Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biotechnol ; 24(1): 27, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725019

RESUMO

Cyanobacteria represent a rich resource of a wide array of unique bioactive compounds that are proving to be potent sources of anticancer drugs. Selenium nanoparticles (SeNPs) have shown an increasing potential as major therapeutic platforms and led to the production of higher levels of ROS that can present desirable anticancer properties. Chitosan-SeNPs have also presented antitumor properties against hepatic cancer cell lines, especially the Cht-NP (Chitosan-NPs), promoting ROS generation and mitochondria dysfunction. It is proposed that magnetic fields can add new dimensions to nanoparticle applications. Hence, in this study, the biosynthesis of SeNPs using Alborzia kermanshahica and chitosan (CS) as stabilizers has been developed. The SeNPs synthesis was performed at different cyanobacterial cultivation conditions, including control (without magnetic field) and magnetic fields of 30 mT and 60 mT. The SeNPs were characterized by uv-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Dynamic light scattering (DLS), zeta potential, and TEM. In addition, the antibacterial activity, inhibition of bacterial growth, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), as well as the antifungal activity and cytotoxicity of SeNPs, were performed. The results of uv-visible spectrometry, DLS, and zeta potential showed that 60 mT had the highest value regarding the adsorption, size, and stabilization in compared to the control. FTIR spectroscopy results showed consistent spectra, but the increased intensity of peaks indicates an increase in bond number after exposure to 30 mT and 60 mT. The results of the antibacterial activity and the inhibition zone diameter of synthesized nanoparticles showed that Staphylococcus aureus was more sensitive to nanoparticles produced under 60 mT. Se-NPs produced by Alborzia kermanshahica cultured under a 60 mT magnetic field exhibit potent antimicrobial and anticancer properties, making them a promising natural agent for use in the pharmaceutical and biomedical industries.


Assuntos
Quitosana , Campos Magnéticos , Selênio , Selênio/química , Selênio/farmacologia , Quitosana/química , Quitosana/farmacologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Testes de Sensibilidade Microbiana , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/química , Nanopartículas Metálicas/química
2.
Int J Biol Macromol ; 265(Pt 2): 131100, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521308

RESUMO

Selenylation modification has been widely developed to improve the biological effects of natural polysaccharides. In this study, a purified new polysaccharide (MSP-4) was isolated from Morchella Sextelata, and selenized into SeMSP-4 using the HNO3-Na2SeO3 method. The selenium (Se) content of SeMSP-4 was 101.81 ± 9.90 mg/kg, and the molecular weight of SeMSP-4 was 1.23 × 105 Da. The FT-IR, XRD and AFM results showed that MSP-4 was successfully combined with the Se element. The structure characters of SeMSP-4 were analyzed by methylation analysis combined with 1D and 2D NMR spectroscopy. And, the radical scavenging test revealed that SeMSP-4 exhibited higher antioxidant capacities in vitro than MSP-4. The cytotoxicity analysis indicated that SeMSP-4 could dose-dependently inhibit the proliferation of HepG2 and HeLa cells, but did not show a cytotoxic effect on normal cells (HEK293). Furthermore, SeMSP-4 stimulation significantly increased the macrophage viability and enhanced NO production in macrophage cells. This study suggested that SeMSP-4 could be utilized as a potential selenium source with antioxidant, antitumor, and immunostimulatory activities.


Assuntos
Antioxidantes , Ascomicetos , Selênio , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Selênio/farmacologia , Selênio/química , Células HeLa , Células HEK293 , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/farmacologia , Polissacarídeos/química
3.
J Biochem Mol Toxicol ; 37(12): e23513, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37698485

RESUMO

Recently, there has been a lot of focus on the environmentally friendly, specifically plant-based, synthesis of nanoparticles. The extract of leaves from Andrographis alata (A. alata) was used in the current work as a reducing agent to create selenium nanoparticles (SeNPs), which will be used in biological applications (antibacterial, antioxidant and antidiabetic, anti-Alzheimer's and wound healing properties). As part of detailed characterization, the UV-Vis spectra showed an absorption peak at 274 nm with a size in the range of 55-75 nm were shown in morphological investigations using EDS, DLS and SEM analysis to have crystalline spherical-shaped structures. Against several harmful bacterial strains, SeNPs demonstrated a remarkable antibacterial effectiveness. The minimum inhibitory concentration (MIC) of synthesized SeNPs completely prevented the development of various pathogens. Furthermore, bio-reduced SeNPs showed high cholinesterase inhibition efficacy and good antipotential Alzheimer's. According to the current research, treatment with biosynthesized SeNPs stimulates faster wound healing in NIH3T3 murine fibroblast cell lines without cytotoxicity. Different in vitro biological experiments also showed that, when compared with the extract of A. alata, bio-reduced SeNPs had considerable antibacterial, antioxidant effects, antidiabetic, anti-Alzheimer's and wound healing. In general, the findings demonstrate the efficacy and prospective therapeutic uses of SeNPs.


Assuntos
Andrographis , Anti-Infecciosos , Nanopartículas , Selênio , Camundongos , Animais , Selênio/farmacologia , Selênio/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Células NIH 3T3 , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/farmacologia , Antioxidantes/química , Cicatrização
4.
Int J Pharm ; 637: 122884, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966981

RESUMO

According to the favorable antitumor properties of selenium, this study aimed to design a novel form of selenium nanoparticles (Se NPs) functionalized with chitosan (Cs) and sialic acid to assess their antitumor effects on the human glioblastoma cell lines (T98 and A172). Se NPs were synthesized in the presence of chitosan and ascorbic acid (Vc) and the synthesis conditions were optimized using response surface methodology. Se NPs@Cs were obtained with a monoclinic structure with an average diameter of 23 nm under the optimum conditions (reaction time = 30 min, chitosan concentration = 1 % w/v, Vc/Se molar ratio = 5). To modify Se NP@Cs for glioblastoma treatment, sialic acid was used to cover the surface of the NPs. Sialic acid was successfully attached to the surface of Se NPs@Cs, and Se NPs@Cs-sialic acid were formed in the size range of 15-28 nm. Se NPs@Cs-sialic acid were stable for approximately 60 days at 4 ℃. The as-synthesized NPs exerted inhibitory effects on T98 greater than 3 T3 > A172 cells in a dose- and time-dependent manner. Additionally, sialic acid ameliorated the blood biocompatibility of Se NPs@Cs. Taken together, sialic acid improved both the stability and biological activity of Se NPs@Cs.


Assuntos
Antineoplásicos , Quitosana , Glioblastoma , Nanopartículas , Selênio , Humanos , Selênio/farmacologia , Selênio/química , Quitosana/química , Ácido N-Acetilneuramínico , Glioblastoma/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular , Nanopartículas/química
5.
Nanomedicine (Lond) ; 18(27): 2021-2038, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38179978

RESUMO

Aim: To study the biodistribution and toxicology of selenium nanoparticles (SeNPs) versus their bulk counterpart in young and adult male rats in a 28-day study. Methods: SeNPs were synthesized and conjugated with indocyanine green to assess comparative biodistribution by in vivo imaging and further characterized by transmission electron microscopy, Fourier transform infrared, scanning electron microscopy/energy dispersive x-ray spectroscopy, UV and ζ-analysis. The toxicity of bulk selenium was evaluated relative to its nano form by hematology indices, redox, inflammatory markers and histopathology. Results: Indocyanine green-conjugated nanoparticles showed preferential accumulation in the liver, followed by testis and kidney. The protective effect of SeNPs was more significantly observed in young livers than in adults compared with the bulk counterpart. Conclusion: Age-dependent monitoring and diagnosis of toxicity may need different biomarkers of selenium and may also provide better understanding of SeNPs as therapeutics.


Selenium is an essential element in the body. Its bioactive properties can protect against neurological conditions, diabetes, cancer and other chronic disorders. However, selenium in various biological forms (bulk) can be toxic. Selenium nanoparticles (SeNPs) have unique properties which might prevent this toxicity, providing a potential alternative for selenium supplementation and therapy. However, more studies are needed to see where SeNPs localize in the body, as well as comparing their toxicology with conventional forms of selenium in different age groups. We synthesized and characterized SeNPs of 70­90 nm, then injected them into young and adult rats to see where they distributed in the body. This was compared with rats injected with bulk selenium. SeNPs showed preferential accumulation in the liver, followed by the testes and kidneys. Next, the toxicity profiles of SeNPs and bulk selenium were established by measuring a series of health markers in the liver. It was found that the protection against toxicity provided by SeNPs was more significant in younger rats. Our results demonstrate that the same dose may behave differently in different age groups and that bulk selenium induces different toxicities in young and adult rats compared with SeNPs, highlighting the importance of different indicators of health for the monitoring of selenium-related toxicity when designing selenium-based therapeutics.


Assuntos
Nanopartículas , Selênio , Ratos , Masculino , Animais , Selênio/toxicidade , Selênio/química , Distribuição Tecidual , Verde de Indocianina , Nanopartículas/toxicidade , Nanopartículas/química , Antioxidantes/metabolismo
6.
Nanotechnology ; 33(35)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35605588

RESUMO

Selenium nanoparticles (SeNPs) have recently attracted attention because they combine the benefits of Se and lower toxicity compared to other chemical forms of this element. In this study, SeNPs were synthesized by a green method using ascorbic acid as the reducing agent and polyvinyl alcohol as stabilizer. The nanoparticles were widely characterized. To determine the total concentration of Se by ICP-MS, several isotopes and the use of He as collision gas were evaluated, which was effective in minimizing interferences. A method for sizing SeNPs by single particle ICP-MS (SP-ICP-MS) was developed. For this purpose, He and H2were evaluated as collision/reaction gases, and the second one showed promising results, providing an average diameter of 48 nm for the SeNPs. These results agree with those obtained by TEM (50.1 nm). Therefore, the SP-ICP-MS can be implemented for characterizing SeNPs in terms of size and size distribution, being an important analytical tool for Se and other widely studied nanoparticles (e.g. Ag, Au, Ce, Cu, Fe, Zn). Finally, the antibacterial activity of SeNPs was assessed. The SeNPs showed bacteriostatic activity against three strains of Gram-positive bacteria and were particularly efficient in inhibiting the growthE. faecaliseven at very low concentrations (MIC < 1.4 mg l-1). In addition, a bactericidal activity of SeNPs againstS. aureuswas observed. These nanoparticles may have potential application in pharmaceutical industry, biomedicine and agriculture.


Assuntos
Nanopartículas , Selênio , Antibacterianos/farmacologia , Gases , Nanopartículas/química , Selênio/química
7.
PLoS One ; 15(12): e0244207, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33338077

RESUMO

This study attempted to address molecular, developmental, and physiological responses of tomato plants to foliar applications of selenium nanoparticles (nSe) at 0, 3, and 10 mgl-1 or corresponding doses of sodium selenate (BSe). The BSe/nSe treatment at 3 mgl-1 increased shoot and root biomass, while at 10 mgl-1 moderately reduced biomass accumulation. Foliar application of BSe/nSe, especially the latter, at the lower dose enhanced fruit production, and postharvest longevity, while at the higher dose induced moderate toxicity and restricted fruit production. In leaves, the BSe/nSe treatments transcriptionally upregulated miR172 (mean = 3.5-folds). The Se treatments stimulated the expression of the bZIP transcription factor (mean = 9.7-folds). Carotene isomerase (CRTISO) gene was transcriptionally induced in both leaves and fruits of the nSe-treated seedlings by an average of 5.5 folds. Both BSe or nSe at the higher concentration increased proline concentrations, H2O2 accumulation, and lipid peroxidation levels, suggesting oxidative stress and impaired membrane integrity. Both BSe or nSe treatments also led to the induction of enzymatic antioxidants (catalase and peroxidase), an increase in concentrations of ascorbate, non-protein thiols, and soluble phenols, as well as a rise in the activity of phenylalanine ammonia-lyase enzyme. Supplementation at 3 mgl-1 improved the concentration of mineral nutrients (Mg, Fe, and Zn) in fruits. The bioaccumulated Se contents in the nSe-treated plants were much higher than the corresponding concentration of selenate, implying a higher efficacy of the nanoform towards biofortification programs. Se at 10 mgl-1, especially in selenate form, reduced both size and density of pollen grains, indicating its potential toxicity at the higher doses. This study provides novel molecular and physiological insights into the nSe efficacy for improving plant productivity, fruit quality, and fruit post-harvest longevity.


Assuntos
Biofortificação/métodos , Nanopartículas/química , Ácido Selênico/farmacologia , Selênio/farmacologia , Solanum lycopersicum/metabolismo , Armazenamento de Alimentos/métodos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Estresse Oxidativo , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Selênico/efeitos adversos , Ácido Selênico/química , Selênio/efeitos adversos , Selênio/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo
8.
IET Nanobiotechnol ; 14(6): 519-526, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32755962

RESUMO

In the present study, water-soluble hybrid selenium-containing nanocomposites have been synthesised via soft oxidation of selenide-anions, preliminarily generated from elemental bulk-selenium in the base-reduction system 'N2H4-NaOH'. The nanocomposites obtained consist of Se0NPs (4.6-24.5 nm) stabilised by κ-carrageenan biocompatible polysaccharide. The structure of these composite nanomaterials has been proven using complementary physical-chemical methods: X-ray diffraction analysis, transmission electron microscopy, optical spectroscopy, and dynamic light scattering. Optical ranges of 'emission/excitation' of aqueous solutions of nanocomposites with Se0NPs of different sizes are established and the most important parameters of their luminescence are determined. For the obtained nanocomposites, the expressed antiradical activity against free radicals 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid has been found, the value of which depends on the size of selenium nanoparticles. It is experimentally revealed that all obtained nanocomposites are low toxic (LD50 >2000 mg/kg). It is also found that small selenium nanoparticles (6.8 nm), in contrast to larger nanoparticles (24.5 nm), are accumulated in organisms to significantly increase the level of selenium in the liver, kidneys, and brain (in lesser amounts) of rats.


Assuntos
Antioxidantes , Carragenina , Nanopartículas Metálicas/química , Nanocompostos/química , Selênio , Animais , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Química Encefálica/efeitos dos fármacos , Carragenina/química , Carragenina/farmacocinética , Carragenina/farmacologia , Rim/química , Rim/efeitos dos fármacos , Masculino , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Ratos , Selênio/química , Selênio/farmacocinética , Selênio/farmacologia , Distribuição Tecidual
9.
Chemosphere ; 252: 126475, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32200180

RESUMO

Iron-impregnated food waste biochar (Fe-FWB) was synthesized for Se(Ⅵ) removal from aqueous solution. The effect and interactive effects of different parameters including pyrolysis time, temperature, and Fe concentration were explored using response surface methodology (RSM) to enhance conditions to achieve the highest Se(Ⅵ) removal using Fe-FWB. Pyrolysis time was not significant for Se(Ⅵ) adsorption capacity of Fe-FWB, but temperature and Fe concentration were found to be significant. The highest adsorption was achieved at 3.47 h and 495.0 °C with an Fe concentration of 0.44 M. Fe-FWB synthesized under optimum conditions were used to investigate the kinetic, equilibrium, and thermodynamic adsorption of Se(Ⅵ). Se(Ⅵ) adsorption reached equilibrium within 6 h, and both pseudo-second order and pseudo-first order models were suitable for describing kinetic Se(Ⅵ) adsorption. The Freundlich model was found to suitably fit the equilibrium adsorption data than the Langmuir model. The highest adsorption capacity of Fe-FWB for Se(Ⅵ) was 11.7 mg g-1. Se(Ⅵ) adsorption on Fe-FWB was endothermic and spontaneous. The enthalpy change for Se(Ⅵ) adsorption was 54.4 kJ mol-1, and the entropy change was negative at 15-35 °C. The increment of solution pH from 3 to 11 decreased the Se(Ⅵ) adsorption from 19.2 to 7.4 mg g-1. The impact of interfering anions on Se(Ⅵ) adsorption followed the lineup: HCO3- > HPO42- > SO42- > NO3-. When compared to some adsorbents, the adsorption capacity of Se(Ⅵ) onto Fe-FWB was comparable even at neutral pH and the Fe-FWB was granular. These results indicate that Fe-FWB has prospective application in the removal of Se(Ⅵ) from aqueous solutions.


Assuntos
Selênio/química , Poluentes Químicos da Água/química , Adsorção , Ânions , Carvão Vegetal/química , Alimentos , Concentração de Íons de Hidrogênio , Ferro , Cinética , Estudos Prospectivos , Selênio/análise , Temperatura , Termodinâmica , Água , Poluentes Químicos da Água/análise
10.
Environ Sci Pollut Res Int ; 27(2): 2311-2318, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31776904

RESUMO

With the aim of determining the benefit from consumption of dolphinfish Coryphaena hippurus from La Paz and Cabo San Lucas in the southern area of the Gulf of California, mercury (Hg) and selenium (Se) were measured in liver and muscle of specimens (n = 362) collected between 2006 and 2013. Mean levels of Hg in muscle (0.61 µg g-1) and liver (0.42 µg g-1) of all individuals from La Paz were significantly higher (p < 0.05) than in fish from Cabo San Lucas; in the case of Se, mean concentrations in liver (1.54 µg g-1) of all individuals from La Paz were significantly higher (p < 0.05) than in fish from Cabo San Lucas. Hg levels in muscle were positively and significantly (p < 0.05) correlated with fork length and weight of fish; in liver, Hg and Se were significantly (p < 0.05) correlated with fork length and weight of specimens. Levels of Hg and Se in muscle and liver among years varied significantly (p < 0.05); although there was not a defined pattern of temporal fluctuations for both elements, the lowest Hg levels occurred in 2009 when surface water temperatures were the highest for the sampled years. With respect to the Se health benefit value (HBVSe), results were positive and above the unit in all cases; it implies that consumption of dolphinfish in the southern Gulf of California is beneficial.


Assuntos
Mercúrio/análise , Perciformes , Selênio , Poluentes Químicos da Água , Animais , California , Monitoramento Ambiental , Feminino , Masculino , Mercúrio/química , Perciformes/metabolismo , Selênio/análise , Selênio/química , Selênio/metabolismo
11.
Mater Sci Eng C Mater Biol Appl ; 103: 109763, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349432

RESUMO

In the present study, we investigated the larvicidal and bacteriostatic activity of biosynthesized selenium nanoparticles using aqueous berry extract of Murraya koenigii (Mk-Se NPs). The synthesized Mk-Se NPs were characterized using UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. XRD analysis revealed the crystalline nature of Mk-Se NPs as hexagonal. The FTIR spectra of Mk-Se NPs exhibited a strong peak at 3441 cm-1 corresponding to the OH group. SEM and TEM analysis showed that the Mk-Se NPs were spherical in shape with a size between 50 and 150 nm. EDX peaks confirm the presence of 73.38% of selenium and 26.62% of oxide in Mk-Se NPs. Mk-Se NPs showed significant larvicidal property against the 4th instar larvae of a dengue fever-causing vector Aedes aegypti with LC50- - 3.54 µg mL-1 and LC90- - 8.128 µg mL-1 values. Mk-Se NPs displayed anti-bacterial activity against Gram-positive (Enterococcus faecalis &Streptococcus mutans) and Gram-negative (Shigella sonnei &Pseudomonas aeruginosa) bacteria at 40 and 50 µg mL-1. In addition, Mk-Se NPs reduced bacterial biofilm thickness extensively at 25 µg mL-1. The high antioxidant property at 50 µg mL-1 and low hemolysis activity till 100 µg mL-1 proved the biocompatible nature of Mk-Se NPs. In vitro and in vivo toxicity assessment of Mk-Se NPs showed low cytotoxicity against RAW 264.7 macrophages and Artemia nauplii. Together, our results suggest the potential application of Mk-Se NPs as a nano-biomedicine.


Assuntos
Aedes/crescimento & desenvolvimento , Antibacterianos , Bactérias/crescimento & desenvolvimento , Inseticidas , Nanopartículas Metálicas/química , Selênio , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Frutas/química , Inseticidas/síntese química , Inseticidas/química , Inseticidas/farmacologia , Larva/crescimento & desenvolvimento , Murraya/química , Extratos Vegetais/química , Selênio/química , Selênio/farmacologia
12.
Environ Toxicol Chem ; 38(7): 1577-1584, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30994945

RESUMO

Heavy metals are rich in seleniferous areas; however, the bioaccumulation and health risk of heavy metals are poorly understood, given the fact that selenium (Se) can inhibit the phytotoxicity and bioavailability of many heavy metals. The present study investigated the bioaccumulation of heavy metals in the soil-rice system in the Enshi seleniferous area of central China. Soils were contaminated by Mo, Cu, As, Sb, Zn, Cd, Tl, and Hg caused by the weathering of Se-rich shales. Among these heavy metals, Cd and Mo had the highest bioavailability in soils. The bioavailable fractions of Cd and Mo accounted for 41.84 and 10.75% of the total Cd and Mo in soils, respectively. Correspondingly, much higher bioaccumulation factors (BAFs) of Cd (0.34) and Mo (0.46) were found in rice, compared with those of other heavy metals (Zn 0.16, Cu 0.05, Hg 0.04, and Sb 0.0002). For the first time-to our knowledge-we showed that the uptake of Hg, Cd, and Cu by rice could be inhibited by the presence of Se in the soil. The probable daily intake (PDI) of Se, Cd, Mo, Zn, and Cu through consumption of local rice was 252 ± 184, 314 ± 301, and 1774 ± 1326 µg/d; and 7.4 ± 1.68 and 0.87 ± 0.35 mg/d, respectively. The high hazard quotients (HQs) of Mo (1.97 ± 1.47) and Cd (5.22 ± 5.02) suggested a high risk of Cd and Mo for Enshi residents through consumption of rice. Environ Toxicol Chem 2019;38:1577-1584. © 2019 SETAC.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/metabolismo , Oryza/química , Selênio/química , Poluentes do Solo/metabolismo , Bioacumulação , Disponibilidade Biológica , Cádmio/metabolismo , Cádmio/toxicidade , China , Humanos , Metais Pesados/química , Metais Pesados/toxicidade , Molibdênio/metabolismo , Molibdênio/toxicidade , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Medição de Risco , Poluentes do Solo/química
13.
Molecules ; 23(12)2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558190

RESUMO

The heavier chalcogens sulfur and selenium are important in organic and inorganic chemistry, and the role of such chalcogens in biological systems has recently gained more attention. Sulfur and, to a lesser extent selenium, are involved in diverse reactions from redox signaling to antioxidant activity and are considered essential nutrients. We investigated the ability of the DFT functionals (B3LYP, B3PW91, ωB97XD, M06-2X, and M08-HX) relative to electron correlation methods MP2 and QCISD to produce reliable and accurate structures as well as thermochemical data for sulfur/selenium-containing systems. Bond lengths, proton affinities (PA), gas phase basicities (GPB), chalcogen⁻chalcogen bond dissociation enthalpies (BDE), and the hydrogen affinities (HA) of thiyl/selenyl radicals were evaluated for a range of small polysulfur/selenium compounds and cysteine per/polysulfide. The S⁻S bond length was found to be the most sensitive to basis set choice, while the geometry of selenium-containing compounds was less sensitive to basis set. In mixed chalcogens species of sulfur and selenium, the location of the sulfur atom affects the S⁻Se bond length as it can hold more negative charge. PA, GPB, BDE, and HA of selenium systems were all lower, indicating more acidity and more stability of radicals. Extending the sulfur chain in cysteine results in a decrease of BDE and HA, but these plateau at a certain point (199 kJ mol-1 and 295 kJ mol-1), and PA and GPB are also decreased relative to the thiol, indicating that the polysulfur species exist as thiolates in a biological system. In general, it was found that ωB97XD/6-311G(2d,p) gave the most reasonable structures and thermochemistry relative to benchmark calculations. However, nuances in performance are observed and discussed.


Assuntos
Polímeros/química , Selênio/química , Enxofre/química , Cisteína/química , Compostos de Selênio/química , Termodinâmica
14.
J Am Chem Soc ; 140(10): 3736-3742, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29451789

RESUMO

Many technologically relevant semiconductors contain toxic, heavily regulated (Cd, Pb, As), or relatively scarce (Li, In) elements and often require high manufacturing costs. We report a facile, general, low-temperature, and size tunable (4-28 nm) solution phase synthesis of ternary APnE2 semiconductors based on Earth-abundant and biocompatible elements (A = Na, Pn = Bi, E = S or Se). The observed experimental band gaps (1.20-1.45 eV) fall within the ideal range for solar cells. Computational investigation of the lowest energy superstructures that result from "coloring", caused by mixed cation sites present in their rock salt lattice, agrees with other better-known members of this family of materials. Our synthesis unlocks a new class of low cost and environmentally friendly ternary semiconductors that show properties of interest for applications in energy conversion.


Assuntos
Bismuto/química , Selênio/química , Semicondutores , Sódio/química , Enxofre/química , Química Verde/economia , Química Verde/métodos , Modelos Moleculares , Energia Solar , Propriedades de Superfície
15.
Anal Biochem ; 530: 9-16, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28476531

RESUMO

Studies have shown that information related to the presence of low-molecular-weight metabolites is frequently lost after deproteinization of complex matrices, such as blood and plasma, during sample preparation. Therefore, the effect of several deproteinization reagents on low-molecular-weight selenium species has been compared by species-specific isotope labeling. Two isotopically enriched selenium tracers were used to mimic models of small inorganic anionic (77Se-selenite) and organic zwitterionic (76Se-selenomethionine) species. The results presented here show that the use of a methanol-acetonitrile-acetone (1:1:1 v/v/v) mixture provided approximately two times less tracer loss from plasma samples in comparison with the classic procedure using acetonitrile, which may not be optimal as it leads to important losses of low-molecular-weight selenium species. In addition, the possible interactions between selenium tracers and proteins were investigated, revealing that both coprecipitation phenomena and association with proteins were potentially responsible for selenite tracer losses during protein precipitation in blood samples. However, coprecipitation phenomena were found to be fully responsible for losses of both tracers observed in plasma samples and of the selenomethionine tracer in blood samples. This successfully applied strategy is anticipated to be useful for more extensive future studies in selenometabolomics.


Assuntos
Proteínas Sanguíneas/análise , Plasma/química , Traçadores Radioativos , Radioisótopos de Selênio/análise , Selênio/análise , Selenometionina/análise , Proteínas Sanguíneas/isolamento & purificação , Espectrometria de Massas , Peso Molecular , Selênio/química , Selênio/isolamento & purificação , Radioisótopos de Selênio/química , Radioisótopos de Selênio/isolamento & purificação , Selenometionina/química , Selenometionina/isolamento & purificação
16.
Biol Trace Elem Res ; 180(2): 355-365, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28401398

RESUMO

Baby foods, from the Spanish market and prepared from meat, fish, vegetables, cereals, legumes, and fruits, were analyzed to obtain the concentration of antimony (Sb), arsenic (As), bismuth (Bi), and tellurium (Te) as toxic elements and selenium (Se) as essential element. An analytical procedure was employed based on atomic fluorescence spectroscopy which allowed to obtain accurate data at low levels of concentration. Values of 14 commercial samples, expressed in nanograms per gram fresh weight, ranged for Sb 0.66-6.9, As 4.5-242, Te 1.35-2.94, Bi 2.18-4.79, and Se 5.4-109. Additionally, speciation studies were performed based on data from a non-chromatographic screening method. It was concluded that tellurium and bismuth were mainly present as inorganic forms and selenium as organic form, and antimony and arsenic species depend on the ingredients of each baby food. Risk assessment considerations were made by comparing dietary intake of the aforementioned elements through the consumption of one baby food portion a day and recommended or tolerable guideline values.


Assuntos
Antimônio/análise , Arsênio/análise , Bismuto/análise , Contaminação de Alimentos , Alimentos Infantis/análise , Selênio/análise , Telúrio/análise , Animais , Antimônio/química , Antimônio/toxicidade , Arsênio/química , Arsênio/toxicidade , Arsenicais/efeitos adversos , Arsenicais/análise , Arsenicais/química , Bismuto/química , Bismuto/toxicidade , Exposição Dietética , Poluentes Ambientais/análise , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Peixes , Humanos , Lactente , Alimentos Infantis/efeitos adversos , Alimentos Infantis/economia , Alimentos Infantis/normas , Estrutura Molecular , Nível de Efeito Adverso não Observado , Valor Nutritivo , Compostos Organometálicos/análise , Compostos Organometálicos/química , Compostos Organometálicos/toxicidade , Compostos Organosselênicos/análise , Compostos Organosselênicos/química , Medição de Risco , Alimentos Marinhos/efeitos adversos , Alimentos Marinhos/análise , Alimentos Marinhos/economia , Alimentos Marinhos/normas , Selênio/química , Selênio/intoxicação , Espanha , Telúrio/química , Telúrio/toxicidade
17.
Environ Pollut ; 225: 637-643, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28341328

RESUMO

Uptake of selenium (Se) by plants largely depend on the availability of Se in soil. Soils and plants were sampled four times within 8 weeks of plant growth in pot experiments using four plant species. Sequential extraction and diffusive gradients in thin-films (DGT) method were employed to measure Se concentrations in potted soils in selenite- or selenate-amended soils. Results showed that DGT-measured Se concentrations (CDGT-Se) were generally several folds higher for selenate than selenite amended soils, which were obviously affected by the plant species and the duration of their growth. For example, the folds in soil planted with mustard were 1.49-3.47 and those in soils planted with purple cabbage and broccoli, which grew for 3 and 4 weeks after sowing, were 1.06-2.14 and only 0.15-0.62 after 6 weeks of growth. The selenate-amended soil planted with wheat showed an extremely high CDGT-Se compared with selenite-amended soil, except the last harvest. Furthermore, minimal changes in CDGT-Se and soluble Se(IV) were found in selenite-amended soils during plant growth, whereas significant changes were observed in selenate-amended soils (p < 0.05). Additionally, Se distribution in various fractions of soil remarkably changed; the soils planted with purple cabbage and broccoli showed the most obvious change followed by wheat and mustard. Soluble Se(VI) and exchangeable Se(VI) were likely the major sources of CDGT-Se in selenate-amended soils, and soluble Se(IV) was the possible source of CDGT-Se in selenite-amended soils. In selenate-amended soils, soluble Se(VI) and exchangeable Se(VI) were significantly correlated with Se concentrations in purple cabbage, broccoli, and mustard; in wheat, Se concentration was significantly correlated only with soluble Se(VI) but not with exchangeable Se. CDGT-Se eventually became positively correlated with Se concentrations accumulated by different plants, indicating that DGT is a feasible method in predicting plant uptake of selenate but not of selenite.


Assuntos
Monitoramento Ambiental/métodos , Selênio/análise , Poluentes do Solo/análise , Disponibilidade Biológica , Mostardeira , Ácido Selênico , Selênio/química , Compostos de Selênio , Solo/química , Triticum
18.
Crit Rev Food Sci Nutr ; 57(4): 805-833, 2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25897564

RESUMO

The assessment of selenium and selenium species bioavailability in foodstuff is of special concern on the context of human nutrition. In vivo (human and animal), and in vitro tests are important approaches for estimating the bioavailability of toxic and essential compounds to humans. An overview on in vivo and in vitro bioavailability assays for releasing selenium and selenium species in foodstuffs is summarized. Se and Se species content in a foodstuff critically influence Se bioavailability and bioactivity to humans and animals. Se bioavailability is affected by foodstuff-matrix major composition and minor components. Foodstuffs processing and/or treatments could enhancement or decrease Se bioavailability. Experimental conditions such as the selection of healthy status of examined people (in in vivo humans approaches), the selection of animal model (in vivo animals approaches), or the selection of GI conditions (in in vitro tests) could determines the results. Thus, international standardized protocol for in vivo and in vitro approaches assessment is mandatory.


Assuntos
Análise de Alimentos , Selênio/química , Selênio/farmacocinética , Animais , Bioensaio , Disponibilidade Biológica , Humanos
19.
Can J Microbiol ; 63(1): 27-34, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27841947

RESUMO

The process of selenium uptake by biomass of the cyanobacterium Arthrospira (Spirulina) platensis was investigated by neutron activation analysis at different selenium concentrations in solution and at different contact times. Experimental data showed good fit with the Freundlich adsorption isotherm model, with a regression coefficient value of 0.99. In terms of absorption dependence on time, the maximal selenium content was adsorbed in the first 5 min of interaction without significant further changes. It was also found that A. platensis biomass forms spherical selenium nanoparticles. Biochemical analysis was used to assess the changes in the main components of spirulina biomass (proteins, lipids, carbohydrates, and phycobilin) during nanoparticle formation.


Assuntos
Nanopartículas/metabolismo , Selênio/metabolismo , Spirulina/crescimento & desenvolvimento , Spirulina/metabolismo , Bioquímica , Transporte Biológico , Biomassa , Cinética , Nanopartículas/química , Selênio/química , Spirulina/química
20.
Biosens Bioelectron ; 85: 280-286, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27183277

RESUMO

Here we report a disposable, cost effective electrochemical paper-based sensor for the detection of both nitrate and mercury ions in lake water and contaminated agricultural runoff. Disposable carbon paper electrodes were functionalized with selenium particles (SePs) and gold nanoparticles (AuNPs). The AuNPs served as a catalyst for the reduction of nitrate ions using differential pulse voltammetry techniques. The AuNPs also served as a nucleation sites for mercury ions. The SePs further reinforced this mercury ion nucleation due to their high binding affinity to mercury. Differential pulse stripping voltammetry techniques were used to further enhance mercury ion accumulation on the modified electrode. The fabricated electrode was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electrochemistry techniques. The obtained results show that the PEG-SH/SePs/AuNPs modified carbon paper electrode has a dual functionality in that it can detect both nitrate and mercury ions without any interference. The modified carbon paper electrode has improved the analytical sensitivity of nitrate and mercury ions with limits of detection of 8.6µM and 1.0ppb, respectively. Finally, the modified electrode was used to measure nitrate and mercury in lake water samples.


Assuntos
Técnicas Eletroquímicas/instrumentação , Monitoramento Ambiental/instrumentação , Lagos/análise , Mercúrio/análise , Nitratos/análise , Poluentes Químicos da Água/análise , Carbono/química , Técnicas Eletroquímicas/economia , Técnicas Eletroquímicas/métodos , Eletrodos , Monitoramento Ambiental/economia , Monitoramento Ambiental/métodos , Desenho de Equipamento , Água Doce , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanopartículas/química , Nanopartículas/ultraestrutura , Polietilenoglicóis/química , Selênio/química , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA