Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Ethnopharmacol ; 276: 114170, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33932515

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sapindus saponaria, also popularly known as soapberry, has been used in folk medicinal values because of its therapeutic properties and several compounds in its composition, which represent a target in potential for drug discovery. However, few data about its potential toxicity has been reported. AIM OF THE STUDY: Plant proteins can perform essential roles in survival, acting as defense mechanism, as well functioning as important molecular reserves for its natural metabolism. The aim of the current study was to investigate the in vitro toxicity profile of protein extract of S. saponaria and detect protein potentially involved in biological effects such as collagen hydrolysis and inhibition of viral proteases. MATERIALS AND METHODS: Protein extract of soapberry seeds was investigated for its cytotoxic and genotoxic action using the Ames test. The protein extract was also subjected to a partial purification process of a protease and a protease inhibitor by gel chromatography filtration techniques and the partially isolated proteins were characterized biochemically. RESULTS: Seed proteins extract of S. saponaria was evaluated until 100 µg/mL concentration, presenting cytotoxicity and mutagenicity in bacterial model mostly when exposed to exogenous metabolic system and causing cytotoxic and genotoxic effects in HepG2 cells. The purification and partial characterization of a serine protease (43 kDa) and a cysteine protease inhibitor (32.8 kDa) from protein extract of S. Saponaria, corroborate the idea of ​​the biological use of the plant as an insecticide and larvicide. Although it shows cytotoxic, mutagenic and genotoxic effects. CONCLUSION: The overall results of the present study provide supportive data on the potential use of proteins produced in S. saponaria seeds as pharmacological and biotechnological agents that can be further explored for the development of new drugs.


Assuntos
Dano ao DNA/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Sapindus/química , Sementes/química , Fenômenos Bioquímicos , Morte Celular/efeitos dos fármacos , Cistatinas/química , Cistatinas/isolamento & purificação , Cistatinas/farmacologia , Células Hep G2 , Humanos , Dose Letal Mediana , Testes para Micronúcleos , Testes de Mutagenicidade , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Salmonella typhimurium/efeitos dos fármacos , Serina Proteases/química , Serina Proteases/isolamento & purificação , Serina Proteases/farmacologia
2.
Toxins (Basel) ; 11(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717298

RESUMO

The common European adder, Vipera berus berus, is a medically relevant species, which is widely distributed in Russia and thus, is responsible for most snakebite accidents in Russia. We have investigated the toxic and enzymatic activities and have determined the proteomic composition of its venom. Phospholipases A2 (PLA2, 25.3% of the venom proteome), serine proteinases (SVSP, 16.2%), metalloproteinases (SVMP, 17.2%), vasoactive peptides (bradykinin-potentiating peptides (BPPs), 9.5% and C-type natriuretic peptides (C-NAP, 7.8%), cysteine-rich secretory protein (CRISP, 8%) and L-amino acid oxidase (LAO, 7.3%) represent the major toxin classes found in V. b. berus (Russia) venom. This study was also designed to assess the in vivo and in vitro preclinical efficacy of the Russian Microgen antivenom in neutralizing the main effects of V. b. berus venom. The results show that this antivenom is capable of neutralizing the lethal, hemorrhagic and PLA2 activities. Third-generation antivenomics was applied to quantify the toxin-recognition landscape and the maximal binding capacity of the antivenom for each component of the venom. The antivenomics analysis revealed that 6.24% of the anti-V. b. berus F(ab')2 molecules fraction are toxin-binding antibodies, 60% of which represent clinically relevant antivenom molecules.


Assuntos
Antivenenos/farmacologia , Venenos de Víboras/química , Venenos de Víboras/toxicidade , Animais , Antivenenos/química , Feminino , L-Aminoácido Oxidase/química , L-Aminoácido Oxidase/toxicidade , Masculino , Metaloproteases/química , Metaloproteases/toxicidade , Camundongos , Peptídeos/química , Peptídeos/toxicidade , Fosfolipases A2/química , Fosfolipases A2/toxicidade , Federação Russa , Serina Proteases/química , Serina Proteases/toxicidade , Viperidae
3.
Sci Rep ; 8(1): 6210, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670183

RESUMO

The harnessing of medicinal plants containing a plethora of bioactive molecules may lead to the discovery of novel, potent and safe therapeutic agents to treat thrombosis-associated cardiovascular diseases. A 35 kDa (m/z 34747.5230) serine protease (lunathrombase) showing fibrin(ogen)olytic activity and devoid of N- and O- linked oligosaccharides was purified from an extract of aqueous leaves from L. indica. The LC-MS/MS analysis, de novo sequencing, secondary structure, and amino acid composition determination suggested the enzyme's novel characteristic. Lunathrombase is an αß-fibrinogenase, demonstrating anticoagulant activity with its dual inhibition of thrombin and FXa by a non-enzymatic mechanism. Spectrofluorometric and isothermal calorimetric analyses revealed the binding of lunathrombase to fibrinogen, thrombin, and/or FXa with the generation of endothermic heat. It inhibited collagen/ADP/arachidonic acid-induced mammalian platelet aggregation, and demonstrated antiplatelet activity via COX-1 inhibition and the upregulation of the cAMP level. Lunathrombase showed in vitro thrombolytic activity and was not inhibited by endogenous protease inhibitors α2 macroglobulin and antiplasmin. Lunathrombase was non-cytotoxic to mammalian cells, non-hemolytic, and demonstrated dose-dependent (0.125-0.5 mg/kg) in vivo anticoagulant and plasma defibrinogenation activities in a rodent model. Lunathrombase (10 mg/kg) did not show toxicity or adverse pharmacological effects in treated animals.


Assuntos
Anticoagulantes/farmacologia , Fibrinolíticos/farmacologia , Lamiaceae/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Serina Proteases/farmacologia , Animais , Anticoagulantes/química , Anticoagulantes/isolamento & purificação , Fatores de Coagulação Sanguínea/química , Fatores de Coagulação Sanguínea/isolamento & purificação , Fatores de Coagulação Sanguínea/farmacologia , AMP Cíclico , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Fibrinólise/efeitos dos fármacos , Fibrinolíticos/química , Fibrinolíticos/isolamento & purificação , Hemólise/efeitos dos fármacos , Oligossacarídeos/química , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/isolamento & purificação , Inibidores da Agregação Plaquetária/farmacologia , Serina Proteases/química , Serina Proteases/isolamento & purificação , Análise Espectral
4.
In Vitro Cell Dev Biol Anim ; 53(6): 494-501, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28283876

RESUMO

Ischemic stroke and cardiovascular disease can occur from blockage of blood vessels by fibrin clots formed naturally in the body. Therapeutic drugs of anticoagulant or thrombolytic agents have been studied; however, various problems have been reported such as side effects and low efficacy. Thus, development of new candidates that are more effective and safe is necessary. The objective of this study is to evaluate fibrinolytic activity, anti-coagulation, and characterization of serine protease purified from Lumbrineris nipponica, polychaeta, for new thrombolytic agents. In the present study, we isolated and identified a new fibrinolytic serine protease from L. nipponica. The N-terminal sequence of the identified serine protease was EAMMDLADQLEQSLN, which is not homologous with any known serine protease. The size of the purified serine protease was 28 kDa, and the protein purification yield was 12.7%. The optimal enzyme activity was observed at 50°C and pH 2.0. A fibrin plate assay confirmed that indirect fibrinolytic activity of the purified serine protease was higher than that of urokinase-PA, whereas direct fibrinolytic activity, which causes bleeding side effects, was relatively low. The serine protease did not induce any cytotoxicity toward the endothelial cell line. In addition, anticoagulant activity was verified by an in vivo DVT animal model system. These results suggest that serine protease purified from L. nipponica has the potential to be an alternative fibrinolytic agent for the treatment of thrombosis and use in various biomedical applications.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Fibrinolíticos/isolamento & purificação , Serina Proteases/isolamento & purificação , Acidente Vascular Cerebral/tratamento farmacológico , Sequência de Aminoácidos/genética , Animais , Fibrina/química , Fibrina/genética , Fibrinolíticos/química , Fibrinolíticos/uso terapêutico , Poliquetos/enzimologia , Serina Proteases/química , Serina Proteases/uso terapêutico
5.
Biochimie ; 103: 50-60, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24735708

RESUMO

In this study, biochemical and pharmacological characterization of Brevithrombolase, a fibrinolytic serine protease purified from Brevibacillus brevis strain FF02B has been reported. An assessment of its thrombolytic potency has also been made. The molecular mass of this monomeric protease was determined as 55 kDa, and 56043 Da, respectively, by SDS-PAGE and MALDI-TOF-MS. In the analytical studies, the N-terminal sequence of Brevithrombolase was found to be blocked; however, the peptide mass fingerprinting and amino acid composition analyses demonstrated the similarity of Brevithrombolase with endopeptidases in possessing serine in their catalytic triad. This finding was confirmed by the observation that the serine protease inhibitors decrease the catalytic (fibrinolytic) activity of Brevithrombolase. The secondary structure of Brevithrombolase was composed of 30.6% alpha helix and 69.4% random coil. Brevithrombolase showed the Km and Vmax values towards the chromogenic substrate for plasmin at 0.39 mM and 14.3 µmol/min, respectively. Brevithrombolase demonstrated optimum fibrinolytic activity at pH 7.4 and 37 °C, and showed marginal hydrolytic activity towards globulin, casein and fibrinogen. The anticoagulant potency of Brevithrombolase was comparable to the low molecular mass heparin/antithrombin-III and warfarin. Among the three enzymes-Brevithrombolase, plasmin and streptokinase-the fibrinolytic activity and in vitro thrombolytic potency of Brevithrombolase was found to be superior. The RP-HPLC and SDS-PAGE analyses suggested a similar pattern of fibrin degradation by Brevithrombolase and plasmin, indicating that former enzyme is a plasmin-like fibrinolytic serine protease. Brevithrombolase did not show in vitro cytotoxicity on HT29 and HeLa cells or hemolytic activity. At a dose of 10 mg/kg, Brevithrombolase did not exhibit lethality or toxicity on Wistar strain albino rats. Brevithrombolase did not inhibit factor Xa, and its mechanism of anticoagulant action was associated with the enzymatic cleavage of thrombin. The combined properties of Brevithrombolase indicate its therapeutic potential in peptide-based cardiovascular drug development.


Assuntos
Anticoagulantes/isolamento & purificação , Anticoagulantes/farmacologia , Brevibacillus/enzimologia , Fibrinólise/efeitos dos fármacos , Serina Proteases/isolamento & purificação , Serina Proteases/farmacologia , Amidas/metabolismo , Sequência de Aminoácidos , Animais , Anticoagulantes/química , Anticoagulantes/toxicidade , Bovinos , Coagulação Intravascular Disseminada/tratamento farmacológico , Coagulação Intravascular Disseminada/prevenção & controle , Fator Xa/metabolismo , Células HT29 , Células HeLa , Humanos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Ratos , Análise de Sequência , Serina Proteases/química , Serina Proteases/toxicidade , Trombina/antagonistas & inibidores
6.
Biochim Biophys Acta ; 1830(6): 3476-88, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23416064

RESUMO

BACKGROUND: Snake venoms are rich sources of bioactive molecules, and several venom-derived proteins have entered clinical trials for use in ischemic disorders; however, late-stage failure of a recent drug candidate due to low in vivo efficacy demonstrated the need for new sources of fibrinogenolytic drug candidates. METHODS: A 51.3kDa thrombin-like serine protease (Russelobin) purified from the venom of Russell's Viper (Daboia russelii russelii) was subjected to extensive biochemical characterization, including N-terminal sequencing, substrate specificity, kinetic and inhibitor assays, glycosylation analysis and stability assays. Toxicity and pathology analyses were conducted in NSA mice. RESULTS: Russelobin has extensive N-terminus identity with a beta-fibrinogenase-like serine proteinase precursor from Daboia russelii siamensis venom, a mass of 51.3kDa and contains extensive N-linked oligosaccharides. Serine protease inhibitors and heparin significantly decreased activity, with much lower inhibition by DTT, antithrombin-III and α2-macroglobulin. Russelobin preferentially released FPA and slowly released FPB from human fibrinogen, forming a labile fibrin clot readily hydrolyzed by plasmin. The partially deglycosylated enzyme showed significantly lower activity toward fibrinogen and less resistance against neutralization by plasma α2MG and antithrombin-III. Russelobin was non-cytotoxic, non-lethal and produced no histopathologies in mice, and it demonstrated in vivo dose-dependent defibrinogenating activity. CONCLUSIONS: Russelobin is an A/B fibrinogenase with high specificity toward fibrinogen, both in vitro and in vivo. Extensive glycosylation appears to protect the molecule against endogenous protease inhibitors, prolonging its in vivo efficacy. GENERAL SIGNIFICANCE: Due to its low toxicity, stability and activity as a defibrinogenating agent, Russelobin shows high potential for cardiovascular drug development.


Assuntos
Daboia , Fibrinolíticos , Serina Proteases , Venenos de Víboras/enzimologia , Animais , Fibrinogênio/química , Fibrinogênio/metabolismo , Fibrinolíticos/química , Fibrinolíticos/isolamento & purificação , Fibrinolíticos/farmacologia , Humanos , Lagartos , Masculino , Camundongos , Peso Molecular , Serina Proteases/química , Serina Proteases/isolamento & purificação , Serina Proteases/farmacologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA