Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Toxicol Lett ; 356: 100-109, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902520

RESUMO

Lung epithelial cells and fibroblasts play key roles in pulmonary fibrosis and are involved in fibrotic signaling and production of the extracellular matrix (ECM), respectively. Recently, 3D airway models consisting of both cell types have been developed to evaluate the fibrotic responses while facilitating cell-cell crosstalk. This study aimed to evaluate the fibrotic responses in these models using different fibrogenic agents, which are known as key events in adverse outcome pathways of pulmonary fibrosis. We quantified cell injury and several sequential steps in fibrogenesis, including inflammation, the epithelial-mesenchymal transition (EMT), fibroblast activation, and ECM accumulation, using two different 3D airway models, the EpiAirway™-full thickness (Epi/FT) and MucilAir™-human fibroblast (Mucil/HF) models. In the Epi/FT model, fibrogenic agents induced the expression of inflammation and EMT-associated markers, while in the Mucil/HF model, they induced fibroblast activation and ECM accumulation. Using this information, we conducted gene ontology term network analysis. In the Epi/FT model, the terms associated with cell migration and response to stimulus made up a large part of the network. In the Mucil/HF model, the terms associated with ECM organization and cell differentiation and proliferation constituted a great part of the network. Collectively, our data suggest that polyhexamethyleneguanidine phosphate and bleomycin induce different responses in the two 3D airway models. While Epi/FT was associated with inflammatory/EMT-associated responses, Mucil/HF was associated with fibroblast-associated responses. This study will provide an important basis for selecting proper 3D airway models and fibrogenic agents to further research or screen chemicals causing inhalation toxicity.


Assuntos
Técnicas de Cultura de Células em Três Dimensões/métodos , Células Epiteliais/fisiologia , Fibroblastos/fisiologia , Fibrose/induzido quimicamente , Sistema Respiratório/citologia , Antineoplásicos/toxicidade , Biomarcadores , Bleomicina/toxicidade , Citocinas/genética , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Guanidinas/toxicidade , Humanos , Fator de Crescimento Transformador beta
2.
J Biol Chem ; 294(33): 12472-12482, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31248983

RESUMO

Type 2 taste receptors (TAS2R) are G protein-coupled receptors first described in the gustatory system, but have also been shown to have extraoral localizations, including airway smooth muscle (ASM) cells, in which TAS2R have been reported to induce relaxation. TAS2R46 is an unexplored subtype that responds to its highly specific agonist absinthin. Here, we first demonstrate that, unlike other bitter-taste receptor agonists, absinthin alone (1 µm) in ASM cells does not induce Ca2+ signals but reduces histamine-induced cytosolic Ca2+ increases. To investigate this mechanism, we introduced into ASM cells aequorin-based Ca2+ probes targeted to the cytosol, subplasma membrane domain, or the mitochondrial matrix. We show that absinthin reduces cytosolic histamine-induced Ca2+ rises and simultaneously increases Ca2+ influx into mitochondria. We found that this effect is inhibited by the potent human TAS2R46 (hTAS2R46) antagonist 3ß-hydroxydihydrocostunolide and is no longer evident in hTAS2R46-silenced ASM cells, indicating that it is hTAS2R46-dependent. Furthermore, these changes were sensitive to the mitochondrial uncoupler carbonyl cyanide p-(trifluoromethoxy)phenyl-hydrazone (FCCP); the mitochondrial calcium uniporter inhibitor KB-R7943 (carbamimidothioic acid); the cytoskeletal disrupter latrunculin; and an inhibitor of the exchange protein directly activated by cAMP (EPAC), ESI-09. Similarly, the ß2 agonist salbutamol also could induce Ca2+ shuttling from cytoplasm to mitochondria, suggesting that this new mechanism might be generalizable. Moreover, forskolin and an EPAC activator mimicked this effect in HeLa cells. Our findings support the hypothesis that plasma membrane receptors can positively regulate mitochondrial Ca2+ uptake, adding a further facet to the ability of cells to encode complex Ca2+ signals.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Sistema Respiratório/metabolismo , Sesquiterpenos de Guaiano/farmacologia , Cálcio/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Linhagem Celular , Retículo Endoplasmático/genética , Células HeLa , Humanos , Mitocôndrias/genética , Miócitos de Músculo Liso/citologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sistema Respiratório/citologia , Tioureia/análogos & derivados , Tioureia/farmacologia
3.
J Virol ; 93(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31189708

RESUMO

Pandemic H1N1 (pH1N1) influenza virus emerged from swine in 2009 with an adequate capability to infect and transmit between people. In subsequent years, it has circulated as a seasonal virus and evolved further human-adapting mutations. Mutations in the hemagglutinin (HA) stalk that increase pH stability have been associated with human adaptation and airborne transmission of pH1N1 virus. Yet, our understanding of how pH stability impacts virus-host interactions is incomplete. Here, using recombinant viruses with point mutations that alter the pH stability of pH1N1 HA, we found distinct effects on virus phenotypes in different experimental models. Increased pH sensitivity enabled viruses to uncoat in endosomes more efficiently, manifesting as increased replication rate in typical continuous cell cultures under single-cycle conditions. A more acid-labile HA also conferred a small reduction in sensitivity to antiviral therapeutics that act at the pH-sensitive HA fusion step. Conversely, in primary human airway epithelium cultured at the air-liquid interface, increased pH sensitivity attenuated multicycle viral replication by compromising virus survival in the extracellular microenvironment. In a mouse model of influenza pathogenicity, there was an optimum HA activation pH, and viruses with either more- or less-pH-stable HA were less virulent. Opposing pressures inside and outside the host cell that determine pH stability may influence zoonotic potential. The distinct effects that changes in pH stability exert on viral phenotypes underscore the importance of using the most appropriate systems for assessing virus titer and fitness, which has implications for vaccine manufacture, antiviral drug development, and pandemic risk assessment.IMPORTANCE The pH stability of the hemagglutinin surface protein varies between different influenza strains and subtypes and can affect the virus' ability to replicate and transmit. Here, we demonstrate a delicate balance that the virus strikes within and without the target cell. We show that a pH-stable hemagglutinin enables a human influenza virus to replicate more effectively in human airway cells and mouse lungs by facilitating virus survival in the extracellular environment of the upper respiratory tract. Conversely, after entering target cells, being more pH stable confers a relative disadvantage, resulting in less efficient delivery of the viral genome to the host cell nucleus. Since the balance we describe will be affected differently in different host environments, it may restrict a virus' ability to cross species. In addition, our findings imply that different influenza viruses may show variation in how well they are controlled by antiviral strategies targeting pH-dependent steps in the virus replication cycle.


Assuntos
Técnicas de Cultura de Células/métodos , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/virologia , Neuraminidase/genética , Sistema Respiratório/citologia , Proteínas Virais/genética , Células A549 , Animais , Modelos Animais de Doenças , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Concentração de Íons de Hidrogênio , Vírus da Influenza A Subtipo H1N1/patogenicidade , Células Madin Darby de Rim Canino , Camundongos , Neuraminidase/química , Neuraminidase/metabolismo , Mutação Puntual , Estabilidade Proteica , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Análise de Célula Única , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral
4.
Vet Pathol ; 46(2): 325-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19261646

RESUMO

Utilization of a combined Alcian Blue and Pyronine Y histochemical method for the assessment of multiple parameters in the respiratory tract of various species is described. Acidic mucins were deep blue (sialylated mucins), red (sulfated mucins), or variably purple (mixture of sialylated/sulfated mucins), and differential mucus production was readily detected in a murine respiratory syncytial virus vaccine model of pulmonary inflammation. Elastic fibers stained red in the walls of pulmonary arteries, connecting airways, alveolar septa, and subpleural interstitium. Mast cells had red to red-purple granular cytoplasmic staining. Nuclei were ubiquitously counterstained pale blue. Representative staining was detected in tissues from multiple species, including inbred mice, rats, ferrets, cats, dogs, sheep, and pigs. The fluorescent property of the stained tissues offers additional modalities with which to analyze tissue sections. This histochemical technique detects multiple critical parameters in routine paraffin sections of lung tissue, reduces the need for repeated serial sectioning and staining, and is cost-effective and simple to perform.


Assuntos
Azul Alciano/química , Pneumopatias/patologia , Pironina/química , Animais , Carnívoros , Modelos Animais de Doenças , Camundongos , Coelhos , Ratos , Sistema Respiratório/citologia , Sistema Respiratório/patologia , Ovinos , Coloração e Rotulagem , Suínos
5.
Methods Mol Biol ; 433: 229-42, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18679627

RESUMO

Cystic fibrosis (CF) a monogenic lethal disease and, therefore, ideally suited for the development of gene therapy. The first clinical trials were carried out shortly after cloning the CF gene in 1989. Since then, 25 trials have been carried out. Proof of principle for low-level airway gene transfer was established in most, but not all, trials. It is currently unclear whether current gene transfer efficiency will lead to improvements in clinically relevant endpoints such as inflammation or infection. In addition to addressing this important question, we and others are further improving airway gene transfer, by modifying existing and developing new gene transfer agents. Here, we describe pre-clinical methods related to assessing correction of the CF chloride transport defect.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Transfecção/métodos , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Linhagem Celular , Separação Celular , Colforsina/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Humanos , Transporte de Íons/efeitos dos fármacos , Luciferases/metabolismo , Camundongos , Sistema Respiratório/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA