RESUMO
Rotation of insecticide modes of action is recommended to delay selection for insecticide resistance. In this study, larvae of Spodoptera frugiperda (J.E. Smith) were exposed alternately to spinetoram and metaflumizone with insecticidal and biological response determined. Five generations (G) were evaluated with at least 200 larvae assayed per treatment. The experiment consisted of rearing field-collected and untreated larvae (M-Control), larvae with successive applications of either metaflumizone (M-MET) or spinetoram (M-SPI), and alternation of these insecticides (M-Rotation treatment) consisting of the following treatments: G2 = exposure to SPI, G3 = exposure to MET, G4 = exposure to SPI, G5 = exposure to MET, and G6 = exposure to SPI. Four days after application, those surviving larvae were used to compose the following generations. In the G7, evaluations were made on the selected populations M-MET, M-SPI, M-Rotation, and control larvae to determine biological characteristics used to calculate the fertility life table parameters and further comparisons across treatments. The frequency of resistance was increased at rate of 49.5% and 29.2% after five generations of selection pressure with MET and SPI, respectively. However, rotation of insecticides reduced the frequency of resistance about 50% over the generations. Individuals originated from successive exposures to the insecticides exhibited delayed egg incubation, greater percentage of pupae with deformation, longer larval and pupal periods, and reduction in emergence rate and longevity of adults, suggesting adaptive costs associated with resistance.
Assuntos
Resistência a Inseticidas , Inseticidas/administração & dosagem , Spodoptera , Agricultura/métodos , Animais , Brasil , Macrolídeos , SemicarbazonasRESUMO
Metaflumizone is a novel sodium channel blocker insecticide of semicarbazone class. It provides good to excellent control of most of the economically important lepidopterous pests and certain pests in the orders Coleoptera, Hemiptera, Hymenoptera, Diptera, Isoptera, and Siphonaptera. Although metaflumizone has been marketed globally for several years and got registered in India in the year 2009, specifically for the control of DBM on cabbage, to our knowledge, no food safety aspects of metaflumizone residue on cabbage have ever been reported in the literature in India or elsewhere. The present study was undertaken to evaluate the persistence of metaflumizone on cabbage and soil, vis-a-vis its risk assessment, following two spray applications of metaflumizone 220 SC (Verismo®), each at recommended and double dose of 200 and 400 g a.i. ha(-1) respectively. Initial residue deposits of metaflumizone on cabbage were 0.46 and 0.51 mg kg(-1) at recommended and 0.76 and 0.85 mg kg(-1) at double the recommended dose following the first spray and second spray application. The residues persisted beyond 5 days from both the treatments and dissipated with the half-life ranging from 1.7-2.1 days. Initial deposits of metaflumizone on soil ranged from 0.23-0.37 mg kg(-1) and degraded with a half life ranging from 4.0-4.8 days. No degradation product of metaflumizone was detected in cabbage and soil at any point of time. Soil samples collected from the treated field after 7 days were free from any residue of metaflumizone or its metabolites. A pre-harvest waiting period of 3 days after application was suggested based on calculation of theoretical maximum daily intake.
Assuntos
Brassica/química , Inseticidas/análise , Semicarbazonas/análise , Poluentes do Solo/análise , Solo/química , Monitoramento Ambiental , Contaminação de Alimentos , Índia , Resíduos de Praguicidas/análise , Medição de RiscoRESUMO
3ß-Acetoxy-5α-cholestan-6-one semicarbazone 1 on reaction with hydrogen peroxide affords selectively 3ß-acetoxy-5α-cholestan-6-spiro-1',2',4'-triazolidine-3'-one 2. The structural assignment of the product was confirmed by spectral data and elemental analysis. A free radical mechanism of the present reaction was described successfully by calculating theoretical models of 1, A, B and 2, using DFT with B3LYP/6-31G* basis set. It was found that the reaction undergoes through the formation of two radical intermediates and the only one isomer of the product in which -NH-CO- group is cis with respect C5α-H, was selectively obtained. Frontier molecular orbital, spin electronic density, electrostatic potential and atomic charges were discussed.
Assuntos
Colestanos/química , Peróxido de Hidrogênio/química , Cetonas/química , Modelos Teóricos , Semicarbazonas/química , Colestanos/metabolismo , Peróxido de Hidrogênio/metabolismo , Cetonas/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Semicarbazonas/metabolismo , EstereoisomerismoRESUMO
Acrolein is the metabolite of cyclophosphamide (CP) believed to be involved in the bladder toxicity associated with this anticancer drug. The mechanism by which this extremely reactive intermediate is delivered to the bladder is not known. Glutathione (GSH) readily conjugates with acrolein, and the acrolein mercapturate S-(3-hydroxypropyl)-N-acetylcysteine (3-hydroxy-PrMCA) has been found in the urine of animals and man given CP. The objectives of this study were to prepare and characterize synthetic standards of the GSH acrolein adduct (3-oxopropyl)glutathione (3-oxoPrGSH), the acrolein mercapturates S-(3-oxopropyl)-N-acetylcysteine (3-oxoPrMCA) and 3-hydroxyPrMCA, and the S-oxidation product of 3-oxoPrMCA (3-oxoPrMCA S-oxide). In addition, the release of acrolein from, and the bladder toxicity of, these conjugates was determined. 3-OxoPrGSH and 3-oxoPrMCA were prepared with a 99% yield by condensing acrolein with GSH and N-acetylcysteine, respectively. 3-HydroxyPrMCA was prepared with a 63% yield by refluxing 3-chloropropanol and N-acetylcysteine in a basic medium. Oxidation of 3-oxoPrMCA with H2O2 was used to prepare 3-oxoPrMCA S-oxide. By decreasing the reaction time to 1 h, and adjusting the ratio of 3-oxoPrMCA to H2O2, the yield of 3-oxoPrMCA S-oxide was increased to 96%. The anhydrous aldehyde, 3-oxoPrMCA, afforded characteristic aldehydic proton resonances (1H NMR) in deuterated dimethyl sulfoxide. New resonances were observed in deuterated water, indicating a 75% hydration of the aldehyde to the corresponding geminal diol. This phenomenon was enhanced with 3-oxoPrMCA S-oxide where approximately 100% hydration of the aldehyde to the corresponding geminal diol was observed. When incubated at 25 degrees C in 100 mM potassium phosphate buffer containing 1 M KCl, pH 8.0, 3-oxoPrMCA released approximately 6% and 3-oxoPrMCA S-oxide released approximately 16-18% of the theoretical maximum yield of acrolein after 30 min, as indicated by an increase in absorbance at 210 nm and confirmed by trapping this aldehyde as a semicarbazone. There was less than a 2% yield of acrolein from 3-hydroxyPrMCA or 3-oxoPrGSH under similar conditions. At pH 7.4 the release of acrolein from 3-oxoPrMCA and 3-oxoPrMCA S-oxide was decreased by 50%. An assay where aldehydes are reacted with m-aminophenol in acid media produced fluorescence consistent with 72%, 46%, 23%, and 1% yields of acrolein from 3-oxoPrMCA S-oxide, 3-oxoPrMCA, 3-oxoPrGSH, and 3-hydroxyPrMCA, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)