Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 351: 141250, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242520

RESUMO

Cheese whey (CW) is a nutrient deficient dairy effluent, which requires external nutrient supplementation for aerobic treatment. CW, supplemented with ammonia, can be treated using aerobic granular sludge (AGS) in a sequencing batch reactor (SBR). AGS are aggregates of microbial origin that do not coagulate under reduced hydrodynamic shear and settle significantly faster than activated sludge flocs. However, granular instability, slow granulation start-up, high energy consumption and CO2 emission have been reported as the main limitations in bacterial AGS-SBR. Algal-bacterial granular systems have shown be an innovative alternative to improve these limitations. Unfortunately, algal-bacterial granular systems for the treatment of wastewaters with higher organic loads such as CW have been poorly studied. In this study, an algal-bacterial granular system implemented in a SBR (SBRAB) for the aerobic treatment of ammonia-supplemented CW wastewaters was investigated and compared with a bacterial granular reactor (SBRB). Mass balances were used to estimate carbon and nitrogen (N) assimilation, nitrification and denitrification in both set-ups. SBRB exhibited COD and ammonia removal of 100% and 94% respectively, high nitrification (89%) and simultaneous nitrification-denitrification (SND) of 23% leading to an inorganic N removal of 30%. The efficient algal-bacterial symbiosis in granular systems completely removed COD and ammonia (100%) present in the dairy wastewater. SBRAB microalgae growth could reduce about 20% of the CO2 emissions produced by bacterial oxidation of organic compounds according to estimates based on synthesis reactions of bacterial and algal biomass, in which the amount of assimilated N determined by mass balance was taken into account. A lower nitrification (75%) and minor loss of N by denitrifying activity (<5% Ng, SND 2%) was also encountered in SBRAB as a result of its higher biomass production, which could be used for the generation of value-added products such as biofertilizers and biostimulants.


Assuntos
Microalgas , Águas Residuárias , Esgotos/microbiologia , Nitrogênio/análise , Carbono , Simbiose , Amônia , Dióxido de Carbono , Reatores Biológicos , Nitrificação , Bactérias , Desnitrificação , Eliminação de Resíduos Líquidos
2.
Emerg Top Life Sci ; 8(1): 29-35, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38095549

RESUMO

Bacteria employ diverse mechanisms to manage toxic copper in their environments, and these evolutionary strategies can be divided into two main categories: accumulation and rationalization of metabolic pathways. The strategies employed depend on the bacteria's lifestyle and environmental context, optimizing the metabolic cost-benefit ratio. Environmental and opportunistically pathogenic bacteria often possess an extensive range of copper regulation systems in order to respond to variations in copper concentrations and environmental conditions, investing in diversity and/or redundancy as a safeguard against uncertainty. In contrast, obligate symbiotic bacteria, such as Neisseria gonorrhoeae and Bordetella pertussis, tend to have specialized and more parsimonious copper regulation systems designed to function in the relatively stable host environment. These evolutionary strategies maintain copper homeostasis even in challenging conditions like encounters within phagocytic cells. These examples highlight the adaptability of bacterial copper management systems, tailored to their specific lifestyles and environmental requirements, in the context of an evolutionary the trade-off between benefits and energy costs.


Assuntos
Bactérias , Cobre , Análise Custo-Benefício , Evolução Biológica , Simbiose
3.
Exp Appl Acarol ; 91(3): 369-380, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37819592

RESUMO

Maternally transmitted symbionts such as Cardinium and Wolbachia are widespread in arthropods. Both Cardinium and Wolbachia can cause cytoplasmic incompatibility, a reproductive phenotype that interferes with the development of uninfected eggs that are fertilized by infected sperm. In haplodiploid hosts, these symbionts can also distort sex allocation to facilitate their spread through host populations. Without other fitness effects, symbionts that induce strong reproductive phenotypes tend to spread to high and stable infection frequencies, whereas variants that induce weak reproductive phenotypes are typically associated with intermediate and variable frequencies. To study the spread of Cardinium in a haplodiploid host, we sampled Iranian populations of the economically important spider mite Panonychus ulmi in apple orchards. Within several field populations, we also studied the Wolbachia infection frequencies. All P. ulmi field populations carried a Cardinium infection and exhibited high infection frequencies. In contrast, Wolbachia frequency ranged between ca. 10% and ca. 70% and was only found in co-infected mites. To test whether Cardinium induce reproductive phenotypes in P. ulmi, a Cardinium-cured derived line was generated by antibiotic treatment from a co-infected field population. Genetic crosses indicated that Cardinium do not induce demonstrable levels of cytoplasmic incompatibility and sex allocation distortion in co-infected P. ulmi. However, Cardinium infection was associated with a longer developmental time and reduced total fecundity for co-infected females. We hypothesize that Cardinium spread through P. ulmi populations via uncharacterized fitness effects and that co-infection with Wolbachia might impact these drive mechanisms.


Assuntos
Tetranychidae , Wolbachia , Feminino , Masculino , Animais , Tetranychidae/genética , Irã (Geográfico) , Sementes , Reprodução , Simbiose , Bacteroidetes
4.
Environ Sci Pollut Res Int ; 30(31): 77875-77889, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37266781

RESUMO

Difficulty in accessing resources and increasing environmental concerns encourage industrial manufacturing enterprises to establish a symbiosis network. The identification of symbiotic relationships contributes to the more sustainable development of industrial activities. However, businesses operating in industrial parks are diversified by sector. In order to establish a sustainable symbiosis network in industrial parks, the symbiotic relations of each sector in industrial parks should be evaluated separately. Thus, the installation process of the symbiosis network will be easier and more sustainable. In this context, this study aims to prioritize the sector in which a symbiosis network will be established by presenting an innovative approach for the evaluation of symbiosis potentials. For this purpose, criteria for the implementation process affecting the establishment of the symbiosis network were determined. Multi-criteria decision-making methods were used to solve the problem. Considering the uncertainties in the process, fuzzy multi-criteria decision-making methods were used. As a result, a decision-making model has been proposed to determine the priority sector in order to establish a symbiosis network in industrial parks. According to the results obtained with the multi-criteria decision-making methods, the number of enterprises that will evaluate the waste, that is, the number of customers with waste, has been determined as the criterion with the highest level of importance. While evaluating the alternatives, the casting sector was chosen as a priority. This sector is followed by the petro and chemical sector as the second alternative.


Assuntos
Indústrias , Simbiose , Incerteza , Desenvolvimento Sustentável , Comércio , Lógica Fuzzy
5.
Philos Trans R Soc Lond B Biol Sci ; 378(1883): 20220304, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37381855

RESUMO

Persistent institutionalized inequality (PII) emerged at the Bridge River site by ca 1200-1300 years ago. Research confirms that PII developed at a time of population packing associated with unstable fluctuations in a critical food resource (anadromous salmon) and persisted across multiple generations. While we understand the demographic and ecological conditions under which this history unfolded, we have yet to address details of the underlying social process. In this paper, we draw on Bridge River's Housepit 54 to examine two alternative hypotheses. Hypothesis 1, mutualism, suggests that household heads signalled to maintain and attract new members as a means of supporting the demographic viability of the house. Inequality is indicated by variation in prestige markers but less obviously in economic fundamentals. Hypothesis 2, coercion, asserts that the more successful households developed control over access to critical food resources, forcing others into the choice between emigration and subjugation. Inequality is indicated by inter-family differences in prestige markers and economic fundamentals. Results suggest that inequality emerged under a mutualism scenario but persisted for subsequent generations under more coercive conditions. This article is part of the theme issue 'Evolutionary ecology of inequality'.


Assuntos
Coerção , Simbiose , Colúmbia Britânica , Evolução Biológica , Rios
6.
PeerJ ; 11: e15023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151292

RESUMO

Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.


Assuntos
Recifes de Corais , Dinoflagellida , Variação Genética , Dinoflagellida/classificação , Dinoflagellida/genética , Filogenia , Consenso , Antozoários , Simbiose
7.
J Econ Entomol ; 116(4): 1307-1316, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37247378

RESUMO

Cockroach management relies heavily on the use of conventional insecticides in urban settings, which no longer provide the anticipated level of control. Knowledge of cockroach endosymbionts, like Wolbachia, might provide novel avenues for control. Therefore, we screened 16 cockroach species belonging to 3 families (Ectobiidae, Blattidae, and Blaberidae) for the presence of Wolbachia. We mapped the evolution of Wolbachia-cockroach relationships based on maximum likelihood phylogeny and phylogenetic species clustering on a multi-loci sequence dataset (i.e., coxA, virD4, hcpA, and gatB) of Wolbachia genes. We confirmed the previous report of Wolbachia in 1 Ectobiid species; Supella longipalpa (Fab.), and detected the presence of Wolbachia in 2 Ectobiid species; Balta notulata (Stål) and Pseudomops septentrionalis Hebard, and 1 Blaberid species; Gromphadorhina portentosa (Schaum). All cockroach-associated Wolbachia herein detected were clustered with the ancestor of F clade Wolbachia of Cimex lectularius L. (bed bugs). Since Wolbachia provision C. lectularius with biotin vitamins that confer reproductive fitness, we screened the cockroach-associated Wolbachia for the presence of biotin genes. In toto, our results reveal 2 important findings: (i) Wolbachia is relatively uncommon among cockroach species infecting about 25% of species investigated, and (ii) cockroach-associated Wolbachia have biotin genes that likely provide nutritional benefits to their hosts. Thus, we discuss the potential of exploring Wolbachia as a tool for urban insect management.


Assuntos
Percevejos-de-Cama , Blattellidae , Wolbachia , Animais , Wolbachia/genética , Biotina/genética , Filogenia , Prevalência , Insetos , Simbiose
8.
Waste Manag ; 161: 17-28, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863207

RESUMO

The booming express delivery industry corresponds to the environmental challenges caused by massive express packaging waste (EPW). An efficient logistics network is necessary link to support EPW recycling. This study, therefore, designed a circular symbiosis network for EPW recycling based on urban symbiosis strategy. The treatment of EPW in this network includes reuse, recycling and replacing. An optimization model with multi-depot collaboration combining material flow analysis and optimization methods was developed and a hybrid non-dominated sorting genetic algorithm-II (NSGA-II) was designed as technical support for designing the circular symbiosis network while quantitatively assessing the economic and environmental benefits of the network. The results show that the designed circular symbiosis option has better resource saving and carbon footprint reduction potential than both the business as usual option and circular symbiosis option without service collaboration. In practice, the proposed circular symbiosis network can save EPW recycling costs and reduce carbon footprint. This study provides a practical guideline for the application of urban symbiosis strategies to help urban green governance and the sustainable development of express companies.


Assuntos
Pegada de Carbono , Gerenciamento de Resíduos , Simbiose , Embalagem de Produtos , Indústrias , Reciclagem , Gerenciamento de Resíduos/métodos
9.
J Basic Microbiol ; 63(7): 690-708, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36998101

RESUMO

Medicinal plants are an important source of bioactive compounds and have been used to isolate various bioactive compounds having industrial applications. The demand for plants derived bioactive molecules is increasing gradually. However, the extensive use of these plants to extract bioactive molecules has threatened many plant species. Moreover, extracting bioactive molecules from these plants is laborious, costly, and time-consuming. So, some alternative sources and strategies are urgently needed to produce these bioactive molecules similar to that of plant origin. However, the interest in new bioactive molecules has recently shifted from plants to endophytic fungi because many fungi produce bioactive molecules similar to their host plant. Endophytic fungi live in mutualistic association within the healthy plant tissue without causing disease symptoms to the host plant. These fungi are a treasure house of novel bioactive molecules having broad pharmaceutical, industrial, and agricultural applications. The rapid increase in publications in this domain over the last three decades proves that natural product biologists and chemists are paying great attention to the natural bioactive products from endophytic fungi. Though endophytes are source of novel bioactive molecules but there is need of advanced technologies like clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9) and epigenetic modifiers to enhance the production of compounds having industrial applications. This review provides an overview of the various industrial applications of bioactive molecules produced by endophytic fungi and the rationale behind selecting specific plants for fungal endophyte isolation. Overall, this study presents the current state of knowledge and highlights the potential of endophytic fungi for developing alternative therapies for drug-resistant infections.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Endófitos/metabolismo , Fungos/metabolismo , Plantas/microbiologia , Simbiose , Anti-Infecciosos/metabolismo , Indústria Farmacêutica , Produtos Biológicos/metabolismo
10.
Biol Rev Camb Philos Soc ; 98(2): 623-642, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36897260

RESUMO

The juxtaposition of highly productive coral reef ecosystems in oligotrophic waters has spurred substantial interest and progress in our understanding of macronutrient uptake, exchange, and recycling among coral holobiont partners (host coral, dinoflagellate endosymbiont, endolithic algae, fungi, viruses, bacterial communities). By contrast, the contribution of trace metals to the physiological performance of the coral holobiont and, in turn, the functional ecology of reef-building corals remains unclear. The coral holobiont's trace metal economy is a network of supply, demand, and exchanges upheld by cross-kingdom symbiotic partnerships. Each partner has unique trace metal requirements that are central to their biochemical functions and the metabolic stability of the holobiont. Organismal homeostasis and the exchanges among partners determine the ability of the coral holobiont to adjust to fluctuating trace metal supplies in heterogeneous reef environments. This review details the requirements for trace metals in core biological processes and describes how metal exchanges among holobiont partners are key to sustaining complex nutritional symbioses in oligotrophic environments. Specifically, we discuss how trace metals contribute to partner compatibility, ability to cope with stress, and thereby to organismal fitness and distribution. Beyond holobiont trace metal cycling, we outline how the dynamic nature of the availability of environmental trace metal supplies can be influenced by a variability of abiotic factors (e.g. temperature, light, pH, etc.). Climate change will have profound consequences on the availability of trace metals and further intensify the myriad stressors that influence coral survival. Lastly, we suggest future research directions necessary for understanding the impacts of trace metals on the coral holobiont symbioses spanning subcellular to organismal levels, which will inform nutrient cycling in coral ecosystems more broadly. Collectively, this cross-scale elucidation of the role of trace metals for the coral holobiont will allow us to improve forecasts of future coral reef function.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Ecossistema , Recifes de Corais , Bactérias/metabolismo , Temperatura , Simbiose
11.
Waste Manag Res ; 41(3): 497-498, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36727668

Assuntos
Antibiose , Simbiose
12.
J Environ Manage ; 330: 117166, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603257

RESUMO

With the ongoing urbanization in developing regions, integrating regional waste disposal capability is challenging due to unbalanced economic development and rising environmental issues. This research proposed a multi-dimensional symbiotic integration of waste disposal capability. Applying data from the Yangtze River Delta (YRD) in China, we first explore the waste flows and interactions between cities to identify the possibility of inter-municipal collaboration based on the augmented gravity model. We then employ social network analysis to categorize the cities in the collaborative network of waste disposal into subgroups by functionalities. Finally, we proposed the top-down framework of symbiotic networks for waste disposal. Our findings indicate that YRD cities can be classified into four types according to their waste density and disposal efficiency: High-High, Low-High, Low-Low, and High-Low. We also identify three types of inter-municipal collaborative relationships: between high-density and high-efficiency cities, between high-density cities, and between high-efficiency cities. The city subgroups can be categorized into "high-efficiency clusters," "high-density clusters," and "hub clusters," which pave the way for a shared or complementary urban symbiosis in the waste recycling industry. The division of roles among subgroups enables symbiotic activities within the city cluster. This paper extends the spatial scope of industrial symbiosis literature and has practical implications for transitioning to a circular economy in waste management of developing countries.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Cidades , Rios , Simbiose , Eliminação de Resíduos/métodos , Gerenciamento de Resíduos/métodos , China
13.
Environ Sci Pollut Res Int ; 30(16): 45986-46003, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36715806

RESUMO

The interdependent symbiotic relationship between enterprises may bring potential risks to the stability of the industrial symbiosis network (ISN). In order to reduce the damage caused by further risk propagation to the system, this paper establishes the multiplex network to study the impact of disclosure of risk information on risk propagation. In the multiplex network, we use a small-world network to simulate a social network and propose an evolutionary model with scale-free characteristics to simulate the symbiotic relationships between enterprises. Then we establish a risk propagation model by defining transition rules among various states. Through theoretical analysis using the Microscopic Markov Chain Approach (MMCA), we find that the proportion of disclosed enterprises, the network structure of the ISN, the recovery rate of enterprises, and the degree of symbiotic dependence affect the risk propagation threshold of the ISN. Numerical simulation results show that increasing the disclosure probability of risk information can reduce the scope of risk propagation. Moreover, once the disclosure probability of risk information reaches a certain value, the risk propagation threshold can be increased. Finally, relevant suggestions are put forward: (i) strengthening the information communication between symbiotic enterprises may reduce risks caused by information asymmetry. (ii) In addition to the authenticity and integrity of risk information, it is necessary to prevent risk information from being over-interpreted or exaggerated. (iii) Enterprises should strengthen the ability to recover from risks, appropriately reduce the degree of symbiotic dependence, and enhance risk awareness to reduce the possibility of risk occurrence.


Assuntos
Revelação , Simbiose , Indústrias , Cadeias de Markov , Simulação por Computador , China
14.
Environ Sci Pollut Res Int ; 30(15): 45369-45387, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36705835

RESUMO

Green innovation cooperation (GIC) has become an important measure for sustainable development of enterprises. Based on the knowledge-based theory, knowledge interaction is a necessary mode of GIC. Exploring the influencing factors of knowledge interaction in green innovation cooperation is an important aspect to improve the performance of GIC. From the perspective of ecological theory, taking ecological relations as the lens, this paper further analyzes the differences of different ecological relations (competitive relationship, mutualism relationship, commensalism relationship, and parasitism relationship) affecting knowledge interaction in GIC. The results show that there are significant differences between different ecological relationships and knowledge interaction in GIC. Mutualism and commensalism contribute to knowledge interaction, while competition and parasitism may lead to the weakening of knowledge interaction and even the breaking of knowledge connection. In addition, the willingness to cooperate in green innovation is conducive to the knowledge interaction of GIC. Therefore, the paper proposes that green innovation partners should be selected based on ecological relationship. This paper reveals the theoretical connection between ecological relationship and knowledge interaction, provides valuable insights for promoting knowledge interaction in GIC, and expands the influencing factors of knowledge interaction.


Assuntos
Ecologia , Conhecimento , Desenvolvimento Sustentável , China , Simbiose
15.
Nucleic Acids Res ; 51(1): 17-28, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35724982

RESUMO

The black carpenter ant (Camponotus pennsylvanicus) is a pest species found widely throughout North America. From a single individual I used long-read nanopore sequencing to assemble a phased diploid genome of 306 Mb and 60X coverage, with quality assessed by a 97.0% BUSCO score, improving upon other ant assemblies. The mitochondrial genome reveals minor rearrangements from other ants. The reads also allowed assembly of parasitic and symbiont genomes. I include a complete Wolbachia bacterial assembly with a size of 1.2 Mb, as well as a commensal symbiont Blochmannia pennsylvanicus, at 791 kb. DNA methylation and hydroxymethylation were measured at base-pair resolution level from the same reads and confirmed extremely low levels seen in the Formicidae family. There was moderate heterozygosity, with 0.16% of bases being biallelic from the parental haplotypes. Protein prediction yielded 14 415 amino acid sequences with 95.8% BUSCO score and 86% matching to previously known proteins. All assemblies were derived from a single MinION flow cell generating 20 Gb of sequence for a cost of $1047 including consumable reagents. Adding fixed costs for equipment brings the total for an ant-sized genome to less than $5000. All analyses were performed in 1 week on a single desktop computer.


Creating reference animal genomes is typically a large, expensive process. Here I sequenced the genome of the black carpenter ant for only $1000 as a sole researcher in just one week. Along with the nuclear genome, I assembled the mitochondrial genome and two commensal bacteria species living within the ant. Nanopore technology also enabled epigenetic measurements from the same ant and replicated other studies showing very low DNA methylation. The reference genome compared favorably to other ant species in continuity and protein prediction accuracy. This method will allow other low-resource labs to create high quality genome assemblies with a low cost.


Assuntos
Formigas , Genoma de Inseto , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Animais , Humanos , Formigas/genética , Formigas/microbiologia , Diploide , Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala/economia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento por Nanoporos , Análise de Sequência de DNA/economia , Análise de Sequência de DNA/métodos , Simbiose , Wolbachia/genética , Wolbachia/fisiologia , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/fisiologia
16.
Sci Total Environ ; 854: 158445, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36058335

RESUMO

The versatility of microalgae biomass as candidates for various products and bioremediation needs motivates interests towards design and implementation of novel microalgae bioreactors. Conventional open-reactors are reliant on large quantities of sunlight and space while yields are constrained by outdoor environment conditions. Conversely, closed-reactor systems like bubble columns reduces these constrains on microalgae growth while occupying far less space at the expense of high energy demands, notably from lighting systems. A novel patented closed reactor design has recently been proposed that improves the bubble column concept with an efficient and effective lighting system. The present study uses Life Cycle Assessment approach to compare the environmental performance of conventional reactors and the proposed internally luminated novel closed reactor design, expressing impacts per kg biostimulant for the Scenedesmus almeriensis harvest from such units. All performance data was collected from a pilot facility in Almeria, Spain. Urban-industrial symbiosis scenarios are also portrayed in the study using wastewater and incinerator flue gas. Results show that under synthetic nutrient and carbon inputs in Spanish pilot operations, the cumulative energy demand for the novel photobioreactors is similar to conventional vertically-stacked horizon bioreactors but are substantially more demanding than conventional open reactors. However, when leveraging renewable energy sources and the photosynthesis process to consume wastestreams in urban-industrial symbiosis scenarios, the novel photobioreactor was able to achieve up to 80 % improvements in several impact categories e.g. eutrophication and climate change. Impact mitigation credits per kg dwt biomass across all energy scenarios in symbiosis amount to ≈1.8 kg CO2eq and ≈0.09 kg PO4 eq. This highlights that such closed and internally illuminated photobioreactors can be competitive with conventional reactors, and have potential to harness photosynthesis to reduce environmental burdens in an urban-industrial symbiosis setting. Possible economies of scale and the associated potential gains in efficiencies are further discussed.


Assuntos
Microalgas , Animais , Simbiose , Fotobiorreatores , Meio Ambiente , Estágios do Ciclo de Vida , Biomassa
17.
PLoS One ; 17(10): e0276268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36260557

RESUMO

The ubiquitous existence of microbial communities marks the importance of understanding how species interact within the community to coexist and their spatial organization. We study a two-species mutualistic cross-feeding model through a stochastic cellular automaton on a square lattice using kinetic Monte Carlo simulation. Our model encapsulates the essential dynamic processes such as cell growth, and nutrient excretion, diffusion and uptake. Focusing on the interplay among nutrient diffusion and individual cell division, we discover three general classes of colony morphology: co-existing sectors, co-existing spirals, and engulfment. When the cross-feeding nutrient is widely available, either through high excretion or fast diffusion, a stable circular colony with alternating species sector emerges. When the consumer cells rely on being spatially close to the producers, we observe a stable spiral. We also see one species being engulfed by the other when species interfaces merge due to stochastic fluctuation. By tuning the diffusion rate and the growth rate, we are able to gain quantitative insights into the structures of the sectors and the spirals.


Assuntos
Microbiota , Simbiose , Difusão , Simulação por Computador , Método de Monte Carlo
18.
Environ Microbiol ; 24(12): 5924-5935, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35799468

RESUMO

Endosymbiosis, an interaction between two species where one lives within the other, has evolved multiple times independently, but the underlying mechanisms remain unclear. Evolutionary theory suggests that for an endosymbiotic interaction to remain stable over time, births of both partners should be higher than their deaths in symbiosis and deaths of both partners should be higher than their births when living independently. However, experimentally measuring this can be difficult and conclusions tend to focus on the host. Using a ciliate-algal system (Paramecium bursaria host and Chlorella endosymbionts), we estimated the benefits and costs of endosymbiosis for both organisms using fitness measurements in different biotic environments to test under which environmental conditions the net effects of the interaction were positive for both partners. We found that the net effects of harbouring endosymbionts were positive for the ciliate hosts as it allowed them to survive in conditions of low-quality bacteria food. The algae benefitted by being endosymbiotic when predators such as the hosts were present, but the net effects were dependent on the total density of hosts, decreasing as hosts densities increased. Overall, we show that including context-dependency of endosymbiosis is essential in understanding how these interactions have evolved.


Assuntos
Chlorella , Cilióforos , Paramecium , Simbiose , Análise Custo-Benefício
19.
Curr Biol ; 32(12): R645-R649, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35728546

RESUMO

Parasitism has independently evolved multiple times across the entire tree of life, and there are numerous parasitic representatives from every major eukaryote kingdom. In animals alone, parasitism has independently evolved at least 200 times. If there are any organisms that one might think would have access to limitless resources, it would be parasites. You would think that living in or on the body of their host, which serves as both a habitat and a food source, would provide parasites with bountiful resources to maximise every aspect of their existence, especially reproduction. But parasitism is not a loophole out of life history trade-offs. There is still a finite amount of resources that a parasite can obtain and allocate to its many needs. Living in a resource-rich environment has allowed many parasites to grow to sizes that are of multiple orders of magnitude larger than their free-living relatives. But that does not mean that the underlying economy of nature and its limitations are inapplicable to parasites.


Assuntos
Parasitos , Animais , Evolução Biológica , Tamanho Corporal , Interações Hospedeiro-Parasita , Reprodução , Simbiose
20.
Oecologia ; 199(2): 355-366, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35597849

RESUMO

The balance between costs and benefits is expected to drive associations between species. While these balances are well understood for strict associations, we have no insights to which extent they determine facultative associations between species. Here, we quantified the costs of living in a facultative association, by studying the effects of red wood ants on the facultatively associated isopod Porcellio scaber. Porcellio scaber frequently occurred in and near hostile red wood ant nests and might outnumber obligate nest associates. The facultative association involved different costs for the isopod. We found that the density of the isopod decreases near the nest with higher ant traffic. Individuals in and near the nest were smaller than individuals further away from the nest. Smaller individuals were also found at sites with higher ant traffic. A higher proportion of wounded individuals was found closer to the nest and with higher ant traffic. We recorded pregnant females and juveniles in the nest suggesting that the life cycle can be completed inside the nests. Lab experiments showed that females died sooner and invested less in reproduction in presence of red wood ants. Porcellio scaber rarely provoked an aggression response, but large numbers were carried as prey to the nest. These preyed isopods were mainly dried out corpses. Our results showed that the ant association incurred several costs for a facultative associate. Consequently, red wood ant nests and their surrounding territory act as an alternative habitat where demographic costs are offset by a stable resource provisioning and protection.


Assuntos
Formigas , Isópodes , Animais , Formigas/fisiologia , Ecossistema , Humanos , Reprodução , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA