RESUMO
The current study aimed to evaluate the plant growth-promoting (PGP) potential of endophytic strain Bacillus subtilis KU21 isolated from the roots of Rosmarinus officinalis. The strain exhibited multiple traits of plant growth promotion viz., phosphate (P) solubilization, nitrogen fixation, indole-3-acetic acid (IAA), siderophore, hydrogen cyanide (HCN), lytic enzymes production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The isolate also exhibited antagonistic activity against phytopathogenic fungi, i.e., Fusarium oxysporum, Fusarium graminiarum, and Rhizoctonia solani. The P-solubilization activity of B. subtilis KU21 was further elucidated via detection of glucose dehydrogenase (gdh) gene involved in the production of gluconic acid which is responsible for P-solubilization. Further, B. subtilis KU21 was evaluated for in vivo growth promotion studies of tomato (test crop) under net house conditions. A remarkable increase in seed germination, plant growth parameters, nutrient acquisition, and soil quality parameters (NPK) was observed in B. subtilis KU21-treated plants over untreated control. Hence, the proposed module could be recommended for sustainable tomato production in the Northwest Himalayan region without compromising soil health and fertility.
Assuntos
Bacillus subtilis , Endófitos , Raízes de Plantas , Rosmarinus , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/metabolismo , Endófitos/isolamento & purificação , Endófitos/metabolismo , Endófitos/genética , Endófitos/classificação , Rosmarinus/química , Rosmarinus/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Fusarium/genética , Fusarium/metabolismo , Microbiologia do Solo , Desenvolvimento Vegetal , Germinação , Ácidos Indolacéticos/metabolismo , Rhizoctonia/crescimento & desenvolvimento , Rhizoctonia/efeitos dos fármacos , Fixação de Nitrogênio , Fosfatos/metabolismoRESUMO
The most recent advancement in food packaging research involves improving the shelf life of perishable foods by utilising bio-based resources that are edible, eco-friendly, and biodegradable. The current study investigated the effect of edible pectin coating on mature green tomatoes to improve shelf life and storage properties. Zucchini pectin was used to make edible coating. The antimicrobial and antioxidant properties of extracted pectin were investigated. The findings indicated that the extracted pectin had antimicrobial (Staphylococcus aureus, Escherichia coli, and Aspergillus niger) and antioxidant (34.32% at 1 mg/mL) properties.Tomatoes were immersed in pectin solutions of varying concentrations, 1, 3, and 5% (w/v). Physiological evaluations of weight loss, total sugar content, titratable acidity pH, and ascorbic acid were performed on tomatoes during their maturing stages of mature green, light red, pure red, and breaking. Coating the tomatoes with pectin (5%) resulted in minimal weight loss while increasing the retention of total sugar, ascorbic acid, and titratable acidity. The shelf life of the pectin-coated tomatoes was extended to 11 days, while the uncoated control tomatoes lasted 9 days. Thus, a 5% edible pectin solution was found to be effective in coating tomatoes. The current study suggests that using 5% pectin as an edible coating on tomatoes can delay/slow the ripening/maturing process while also extending the shelf-life of tomatoes without affecting their physiochemical properties, which is scalable on a large scale for commercial purposes.
Assuntos
Pectinas , Solanum lycopersicum , Pectinas/análise , Pectinas/química , Solanum lycopersicum/química , Armazenamento de Alimentos , Conservação de Alimentos/métodos , Antioxidantes/análise , Antioxidantes/farmacologia , Embalagem de Alimentos , Ácido Ascórbico/análise , Anti-Infecciosos/análise , Anti-Infecciosos/farmacologia , Anti-Infecciosos/químicaRESUMO
Plant volatile organic compounds (VOCs) are organic chemicals that plants release as part of their natural biological processes. Various plant tissues produce VOCs, including leaves, stems, flowers, and roots. VOCs are essential in plant communication, defense against pests and pathogens, aroma and flavor, and attracting pollinators. The study of plant volatiles has become an increasingly important area of research in recent years, as scientists have recognized these compounds' important roles in plant physiology. As a result, there has been a growing interest in developing methods for collecting and analyzing plant VOCs. HS-SPME-GC-MS (headspace solid-phase microextraction-gas chromatography-mass spectrometry) is commonly used for plant volatile analysis due to its high sensitivity and selectivity. This chapter describes an efficient method for extracting and identifying volatile compounds by HS-SPME coupled with GC-MS in tomato fruits.
Assuntos
Frutas , Cromatografia Gasosa-Espectrometria de Massas , Solanum lycopersicum , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Solanum lycopersicum/química , Frutas/química , Compostos Orgânicos Voláteis/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas/economia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/economia , Microextração em Fase Sólida/métodosRESUMO
This study investigated the treatment of wastewater from tomato paste (TP) production using electrocoagulation (EC) and electrooxidation (EO). The effectiveness of water recovery from the pretreated water was then investigated using the membrane process. For this purpose, the effects of independent control variables, including electrode type (aluminum, iron, graphite, and stainless steel), current density (25-75 A/m2), and electrolysis time (15-120 min) on chemical oxygen demand (COD) and color removal were investigated. The results showed that 81.0% of COD and 100% of the color removal were achieved by EC at a current density of 75 A/m2, a pH of 6.84 and a reaction time of 120 min aluminum electrodes. In comparison, EO with graphite electrodes achieved 55.6% of COD and 100% of the color removal under similar conditions. The operating cost was calculated to be in the range of $0.56-30.62/m3. Overall, the results indicate that EO with graphite electrodes is a promising pretreatment process for the removal of various organics. In the membrane process, NP030, NP010, and NF90 membranes were used at a volume of 250 mL and 5 bar. A significant COD removal rate of 94% was achieved with the membrane. The combination of EC and the membrane process demonstrated the feasibility of water recovery from TP wastewater.
Assuntos
Grafite , Solanum lycopersicum , Poluentes Químicos da Água , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Alumínio , Eletrocoagulação/métodos , Água , Eletrodos , Resíduos Industriais/análiseRESUMO
The maturity of fruits and vegetables such as tomatoes significantly impacts indicators of their quality, such as taste, nutritional value, and shelf life, making maturity determination vital in agricultural production and the food processing industry. Tomatoes mature from the inside out, leading to an uneven ripening process inside and outside, and these situations make it very challenging to judge their maturity with the help of a single modality. In this paper, we propose a deep learning-assisted multimodal data fusion technique combining color imaging, spectroscopy, and haptic sensing for the maturity assessment of tomatoes. The method uses feature fusion to integrate feature information from images, near-infrared spectra, and haptic modalities into a unified feature set and then classifies the maturity of tomatoes through deep learning. Each modality independently extracts features, capturing the tomatoes' exterior color from color images, internal and surface spectral features linked to chemical compositions in the visible and near-infrared spectra (350 nm to 1100 nm), and physical firmness using haptic sensing. By combining preprocessed and extracted features from multiple modalities, data fusion creates a comprehensive representation of information from all three modalities using an eigenvector in an eigenspace suitable for tomato maturity assessment. Then, a fully connected neural network is constructed to process these fused data. This neural network model achieves 99.4% accuracy in tomato maturity classification, surpassing single-modal methods (color imaging: 94.2%; spectroscopy: 87.8%; haptics: 87.2%). For internal and external maturity unevenness, the classification accuracy reaches 94.4%, demonstrating effective results. A comparative analysis of performance between multimodal fusion and single-modal methods validates the stability and applicability of the multimodal fusion technique. These findings demonstrate the key benefits of multimodal fusion in terms of improving the accuracy of tomato ripening classification and provide a strong theoretical and practical basis for applying multimodal fusion technology to classify the quality and maturity of other fruits and vegetables. Utilizing deep learning (a fully connected neural network) for processing multimodal data provides a new and efficient non-destructive approach for the massive classification of agricultural and food products.
Assuntos
Frutas , Redes Neurais de Computação , Solanum lycopersicum , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Frutas/crescimento & desenvolvimento , Aprendizado Profundo , Espectroscopia de Luz Próxima ao Infravermelho/métodos , CorRESUMO
To meet the growing demand for vegetable production and promote sustainable agriculture, it is imperative to implement effective input management and adopt eco-friendly farming practices. This study aims to compare the environmental impacts of conventional and organic tomato cultivation in the northern plains of India. This study utilizes SimaPro 9.1.1 software for a comprehensive cradle-to-farm gate Life Cycle Assessment (LCA), assessing production stages, identifying key environmental factors, and incorporating ReCiPe Midpoint and Endpoint methods with one-hectare as a functional unit. Findings reveal that conventional cultivation is more affected by fertilizer application and transplanting, while organic cultivation emphasizes transplanting and irrigation. Organic cultivation contributes 904.708 kg CO2, while conventional cultivation contributes 1307.917 kg CO2 to Global Warming potential. Switching to organic cultivation leads to a significant 35.04% decrease in all impact categories. Using the endpoint method, organic cultivation achieves a notable 27.16% reduction, scoring 58.30 compared to conventional cultivation's 80.04. The LCA analysis of tomato cultivation highlights Fertilizer application as the predominant environmental concern, emphasizing the need for sustainable techniques to minimize waste and mitigate environmental impacts. This study recommends imposing restrictions on fertilizer and pesticide use and formulating effective policies to promote the adoption of sustainable practices.
Assuntos
Solanum lycopersicum , Animais , Fertilizantes , Dióxido de Carbono , Estudos de Viabilidade , Meio Ambiente , Agricultura/métodos , Índia , Estágios do Ciclo de VidaRESUMO
Agricultural irrigation using reclaimed urban wastewater (RWW) represents a sustainable practice to meet the ever-increasing water stress in modern societies. However, the occurrence of residual antibiotics and antibiotic resistant bacteria (ARB) in RWW is an important human health concern. This study applied for the first time a novel Simple-Death dose-response model to the field data of Escherichia coli and Pseudomonas spp. collected from three greenhouses for cultivation of tomatoes irrigated with RWW. The model estimates the risk of infection by enteropathogenic E. coli associated with consumption of tomatoes and the risk of eye-infection caused by Pseudomonas aeruginosa in cultivation soil through hand-to-eye contacts. The fraction of antibiotic resistant (AR)-E. coli measured in irrigation water and AR-Pseudomonas spp. in soil was incorporated in the model to estimate the survival of ARB and antibiotic susceptible bacteria in the presence of trace level of antibiotics in human body. The results showed that the risk of E. coli infection through consumption of tomatoes irrigated with RWW is within the WHO and USEPA recommended risk threshold (<10-4); Pseudomonas aeruginosa eye-infection risk is at or below the acceptable risk level. The presence of residual antibiotic in human body reduced the overall risk probabilities of infections but selectively enhanced the survival of ARB in comparison to their susceptible counterparts, which resulted in antibiotic untreatable infection. Therefore, the outcomes of this study call for a new risk threshold for antibiotic untreatable infections and highlight the key importance of adopting work safety measures for better human health protection.
Assuntos
Solanum lycopersicum , Águas Residuárias , Humanos , Escherichia coli , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Irrigação Agrícola/métodos , Solo , AntibacterianosRESUMO
Wastewater irrigation for vegetable cultivation is greatly concerned about the presence of toxic metals in irrigated soil and vegetables which causes possible threats to human health. This study aimed to ascertain the accumulation of heavy metals (HMs) in edible parts of vegetables irrigated with different stages of textile dyeing wastewater (TDW). Bio-concentration factor (BCF), Estimated daily intake (EDI), and target hazard quotient (THQ) were computed to estimate human health risks and speculate the hazard index (HI) of adults and children with the consumption of HMs contaminated vegetables at recommended doses. Five vegetables (red amaranth, Indian spinach, cauliflower, tomato, and radish) in a pot experiment were irrigated with groundwater (T1) and seven stages of TDW (T2â¼T8) following a randomized complete block design (RCBD) with three replications. Among the TDW stages, T8, T7, T4, and T5 exhibited elevated BCF, EDI, THQ, and HI due to a rising trend in the accumulation of Pb, Cd, Cr, and Ni heavy metals in the edible portion of the red amaranth, followed by radish, Indian spinach, cauliflower, and tomato. The general patterns of heavy metal (HM) accumulation, regarded as vital nutrients for plants, were detected in the following sequence: Zn > Mn/Cu > Fe. Conversely, toxic metals were found to be Cd/Cr > Ni > Pb, regardless of the type of vegetables. Principal Component Analysis (PCA) identified T8, T7, and T4 of TDW as the primary contributors to the accumulation of heavy metals in the vegetables examined. Furthermore, the analysis of the heavy metals revealed that the BCF, THQ, and HI values for all studied metals were below 1, except for Pb. This suggests that the present consumption rates of different leafy and non-leafy vegetables, whether consumed individually or together, provide a low risk in terms of heavy metal exposure. Nevertheless, the consumption of T8, T7, and T4 irrigated vegetables, specifically Indian spinach alone or in combination with red amaranth and radish, by both adults and children, at the recommended rate, was found to pose potential health risks. On the other hand, T2, T3, and T6 irrigated vegetables were deemed safe for consumption. These findings indicated that the practice of irrigating the vegetables with T8, T7, and T4 stages of TDW has resulted in a significant buildup of heavy metals in the soils and edible parts of vegetables which are posing health risks to adults and children. Hence, it is imperative to discharge the T8, T7, and T4 stages of TDW after ETP to prevent the contamination of vegetables and mitigate potential health risks.
Assuntos
Metais Pesados , Poluentes do Solo , Solanum lycopersicum , Adulto , Criança , Humanos , Cádmio , Monitoramento Ambiental , Contaminação de Alimentos/análise , Chumbo , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Verduras , Águas ResiduáriasRESUMO
This study aimed to develop microencapsulation technology using alginate to improve the viability and performance of Trichoderma harzianum. The method of ionic gelation was used to prepare the microparticles, and the efficiency of encapsulation was estimated to be 99%. The average size of the prepared microspheres was 2600 µm (wet) and 1000 µm (dry). Scanning electron microscopy revealed that the microspheres were approximately spherical. Fourier transform infrared spectrophotometer analysis indicated an interaction between T. harzianum and the microspheres. The results of temperature resistance and light stability against ultraviolet radiation emphasized the positive impact of microencapsulation in improving the viability and resistance of T. harzianum compared to the non-microencapsulated state. The disease percentage of Rhizoctonia solani and Sclerotinia sclerotiorum in plants treated with microencapsulated T. harzianum microcapsules was 8.88 % and 20 % respectively, but in the control group was 73.33 % (p ≤ 0.05).
Assuntos
Ascomicetos , Hypocreales , Rhizoctonia , Solanum lycopersicum , Trichoderma , Alginatos , Raios Ultravioleta , Doenças das Plantas/prevenção & controleRESUMO
A comprehensive approach was used for the first time to measure NO3- risk in tomato paste consumption; besides a robust deterministic and probabilistic method was used. The mean levels of NO3- in homemade and industrial tomato paste were 7.36 mg/kg and 43.69 mg/kg, respectively. The Monte Carlo simulation confirmed that these values were below normal levels (HQ less than 1). The sensitivity analysis displayed that FIR was the main factor affecting the risk to human health in both groups. The interactive plot demonstrated the interaction between C and IR for children and adults in both types of tomato paste. This study concludes that NO3- ingestion due to tomato paste consumption poses no significant health risk. However, considering that food and water constitute the primary sources of NO3- intake, continuous monitoring is recommended due to potential health risks associated with excessive NO3- consumption, including certain forms of cancer.
Assuntos
Solanum lycopersicum , Poluentes Químicos da Água , Adulto , Criança , Humanos , Nitratos/análise , Irã (Geográfico) , Alimentos , Medição de Risco , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento AmbientalRESUMO
Pesticide application has become a mandatory requirement of the modern agricultural system, resulting in the objectionable levels of pesticide residues in the treated food commodities and posing health threats to the consumers. This study aimed at optimization and validation of an analytical method which can be reliably applied for routine monitoring of the selected eighteen widely reported pesticides in tomato and eggplant. The principle of quick, easy, cheap, effective, rugged, and safe, i.e., QuEChERS, involving the acetate-buffered extraction followed by cleanup using the primary secondary amines (PSA) was employed. The analytical method was validated at three spiking levels (0.05, 0.01, 0.005 mg/kg) using gas chromatograph-micro electron capture detector (GC-µECD). Gas chromatograph-mass spectrometric detector (GC-MSD) was also used for confirmation and quantification using selective ion monitoring (SIM) mode. The method was applied on fresh samples of tomato (n = 33) and eggplant (n = 27) collected from local markets of Khyber Pakhtunkhwa, Pakistan, in the crop season 2020-2021. Twenty-five (76%) tomato samples and fifteen (56%) eggplant samples were found positive for one or more pesticides. Though the chronic and acute health risk assessments indicate that both of these vegetables are unlikely to pose any unacceptable health threat to their consumers, yet the risks from regular intake of pesticides-contaminated food commodities should be regularly addressed for possible protection of the public health and assurance of safe and consistent agro-trade, alike.
Assuntos
Resíduos de Praguicidas , Praguicidas , Solanum lycopersicum , Solanum melongena , Resíduos de Praguicidas/análise , Paquistão , Praguicidas/análise , Contaminação de Alimentos/análise , Verduras/químicaRESUMO
A utilização de agrotóxicos ao redor do mundo é elevada, estimada em mais 2 milhões de toneladas e somente o continente americano emprega 1,2 milhão de toneladas de produtos. O Brasil possui na agricultura a sua principal atividade econômica e utilizou em 2021 aproximadamente 700 mil toneladas de agrotóxicos. O tomate é um dos vegetais mais cultivados e consumidos no mundo e o Brasil figura como o 10º maior produtor. O consumo anual médio de tomate do brasileiro é de 4,2 kg, é um vegetal nutritivo e com propriedades associadas à prevenção de câncer. O tomate é uma das culturas com maior uso de agrotóxicos e durante o período desse estudo, era autorizado o uso de 123 agrotóxicos. Os resíduos desses produtos nos alimentos podem acarretar em diversos problemas à saúde, mesmo em curta exposição (< 24h). Desse modo, uma das maneiras de garantir a segurança alimentar da população é a realização da avaliação de risco de contaminação dietética. No processo de validação 73 ingredientes ativos respeitaram os critérios do protocolo adotado. Para a realização da estimativa de risco de exposição dietética aguda, foram coletadas 30 amostras de tomate in natura e 11 de tomate pelado, entre setembro de 2021 e março de 2022. Para a extração dos compostos de interesse foi utilizado o método QuEChERS e para avaliação dos resíduos, a cromatografia líquida acoplada à espectrometria de massas. Das amostras de tomate in natura, somente seis (20 %) estavam isentas dos compostos pesquisados; 18 (60 %) apresentaram resíduo(s) abaixo do limite (LMR) estabelecido e seis amostras (20 %) foram consideradas impróprias ao consumo. Das amostras de tomate pelado, três estavam isentas dos agrotóxicos pesquisados e oito (72 %) apresentaram resíduo de carbendazim abaixo do LMR. Nenhuma das amostras mostrou potencial de contaminação aguda por agrotóxicos, apesar disso não é possível afirmar que não há risco, pois não há como estimar os potenciais efeitos adversos provenientes do consumo de um alimento com múltiplos compostos.
More than 2 million tons of pesticide products are used annually through the world and only the America continent was used 1,2 million tons of these products. The agriculture is the main economic activity in Brazil, this way in 2021 approximately 700 thousand tons of pesticide were applied in its crops. Tomato is one of the most cultivated and consumed vegetables in the world and Brazil is the 10th largest producer. The Brazilian people consumes an average of 4.2 kg of tomatoes by year, it is a nutritious vegetable with anti-cancer properties. Tomato crop is one of the which highest pesticide usages, during this study 123 compounds were permitted for this crop. Pesticide residues in food may causes several health problems, even in short-term exposition (< 24h), thus one of the ways to ensure the food safety to population is performing the dietary contamination risk assessment. In the validation process 73 active ingredients were within the established criteria. To perform the acute risk assessment of dietary exposure, were collected samples of: fresh tomato (30) and whole peeled tomato (11) in between September of 2021 and March of 2022. To extraction of interest substances was used the QuEChERS method and to residue evaluation the liquid chromatography coupled to mass spectrometry. Of the fresh tomato samples, only six (20 %) were free of searched analytes; 18 (60 %) showed residue(s) bellow the established limits (MRL) and six (20 %) were considered unfit to consumption. Of the whole peeled tomato samples, three were free of searched substances and eight (72 %) showed residue of carbendazim bellow the MRL. None of the samples showed potential for acute contamination by pesticide, however it is not possible to say that there is no risk, as there is no way to estimate the potential adverse effects on health arising from the consumption of a food with several compounds.
Assuntos
Espectrometria de Massas , Agroquímicos/toxicidade , Solanum lycopersicum , Medição de RiscoRESUMO
In this study, we investigated the intricate interplay between Trichoderma and the tomato genome, focusing on the transcriptional and metabolic changes triggered during the late colonization event. Microarray probe set (GSE76332) was utilized to analyze the gene expression profiles changes of the un-inoculated control (tomato) and Trichoderma-tomato interactions for identification of the differentially expressed significant genes. Based on principal component analysis and R-based correlation, we observed a positive correlation between the two cross-comaparable groups, corroborating the existence of transcriptional responses in the host triggered by Trichoderma priming. The statistically significant genes based on different p-value cut-off scores [(padj-values or q-value); padj-value < 0.05], [(pcal-values); pcal-value < 0.05; pcal < 0.01; pcal < 0.001)] were cross compared. Through cross-comparison, we identified 156 common genes that were consistently significant across all probability thresholds, and showing a strong positive corelation between p-value and q-value in the selected probe sets. We reported TD2, CPT1, pectin synthase, EXT-3 (extensin-3), Lox C, and pyruvate kinase (PK), which exhibited upregulated expression, and Glb1 and nitrate reductase (nii), which demonstrated downregulated expression during Trichoderma-tomato interaction. In addition, microbial priming with Trichoderma resulted into differential expression of transcription factors related to systemic defense and flowering including MYB13, MYB78, ERF2, ERF3, ERF5, ERF-1B, NAC, MADS box, ZF3, ZAT10, A20/AN1, polyol sugar transporter like zinc finger proteins, and a novel plant defensin protein. The potential bottleneck and hub genes involved in this dynamic response were also identified. The protein-protein interaction (PPI) network analysis based on 25 topmost DEGS (pcal-value < 0.05) and the Weighted Correlation Gene Network Analysis (WGCNA) of the 1786 significant DEGs (pcal-value < 0.05) we reported the hits associated with carbohydrate metabolism, secondary metabolite biosynthesis, and the nitrogen metabolism. We conclude that the Trichoderma-induced microbial priming re-programmed the host genome for transcriptional response during the late colonization event and were characterized by metabolic shifting and biochemical changes specific to plant growth and development. The work also highlights the relevance of statistical parameters in understanding the gene regulatory dynamics and complex regulatory networks based on differential expression, co-expression, and protein interaction networks orchestrating the host responses to beneficial microbial interactions.
Assuntos
Hypocreales , Solanum lycopersicum , Transcriptoma , Solanum lycopersicum/genética , Perfilação da Expressão Gênica , Proteínas de Plantas/genéticaRESUMO
Carotenoids, such as lycopene and ß-carotene, have been widely recognized for their antioxidant properties and potential health benefits. Accurate quantification of carotenoids in plant extracts is essential for nutritional assessment, quality control, and research investigations. This study introduces an innovative method for quantifying lycopene and ß-carotene, in plant extracts and aims to bridge the gap between complex and expensive carotenoid quantification techniques and the need for accessible methods that can be widely adopted. The primary difference between HPLC and HPTLC lies in the medium used for separation. HPLC employs a liquid phase within columns, while HPTLC utilizes a thin layer of adsorbent on a plate. This distinction impacts factors like equipment, cost, and analysis time. The VisionCats software, combined with the CAMAG Visualizer-2, allows the semi-quantification of metabolites using an image-based evaluation method enabling the simultaneous assessment of qualitative and semi-quantitative information from the HPTLC images. Sample preparation involves washing and drying the vegetal material, followed by dichloromethane extraction. HPTLC analysis is performed using the CAMAG Advanced Herbal System, and the validation studies include establishing calibration curves and determining the detection threshold and minimum quantification threshold for lycopene and ß-carotene. Specificity and precision were evaluated to ensure accurate identification and repeatability of the method. Data analysis involves selecting the regression method based on the nature of the data and assessing the goodness of fit using the R2 value. The results showed distinct peaks corresponding to lycopene and ß-carotene in the chromatograms of the plant extract samples. The visualizer-based method demonstrates good specificity and precision, with no interfering peaks observed and low relative standard deviation. The method shows promising results regarding specificity, precision, and reliability. It has the potential for broader implementation in carotenoid research and rapid monitoring of carotenoid content in various agricultural and food products, particularly in resource-limited settings. Further optimization and validation on a wider range of samples would enhance the applicability of this method in carotenoid research. Sample preparation involves washing and drying the vegetal material, followed by dichloromethane extraction. HPTLC analysis is performed using the CAMAG Advanced Herbal System, and the validation studies include establishing calibration curves and determining the detection threshold and minimum quantification threshold for lycopene and ß-carotene. Specificity and precision were evaluated to ensure accurate identification and repeatability of the method. Data analysis involves selecting the regression method based on the nature of the data and assessing the goodness of fit using the R2 value. The results showed distinct peaks corresponding to lycopene and ß-carotene in the chromatograms of the plant extract samples. The visualizer-based method demonstrates good specificity and precision, with no interfering peaks observed and low relative standard deviation. The method shows promising results regarding specificity, precision, and reliability. It has the potential for broader implementation in carotenoid research and for rapid screening and monitoring of carotenoid content in various agricultural and food products, particularly in resource-limited settings. Further optimization and validation on a wider range of samples would enhance the applicability of this method in carotenoid research.
Assuntos
Solanum lycopersicum , beta Caroteno , Licopeno , beta Caroteno/análise , Reprodutibilidade dos Testes , Cloreto de Metileno/análise , Carotenoides , Extratos VegetaisRESUMO
Bio-based products are nowadays useful tools able to affect the productivity and quality of conventionally cultivated crops. Several bio-based products are currently on the market; one of the newest and most promising is the wood distillate (WD) derived from the pyrolysis process of waste biomass after timber. Its foliar application has been widely investigated and shown to promote the antioxidant profile of cultivated crops. WD was used here as additive for the cultivation of tomato (Solanum lycopersicum L.) plants. The application improved quality (chemical) parameters, minerals, polyphenols, and lycopene contents of tomato fruits. The extracts of WD-treated and untreated tomatoes have been chemically and biologically characterized. The 1 H-NMR and ESI-mass spectrometry analyses of the extracts revealed the presence of different fatty acids, amino acids and sugars. In particular, the WD-treated tomatoes showed the presence of pyroglutamic acid and phloridzin derivatives, but also dihydrokaempferol, naringenin glucoside, cinnamic acid, and kaempferol-3-O-glucoside. When tested in cells, the extracts showed a promising anti-inflammatory profile in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Furthermore, the extracts displayed a slight vasorelaxant activity on rat aorta rings (either endothelium-denuded or endothelium-intact) pre-contracted with phenylephrine or potassium chloride. PRACTICAL APPLICATION: Wood distillate has been used for tomato plant growth. Tomatoes showed improved nutritional parameters, and their extracts displayed antioxidant and anti-inflammatory activities.
Assuntos
Antioxidantes , Solanum lycopersicum , Antioxidantes/química , Madeira/química , Licopeno/análise , Frutas/química , Anti-Inflamatórios/análiseRESUMO
Synthetic insecticides heavily applied to manage agricultural pests are highly hazardous to the environment and non-target organisms. Their overuse through repeated treatments in smallholder farming communities is frequent. Botanical biopesticides are ideal for sustainable pest management in agricultural environments by keeping synthetic insecticide use at a minimum. Here we evaluated a locally prepared neem seed extract (NSE) alongside emamectin benzoate against both lepidopteran pests Helicoverpa armigera (Hübner) and Spodoptera exigua (Hübner) on tomato Lycopersicon esculentum Mill under natural field conditions in Pakistan. We compared pest severity, fruit injury, quality, marketability, and cost:benefit ratio (CBR) between treatments. The concentration of azadirachtin A in the NSE was 26.5 ppm. NSE at 2% (20 mL/L) and the emamectin benzoate at the recommended field rate in Pakistan were sprayed weekly throughout the fruiting stage. The pest larvae were significantly more abundant on fruits than on flowers and leaves. Fruit injury and losses were significantly more important in untreated control compared to NSE and emamectin benzoate treatments. NSE efficacy varied with respect to the cultivars used and the seasons. Cultivar Eden harboured more pests than Adventa, and emamectin benzoate suppressed more pest individuals than NSE. Both the insecticidal treatments were comparable in terms of marketable yield productions as well as unmarketable, uninjured, and recovered fruit yields. NSE generated a higher CBR (1: 9.26) than emamectin benzoate (1: 3.23). NSE suppressed pests by acting as an antifeedant, similar to its synthetic counterpart. Smallholder growers can thus use NSE as a cost-effective solution in tomato pest management in Pakistan.
Assuntos
Inseticidas , Solanum lycopersicum , Humanos , Animais , Agentes de Controle Biológico , Fazendeiros , Análise Custo-Benefício , Países em Desenvolvimento , Inseticidas/farmacologia , Controle de Pragas , LarvaRESUMO
The stereoselective behaviors and dietary risks of metconazole (MZE) in soil and five vegetables were investigated. The results showed that there was species-specific stereoselective and diastereoselective dissipation, and the half-lives ranged from 0.69 to 8.17 days. cis-(+)-1S,5R-MZE was preferentially dissipated in soybean pods, cabbages, celeries, and tomatoes, which was contrary to soybean plants and soil. trans-(+)-1R,5R-MZE was preferentially dissipated in peanut plants, peanut shells, celeries, and tomatoes, while trans-(-)-1S,5S-MZE was preferentially dissipated in soybean plants. cis-MZE was preferentially dissipated in the test vegetables and soil, except celery. The stereoisomeric excess changes were higher than 10%, indicating that the stereoselectivity and diastereoselectivity should be considered in the risk assessment of MZE in soybean plants, pods, and peanut plants. The acute and chronic dietary intake risks of rac-MZE for different groups of people were acceptable. The preferentially dissipated and high activity cis-(+)-1S,5R-MZE with lower toxicity might be suitable for application as monocase.
Assuntos
Apium , Brassica , Poluentes do Solo , Solanum lycopersicum , Humanos , Verduras , Glycine max , Arachis , Solo , Estereoisomerismo , Medição de Risco , Poluentes do Solo/análiseRESUMO
Significant efforts have been spent in the modern era towards implementing environmentally friendly procedures like composting to mitigate the negative effects of intensive agricultural practices. In this context, a novel fertilizer was produced via the hydrolysis of an onion-derived compost, and has been previously comprehensively chemically characterized. In order to characterize its efficacy, the product was applied to tomato plants at five time points to monitor plant health and growth. Control samples were also used at each time point to eliminate confounding parameters due to the plant's normal growth process. After harvesting, the plant leaves were extracted using aq. MeOH (70:30, v/v) and analyzed via UPLC-QToF-MS, using a C18 column in both ionization modes (±ESI). The data-independent (DIA/bbCID) acquisition mode was employed, and the data were analyzed by MS-DIAL. Statistical analysis, including multivariate and trend analysis for longitudinal monitoring, were employed to highlight the differentiated features among the controls and treated plants as well as the time-point sequence. Metabolites related to plant growth belonging to several chemical classes were identified, proving the efficacy of the fertilizer product. Furthermore, the efficiency of the analytical and statistical workflows utilized was demonstrated.
Assuntos
Fertilizantes , Solanum lycopersicum , Fertilizantes/análise , Fluxo de Trabalho , Espectrometria de Massas/métodos , Agricultura , Cromatografia Líquida de Alta PressãoRESUMO
BACKGROUND: Soil fertility decline due to nutrient mining coupled with low inorganic fertilizer usage is a major cause of low crop yields across sub-Saharan Africa. Recently, biochar potential to improve soil fertility has gained significant attention but there are limited studies on the use of biochar as an alternative to inorganic fertilizers. In this study, we determined the effect of maize stover biochar without inorganic fertilizers on soil chemical properties, growth and yield of tomatoes (Solanum lycopersicum L.). A field experiment was conducted in 2022 for two consecutive seasons in Northern Uganda. The experiment included five treatments; inorganic fertilizer (control), biochar applied at rates of 3.5, 6.9, 13.8 and 27.6 t ha-1. RESULTS: In this study, maize stover biochar improved all the soil chemical properties. Compared to the control, pH significantly increased by 27% in the 27.6 tâ¯ha-1 while total N increased by 35.6% in the 13.8 t ha-1. Although P was significantly low in the 3.5 t ha-1, 6.9 t ha-1 and 13.8 t ha-1, it increased by 3.9% in the 27.6 t ha-1. Exchangeable K was significantly increased by 42.7% and 56.7% in the 13.8 t ha-1 and 27.6 t ha-1 respectively. Exchangeable Ca and Mg were also higher in the biochar treatment than the control. Results also showed that plant height, shoot weight, and all yield parameters were significantly higher in the inorganic fertilizer treatment than in the 3.5, 6.9, and 13.8 t ha-1 treatments. Interestingly, maize stover biochar at 27. 6 t ha-1 increased fruit yield by 16.1% compared to the control suggesting it could be used as an alternative to inorganic fertilizer. CONCLUSIONS: Maize stover biochar applied at 27.6 t ha-1 improved soil chemical properties especially pH, N, P and K promoting growth and yield of tomatoes. Therefore, maize stover biochar could be recommended as an alternative to expensive inorganic fertilizers for tomato production in Northern Uganda.
Assuntos
Solo , Solanum lycopersicum , Solo/química , Fertilizantes/análise , Zea mays , Uganda , Carvão Vegetal/farmacologia , Nitrogênio/farmacologia , Agricultura/métodosRESUMO
Tomato varieties (Solanum lycopersicum L) produced in areas prominent for mining activities contribute more deposits of metal contaminants. In turn, affects the quality and value of the products. Highlighting the level of metal contaminant in consumer's most preferred tomato variety is also necessary for health and well-being. This study specifically aimed to investigate, i) the variability between six metal contaminants in UTC, Yowlings, and Derica tomatoes; ii) we also explored the relationship between the metal contaminants and tomato quality, and lastly, we ascertained which socioeconomic factor specifically determined preference for a particular variety of the tomatoes. The metal contaminants examined and found present using ICP-OES were nickel (Ni), chromium (Cr), lead (Pb), arsenic (As), cadmium (Cd), and mercury (Hg). We found a good agreement between most of the analyte and the National Institute of Standards and Technology (NIST) Certified Reference Material 1573a (CRM 1573a) values. Although this study's recovery for the analyte was between 83.22% and 111.00%, we also found contrary to our prediction that Cr, Ni, and Cd concentrations were higher in Derica, UTC, and the Yowlings varieties during the rainy season. A two-way ANOVA between tomatoes and planting seasons was not statistically significant (P > 0.05) in contrast to the mixed model (GLMMs) analysis that indicated a significant (P < 0.05) relationship between lycopene concentration, size of tomatoes, and concentration of metals screened. We also found using a principle component analysis (PCA) and correlation matrix that the concentration of Pb in the tomato varieties was significantly related to the As level. Despite As and Cr concentrations being higher in the Derica tomato variety, most consumers preferred it. Derica tomato contained metal contaminants that could be harmful to human health. Therefore, there is need to monitor the production procedures involved prior to supply of the tomato product.