate risk to the aquatic organisms, while they indicate moderate to severe risk in the particulate form.


Assuntos
Antozoários , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Recifes de Corais , Ecossistema , Hidrocarbonetos Policíclicos Aromáticos/análise , Sedimentos Geológicos/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Medição de Risco , Água/análise , Carvão Mineral/análise , China
18.
Environ Geochem Health ; 46(3): 89, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367204

RESUMO

This study systematically analyzed the distribution characteristics, sources, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in Kuye River sediments, located in an energy and chemical industry base in northern Shaanxi, China. The results that revealed the concentrations of 16 PAHs in the sediment ranged from 1090.04 to 32,175.68 ng∙g-1 dw, with the four-ring PAHs accounting for the highest proportion. Positive matrix factorization analysis (PMF) revealed the main sources of PAHs as incomplete fossil fuel combustion, biomass combustion, and traffic emissions. The total toxic equivalent concentration of BaP, risk quotient, and lifetime carcinogenic risk of PAHs suggested moderate to high contamination of PAHs in the area. The higher incremental lifetime carcinogenic risk (ILCR) indicated that PAH ingestion was the primary route of impact on public health, with children potentially being more susceptible to PAH exposure. This study can provide valuable theoretical support for implementing pollution prevention measures and ecological restoration strategies for rivers in energy and chemical industry areas.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Criança , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios , Indústria Química , Poluentes Químicos da Água/análise , Sedimentos Geológicos/análise , Monitoramento Ambiental/métodos , Medição de Risco , China
19.
Mar Pollut Bull ; 199: 116018, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244391

RESUMO

Eighteen surface sediment samples collected from the Rongcheng offshore area of China in 2021 were analyzed for heavy metal concentrations, sources, and pollution status. The Cu, Zn, Cr, Cd, As, and total organic carbon (TOC) distributions were similar. In contrast, the distributions of Pb and Hg were irregular, and high concentrations appeared in two or several areas. Occasional adverse effects were observed from pollution caused by Cu, Pb, and As, and none of the heavy metal concentrations exceeded the probable effect level (PEL). The Pearson's correlation coefficient, geoaccumulation index, and principal component analysis were used to distinguish the sources and assess the pollution risk of heavy metals. The results showed that heavy metals did not pollute the surface sediments in the Rongcheng offshore area and that the metals were mainly derived from natural sources.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Chumbo/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Metais Pesados/análise , China , Medição de Risco
20.
Environ Sci Pollut Res Int ; 31(6): 8898-8916, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180666

RESUMO

In order to determine the status of heavy metal pollution in river sediments and wild fish in Xi'an, concentrations of heavy metals (Cr, Ni, Cu, Zn, As, and Pb) were collected and analyzed in sediments and wild fish during dry season (October-November 2020) and wet season (June-July 2021). This study aimed to investigate the spatial and temporal variations of heavy metals in urban rivers of Xi'an, China. Their distribution characteristics and sources as well their pollution levels and health risks were assessed. The findings revealed that influenced by human activities, the heavy metal content in sediments (mg·kg-1 dry weight) in wet season was ranked as follows: Cr (73.09) > Zn (63.73) > Pb (40.31) > Ni (31.52) > Cu (24.86) > As (6.83); in the dry season: Zn (94.07) > Cr (69.59) > Cu (34.24) > Ni (33.60) > Pb (32.87) > As (7.60). Moreover, 32 fish samples from six species indicated an average metal content trend (mg·kg-1 wet weight) of Zn (8.70) > Cr (0.57) > Pb (0.28) > Ni (0.27) > Cu (0.24) > As (0.05). The potential ecological risk indices for sediment heavy metal concentrations in both seasons were well below the thresholds, which indicates that the aquatic environment is in safe level. The analysis of the potential ecological risk of sediment heavy metal concentrations indicates that the aquatic environment is safe for the time being. Based on the estimated daily intake (EDI), target risk quotient (THQ), total target risk quotient (TTHQ), cancer risk (CR), total cancer risk (TCR), and the permissible safety limits set by the agencies, the consumption of the fish examined is safe for human health. However, the presence of Cr and As in wild fish should still be a concern for human health, especially for children. The cumulative effect of heavy metals and the bioconcentration factor (BCF) suggest that sediment and heavy metals in fish are closely related, with higher concentrations in fish living in the bottom layer of the water column than in other water layers, and increasing with increasing predator levels. Correlation analysis and PMF modeling identified and determined four comparable categories of potential sources, namely, (1) atmospheric deposition and traffic sources, (2) agricultural sources, (3) industrial sources, and (4) natural sources.


Assuntos
Metais Pesados , Neoplasias , Poluentes Químicos da Água , Animais , Criança , Humanos , Estações do Ano , Monitoramento Ambiental , Rios , Chumbo/análise , Sedimentos Geológicos/análise , Metais Pesados/análise , Medição de Risco , China , Peixes , Água/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA