Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Commun ; 15(1): 3947, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729951

RESUMO

Gram-negative bacteria (GNB) are a major cause of neonatal sepsis in low- and middle-income countries (LMICs). Although the World Health Organization (WHO) reports that over 80% of these sepsis deaths could be prevented through improved treatment, the efficacy of the currently recommended first- and second-line treatment regimens for this condition is increasingly affected by high rates of drug resistance. Here we assess three well known antibiotics, fosfomycin, flomoxef and amikacin, in combination as potential antibiotic treatment regimens by investigating the drug resistance and genetic profiles of commonly isolated GNB causing neonatal sepsis in LMICs. The five most prevalent bacterial isolates in the NeoOBS study (NCT03721302) are Klebsiella pneumoniae, Acinetobacter baumannii, E. coli, Serratia marcescens and Enterobacter cloacae complex. Among these isolates, high levels of ESBL and carbapenemase encoding genes are detected along with resistance to ampicillin, gentamicin and cefotaxime, the current WHO recommended empiric regimens. The three new combinations show excellent in vitro activity against ESBL-producing K. pneumoniae and E. coli isolates. Our data should further inform and support the clinical evaluation of these three antibiotic combinations for the treatment of neonatal sepsis in areas with high rates of multidrug-resistant Gram-negative bacteria.


Assuntos
Acinetobacter baumannii , Antibacterianos , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Sepse Neonatal , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Sepse Neonatal/microbiologia , Sepse Neonatal/tratamento farmacológico , Recém-Nascido , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/genética , Amicacina/farmacologia , Amicacina/uso terapêutico , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , beta-Lactamases/genética , beta-Lactamases/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Países em Desenvolvimento , Farmacorresistência Bacteriana Múltipla/genética , Quimioterapia Combinada , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/genética , Serratia marcescens/isolamento & purificação , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Enterobacter cloacae/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Evolution ; 78(5): 1005-1013, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38416416

RESUMO

Behavioral avoidance of parasites is a widespread strategy among animal hosts and in human public health. Avoidance has repercussions for both individual and population-level infection risk. Although most cases of parasite avoidance are viewed as adaptive, there is little evidence that the basic assumptions of evolution by natural selection are met. This study addresses this gap by testing whether there is a heritable variation in parasite avoidance behavior. We quantified behavioral avoidance of the bacterial parasite Serratia marcescens for 12 strains of the nematode host Caenorhabditis elegans. We found that these strains varied in their magnitude of avoidance, and we estimated the broad-sense heritability of this behavior to be in the range of 11%-26%. We then asked whether avoidance carries a constitutive fitness cost. We did not find evidence of one. Rather, strains with higher avoidance had higher fitness, measured as population growth rate. Together, these results direct future theoretical and empirical work to identify the forces maintaining genetic variation in parasite avoidance.


Assuntos
Caenorhabditis elegans , Aptidão Genética , Variação Genética , Serratia marcescens , Animais , Serratia marcescens/genética , Serratia marcescens/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Interações Hospedeiro-Parasita , Aprendizagem da Esquiva
3.
PLoS One ; 18(11): e0294054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37967102

RESUMO

The raising concern of drug resistance, having substantial impacts on public health, has instigated the search of new natural compounds with substantial medicinal activity. In order to find out a natural solution, the current study has utilized prodigiosin, a linear tripyrrole red pigment, as an active ingredient to control bacterial proliferation and prevent cellular oxidation caused by ROS (Reactive Oxygen Species). A prodigiosin-producing bacterium BRL41 was isolated from the ancient Barhind soil of BCSIR Rajshahi Laboratories, Bangladesh, and its morphological and biochemical characteristics were investigated. Whole genome sequencing data of the isolate revealed its identity as Serratia sp. and conferred the presence of prodigiosin gene cluster in the bacterial genome. "Prodigiosin NRPS", among the 10 analyzed gene clusters, showed 100% similarity with query sequences where pigC, pigH, pigI, and pigJ were identified as fundamental genes for prodigiosin biosynthesis. Some other prominent clusters for synthesis of ririwpeptides, yersinopine, trichrysobactin were also found in the chromosome of BRL41, whilst the rest displayed less similarity with query sequences. Except some first-generation beta-lactam resistance genes, no virulence and resistance genes were found in the genome of BRL41. Structural illumination of the extracted red pigment by spectrophotometric scanning, Thin-Layer Chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), and change of color at different pH solutions verified the identity of the isolated compound as prodigiosin. Serratia sp. BRL41 attained its maximum productivity 564.74 units/cell at temperature 30˚C and pH 7.5 in two-fold diluted nutrient broth medium. The compound exhibited promising antibacterial activity against Gram-positive and Gram-negative bacteria with MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values ranged from 3.9 to15.62 µg/mL and 7.81 to 31.25 µg/mL respectively. At concentration 500 µg/mL, except in Salmonella enterica ATCC-10708, prodigiosin significantly diminished biofilm formed by Listeria monocytogens ATCC-3193, Pseudomonas aeruginosa ATCC-9027, Escherichia coli (environmental isolate), Staphylococcus aureus (environmental isolate). Cellular glutathione level (GSH) was elevated upon application of 250 and 500 µg/mL pigment where 125 µg/mL failed to show any free radical scavenging activity. Additionally, release of cellular components in growth media of both Gram-positive and Gram-negative bacteria were facilitated by the extract that might be associated with cell membrane destabilization. Therefore, the overall findings of antimicrobial, antibiofilm and antioxidant activities suggest that in time to come prodigiosin might be a potential natural source to treat various diseases and infections.


Assuntos
Anti-Infecciosos , Prodigiosina , Serratia/genética , Serratia/metabolismo , Antibacterianos/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Bangladesh , Anti-Infecciosos/metabolismo , Família Multigênica , Serratia marcescens/genética , Serratia marcescens/metabolismo
4.
BMC Genomics ; 19(1): 750, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30326830

RESUMO

BACKGROUND: Plant-bacteria associations have been extensively studied for their potential in increasing crop productivity in a sustainable manner. Serratia marcescens is a species of Enterobacteriaceae found in a wide range of environments, including soil. RESULTS: Here we describe the genome sequencing and assessment of plant growth-promoting abilities of S. marcescens UENF-22GI, a strain isolated from mature cattle manure vermicompost. In vitro, S. marcescens UENF-22GI is able to solubilize P and Zn, to produce indole compounds (likely IAA), to colonize hyphae and counter the growth of two phytopathogenic fungi. Inoculation of maize with this strain remarkably increased seedling growth and biomass under greenhouse conditions. The S. marcescens UENF-22GI genome has 5 Mb, assembled in 17 scaffolds comprising 4662 genes (4528 are protein-coding). No plasmids were identified. S. marcescens UENF-22GI is phylogenetically placed within a clade comprised almost exclusively of non-clinical strains. We identified genes and operons that are likely responsible for the interesting plant-growth promoting features that were experimentally described. The S. marcescens UENF-22GI genome harbors a horizontally-transferred genomic island involved in antibiotic production, antibiotic resistance, and anti-phage defense via a novel ADP-ribosyltransferase-like protein and possible modification of DNA by a deazapurine base, which likely contributes to its competitiveness against other bacteria. CONCLUSIONS: Collectively, our results suggest that S. marcescens UENF-22GI is a strong candidate to be used in the enrichment of substrates for plant growth promotion or as part of bioinoculants for agriculture.


Assuntos
Compostagem , Genoma Bacteriano/genética , Serratia marcescens/genética , Serratia marcescens/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Biofilmes , Transporte Biológico/genética , Biomassa , Fusarium/crescimento & desenvolvimento , Transferência Genética Horizontal , Esterco/microbiologia , Controle Biológico de Vetores , Fenóis/metabolismo , Fósforo/química , Fósforo/metabolismo , Serratia marcescens/isolamento & purificação , Serratia marcescens/metabolismo , Solubilidade , Espermidina/biossíntese , Zinco/química , Zinco/metabolismo
5.
BMC Microbiol ; 11(1): 6, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21211038

RESUMO

BACKGROUND: Ticks are regarded as the most relevant vectors of disease-causing pathogens in domestic and wild animals. The cattle tick, Rhipicephalus (Boophilus) microplus, hinders livestock production in tropical and subtropical parts of the world where it is endemic. Tick microbiomes remain largely unexplored. The objective of this study was to explore the R. microplus microbiome by applying the bacterial 16S tag-encoded FLX-titanium amplicon pyrosequencing (bTEFAP) technique to characterize its bacterial diversity. Pyrosequencing was performed on adult males and females, eggs, and gut and ovary tissues from adult females derived from samples of R. microplus collected during outbreaks in southern Texas. RESULTS: Raw data from bTEFAP were screened and trimmed based upon quality scores and binned into individual sample collections. Bacteria identified to the species level include Staphylococcus aureus, Staphylococcus chromogenes, Streptococcus dysgalactiae, Staphylococcus sciuri, Serratia marcescens, Corynebacterium glutamicum, and Finegoldia magna. One hundred twenty-one bacterial genera were detected in all the life stages and tissues sampled. The total number of genera identified by tick sample comprised: 53 in adult males, 61 in adult females, 11 in gut tissue, 7 in ovarian tissue, and 54 in the eggs. Notable genera detected in the cattle tick include Wolbachia, Coxiella, and Borrelia. The molecular approach applied in this study allowed us to assess the relative abundance of the microbiota associated with R. microplus. CONCLUSIONS: This report represents the first survey of the bacteriome in the cattle tick using non-culture based molecular approaches. Comparisons of our results with previous bacterial surveys provide an indication of geographic variation in the assemblages of bacteria associated with R. microplus. Additional reports on the identification of new bacterial species maintained in nature by R. microplus that may be pathogenic to its vertebrate hosts are expected as our understanding of its microbiota expands. Increased awareness of the role R. microplus can play in the transmission of pathogenic bacteria will enhance our ability to mitigate its economic impact on animal agriculture globally. This recognition should be included as part of analyses to assess the risk for re-invasion of areas like the United States of America where R. microplus was eradicated.


Assuntos
Rhipicephalus/microbiologia , Animais , Bovinos , Corynebacterium glutamicum/classificação , Corynebacterium glutamicum/genética , Feminino , Masculino , Análise de Sequência de DNA , Serratia marcescens/classificação , Serratia marcescens/genética , Staphylococcus/classificação , Staphylococcus/genética , Staphylococcus aureus/classificação , Staphylococcus aureus/genética , Streptococcus/classificação , Streptococcus/genética
6.
Genetics ; 176(4): 2381-92, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17565956

RESUMO

The bla(TEM-1) beta-lactamase gene has become widespread due to the selective pressure of beta-lactam use and its stable maintenance on transferable DNA elements. In contrast, bla(SME-1) is rarely isolated and is confined to the chromosome of carbapenem-resistant Serratia marcescens strains. Dissemination of bla(SME-1) via transfer to a mobile DNA element could hinder the use of carbapenems. In this study, bla(SME-1) was determined to impart a fitness cost upon Escherichia coli in multiple genetic contexts and assays. Genetic screens and designed SME-1 mutants were utilized to identify the source of this fitness cost. These experiments established that the SME-1 protein was required for the fitness cost but also that the enzyme activity of SME-1 was not associated with the fitness cost. The genetic screens suggested that the SME-1 signal sequence was involved in the fitness cost. Consistent with these findings, exchange of the SME-1 signal sequence for the TEM-1 signal sequence alleviated the fitness cost while replacing the TEM-1 signal sequence with the SME-1 signal sequence imparted a fitness cost to TEM-1 beta-lactamase. Taken together, these results suggest that fitness costs associated with some beta-lactamases may limit their dissemination.


Assuntos
Serratia marcescens/enzimologia , Serratia marcescens/genética , beta-Lactamases/genética , Sequência de Bases , Carbapenêmicos/farmacologia , Primers do DNA/genética , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Transferência Genética Horizontal , Genes Bacterianos , Dados de Sequência Molecular , Plasmídeos/genética , Sinais Direcionadores de Proteínas/genética , Serratia marcescens/efeitos dos fármacos , Supressão Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA