Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(1): 21, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095705

RESUMO

Bone is a kind of meat processing by-product with high nutritional value but low in calorie, which is a typical food in China and parts of East Asian countries. Microbial fermentation by lactic acid bacteria showed remarkable advantages to increase the absorption of nutrients from bone cement by human body. Streptococcus thermophilus CICC 20372 is proven to be a good starter for bone cement fermentation. No genes encoding virulence traits or virulence factors were found in the genome of S. thermophilus CICC 20372 by a thorough genomic analysis. Its notable absence of antibiotic resistance further solidifies the safety. Furthermore, the genomic analysis identified four types of gene clusters responsible for the synthesis of antimicrobial metabolites. A comparative metabolomic analysis was performed by cultivating the strain in bone cement at 37 °C for 72 h, with the culture in de Man, Rogosa, and Sharpe (MRS) medium as control. Metabolome analysis results highlighted the upregulation of pathways involved in 2-oxocarboxylic acid metabolism, ATP-binding cassette (ABC) transporters, amino acid synthesis, and nucleotide metabolism during bone cement fermentation. S. thermophilus CICC 20372 produces several metabolites with health-promoting function during bone cement fermentation, including indole-3-lactic acid, which is demonstrated ameliorative effects on intestinal inflammation, tumor growth, and gut dysbiosis. In addition, lots of nucleotide and organic acids were accumulated at higher levels, which enriched the fermented bone cement with a variety of nutrients. Collectively, these features endow S. thermophilus CICC 20372 a great potential strain for bone food processing.


Assuntos
Cimentos Ósseos , Streptococcus thermophilus , Humanos , Fermentação , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Cimentos Ósseos/metabolismo , Metaboloma , Nucleotídeos/metabolismo
2.
Genomics ; 115(6): 110724, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820823

RESUMO

Streptococcus thermophilus FUA329, a urolithin A-producing bacterium, is isolated from human breast milk. The complete genome sequence of FUA329 did not contain any plasmids and at least 20 proteins were related to extreme environment resistance. Phenotypic assay results demonstrated that FUA329 was susceptible to 12 kinds of antibiotics and did not exhibit any hemolytic or nitrate reductase activity. Three free radical scavenging assays revealed that FUA329 have high antioxidant capability. FUA329 exhibited a cell surface hydrophobicity of 52.58 ± 1.17% and an auto-aggregation rate of 18.69 ± 2.48%. Moreover, FUA329 demonstrated a survival rate of over 60% in strong acid and bile salt environments, indicating that FUA329 may be stable colonization in the gastrointestinal tract. Additionally, we firstly found 3 potential proteins and 11 potential genes of transforming ellagic acid to urolithins in FUA329 genome. The above results indicate that FUA329 has credible safety and probiotic properties, as well as the potential to be developed as a new generation of urolithin A-producing probiotics.


Assuntos
Leite Humano , Probióticos , Feminino , Humanos , Animais , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Leite/microbiologia , Genômica , Probióticos/metabolismo
3.
Appl Microbiol Biotechnol ; 104(14): 6315-6323, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32462242

RESUMO

ß-galactosidases, commonly referred to as lactases, are used for producing lactose-free dairy products. Lactases are usually purified from microbial sources, which is a costly process. Here, we explored the potential that lies in using whole cells of a food-grade dairy lactic acid bacterium, Streptococcus thermophilus, as a substitute for purified lactase. We found that S. thermophilus cells, when treated with the antimicrobial peptide nisin, were able to hydrolyze lactose efficiently. The rate of hydrolysis increased with temperature; however, above 50 °C, stability was compromised. Different S. thermophilus strains were tested, and the best candidate was able to hydrolyze 80% of the lactose in a 50 g/L solution in 4 h at 50 °C, using only 0.1 g/L cells (dry weight basis). We demonstrated that it was possible to grow the cell catalyst on dairy waste, and furthermore, that a cell-free supernatant of a culture of a nisin-producing Lactococcus lactis strain could be used instead of purified nisin, which reduced cost of use significantly. Finally, we tested the cell catalysts in milk, where lactose also was efficiently hydrolyzed. The method presented is natural and low-cost, and allows for production of clean-label and lactose-free dairy products without using commercial enzymes from recombinant microorganisms. KEY POINTS: • Nisin-permeabilized Streptococcus thermophilus cells can hydrolyze lactose efficiently. • A low-cost and more sustainable alternative to purified lactase enzymes. • Reduction of overall sugar content. • Clean-label production of lactose-free dairy products.


Assuntos
Lactase/metabolismo , Lactobacillales/metabolismo , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Meios de Cultura , Hidrólise , Lactobacillales/crescimento & desenvolvimento , Lactococcus lactis/crescimento & desenvolvimento , Lactococcus lactis/metabolismo , Lactose/análise , Lactose/metabolismo , Leite/química , Leite/microbiologia , Nisina/metabolismo , Nisina/farmacologia , Streptococcus thermophilus/efeitos dos fármacos , Streptococcus thermophilus/crescimento & desenvolvimento , Streptococcus thermophilus/metabolismo , Temperatura
4.
Arch Microbiol ; 200(4): 567-580, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29236144

RESUMO

Streptococcus thermophilus is one of the economically most representatives of lactic acid bacteria, which is widely used as a starter to produce fermented milk products. In this study, 22 S. thermophilus strains were isolated from 26 fermented milk samples. Most isolates showed the ability to ferment a broad range of carbohydrates. Interestingly, eight strains are galactose positive, which is a desirable property in various industrial dairy fermentations. Four different nucleotide sequences were found in the galR-galK intergenic regions. The 16S-23S intergenic spacer region sequences of most isolates were determined as ITS-St-II type, which are related with protease positive and fast acidification. CS18 presented excellent technological performances, and showed potential as a promising starter candidate. To gain a comprehensive view of stress response mechanisms of strains, the distribution of all the two-component systems (TCSs) in strains were investigated. TCS analysis indicated that the nucleotide sequence of TCSs have obvious differences in different strains. And the strains with the special nucleotide sequences of TCS have distinctive traits. Therefore, it was speculated that there is a certain connection between the traits' difference and the TCS difference of strains.


Assuntos
Produtos Fermentados do Leite/microbiologia , Streptococcus thermophilus/genética , Proteínas de Bactérias/genética , Sequência de Bases , Metabolismo dos Carboidratos , Sequência Conservada , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , DNA Intergênico/genética , Fermentação , Genes Bacterianos , Tipagem Molecular , Fenótipo , Polissacarídeos Bacterianos/metabolismo , Regiões Promotoras Genéticas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptococcus thermophilus/metabolismo
5.
J Sci Food Agric ; 96(11): 3831-7, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26692071

RESUMO

BACKGROUND: White mold-ripened cheeses were investigated with the objective of proposing a colorimetric method to monitor the surface growth of Penicillium candidum and to evaluate the influence of the mesophilic (homofermentative (QMO) and heterofermentative (QMLD)) and thermophilic (QT) starter cultures on the physicochemical composition and sensory description. RESULTS: The whiteness index was effective in proving the appearance of superficial mycelium and the stability of white mold growth. The lactic cultures showed significant influence on most of the physicochemical analyses. The cheese made with thermophilic lactic culture had a 1 day gain in the growth of mycelium on the surface; nevertheless, the appearance of this product was potentially not acceptable for consumers. The heterofermentative mesophilic cheese had a better appearance and texture profile. However, the homofermentative mesophilic cheese showed aspects of fresh cheese and was acceptable for a wide range of consumers. CONCLUSION: The whiteness index was efficient to monitor the surface growth of P. candidum. The highest proteolytic effect was found in the QMLD and QT cultures. However, the cheese elaborated with the QMLD culture showed the best sensory acceptance. © 2015 Society of Chemical Industry.


Assuntos
Queijo/análise , Inspeção de Alimentos , Qualidade dos Alimentos , Lactobacillus delbrueckii/crescimento & desenvolvimento , Lactococcus lactis/crescimento & desenvolvimento , Penicillium/crescimento & desenvolvimento , Streptococcus thermophilus/crescimento & desenvolvimento , Brasil , Queijo/microbiologia , Fenômenos Químicos , Fermentação , Preferências Alimentares , Humanos , Concentração de Íons de Hidrogênio , Lactobacillus delbrueckii/metabolismo , Lactococcus lactis/metabolismo , Fenômenos Mecânicos , Proteínas do Leite/análise , Proteínas do Leite/metabolismo , Penicillium/metabolismo , Análise de Componente Principal , Proteólise , Sensação , Streptococcus thermophilus/metabolismo , Propriedades de Superfície , Tirosina/análise , Tirosina/metabolismo
6.
Microb Cell Fact ; 14: 195, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26643044

RESUMO

BACKGROUND: The lactic acid bacterium Lactobacillus rhamnosus GG is the most studied probiotic bacterium with proven health benefits upon oral intake, including the alleviation of diarrhea. The mission of the Yoba for Life foundation is to provide impoverished communities in Africa increased access to Lactobacillus rhamnosus GG under the name Lactobacillus rhamnosus yoba 2012, world's first generic probiotic strain. We have been able to overcome the strain's limitations to grow in food matrices like milk, by formulating a dried starter consortium with Streptococcus thermophilus that enables the propagation of both strains in milk and other food matrices. The affordable seed culture is used by people in resource-poor communities. RESULTS: We used S. thermophilus C106 as an adjuvant culture for the propagation of L. rhamnosus yoba 2012 in a variety of fermented foods up to concentrations, because of its endogenous proteolytic activity, ability to degrade lactose and other synergistic effects. Subsequently, L. rhamnosus could reach final titers of 1E+09 CFU ml(-1), which is sufficient to comply with the recommended daily dose for probiotics. The specific metabolic interactions between the two strains were derived from the full genome sequences of L. rhamnosus GG and S. thermophilus C106. The piliation of the L. rhamnosus yoba 2012, required for epithelial adhesion and inflammatory signaling in the human host, was stable during growth in milk for two rounds of fermentation. Sachets prepared with the two strains, yoba 2012 and C106, retained viability for at least 2 years. CONCLUSIONS: A stable dried seed culture has been developed which facilitates local and low-cost production of a wide range of fermented foods that subsequently act as delivery vehicles for beneficial bacteria to communities in east Africa.


Assuntos
Alimento Funcional/microbiologia , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Streptococcus thermophilus/crescimento & desenvolvimento , África Oriental , Animais , Técnicas de Cultura Celular por Lotes , Alimento Funcional/economia , Genoma Bacteriano , Humanos , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/metabolismo , Leite/química , Leite/microbiologia , Probióticos , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo
7.
J Photochem Photobiol B ; 143: 120-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25618816

RESUMO

Innovations in labeling techniques and in the design and synthesis of dye structures are closely related to the development of service equipment such as light sources and detection methods. Novel styryl homodimers and monomethine cyanine dyes were synthesized and their staining abilities for discrimination between live and dead lactic acid bacterial cells were investigated. The dyes were combined in pairs based on their excitation and emission maxima and the capacity to penetrate through cell membranes of viable bacterial cells. The absorption maxima in the same region and the large Stocks shifts of the styryl derivatives allowed viability analysis to be done with epifluorescent microscope with a very basic configuration - one light source about 480nm and one filter for the fluorescent emissions. A staining protocol was developed and applied for live/dead analysis of Bulgarian yoghurt starters. The live cells quantification by the fluorescence dyes coincided well with the results of the much more time-consuming tests by plate counting. Thus, the proposed dye combinations are appropriate for rapid viability estimation in small laboratories that may have conventional equipment.


Assuntos
Carbocianinas/química , Dimerização , Corantes Fluorescentes/química , Ácido Láctico/biossíntese , Lactobacillus/citologia , Streptococcus thermophilus/citologia , Estireno/química , Carbocianinas/síntese química , Carbocianinas/metabolismo , Sobrevivência Celular , Laticínios/microbiologia , Desenho de Fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Lactobacillus/metabolismo , Coloração e Rotulagem , Streptococcus thermophilus/metabolismo
8.
J Clin Gastroenterol ; 48 Suppl 1: S56-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25291130

RESUMO

BACKGROUND: Leaky gut, or intestinal permeability, is the phenomenon of the gut wall exhibiting increased absorbency. It is pretty well recognised that an altered or damaged bowel lining or gut wall may result from unbalanced diet, parasites, infection, or medications and that this allows substances such as toxins, microbes, undigested food, or waste to leak through. As a natural consequence, this prompts the body to initiate an immune reaction leading to potentially severe health conditions. Different strategies may be used to improve, at least temporarily, the physiological intestinal barrier. The use of specific beneficial microorganisms, such as lactobacilli and bifidobacteria, has been suggested as an innovative tool to counteract an improper level of intestinal permeability. The association of bacteria with specific gelling agents, such as gums, may represent an improvement since these molecules are able to form hydrophilic gels that distribute uniformly over the inner intestinal surface. This pilot study was undertaken to evaluate intestinal permeability in subjects treated with a gelling complex, an association of tara gum and the microorganism Streptococcus thermophilus ST10 (DSM 25246), which has a well-demonstrated in vitro ability to synthesise and secrete exopolysaccharides (EPSs). METHODS: Twenty-five healthy subjects were enrolled in this human intervention, double-blind, placebo-controlled, pilot trial (age between 21 and 57 y, mean 37.7±11.2). Subjects were then randomised into 2 groups: group A (13 subjects) was given an active formulation containing 250 mg of tara gum and 1 billion viable cells of S. thermophilus ST10, whereas group B (12 subjects) was given a placebo formulation. All the subjects participating in the study were directed to take 1 dose per day for 30 consecutive days. The presence and concentration of exopolysaccharides (EPSs) in the faeces was determined at time 0 (d0), after 30 days of treatment (d30), and at the end of the 2-week follow-up period (d45). The monosaccharide composition of EPSs was used to quantify the possible contribution of tara gum to the amount of polysaccharides detected in the faecal material. Intestinal permeability was evaluated at the same time by means of the lactitol/mannitol ratio (small intestine permeability) and sucralose concentration (colonic permeability) in urine specimens sampled after specified times. A statistical comparison was made between the concentration of EPSs, the lactulose/mannitol ratio, and the amount of excreted sucralose in the 2 groups at d0, d30, and d45. RESULTS: In the active group, supplementation with S. thermophilus ST10 and tara gum was able to significantly increase the faecal EPSs concentration compared with placebo (from 0.169 mg/g to 0.633 mg/g after 30 d, P<0.001). An interesting decrease in intestinal permeability, both of the small bowel and in the colon, was also recorded. The L/M ratio diminished from 0.021 in the active group to 0.014 and 0.015 after 30 and 45 days, respectively (P=0.045 and P=0.033 compared with placebo). The sucralose concentration decreased from 35.8 mg to 27.9 mg and 29.1 mg (P=0.038 and P=0.026 compared with placebo) at the end of the supplementation period and after the follow-up, respectively. No significant differences were recorded in the placebo after 30 days or at the end of the follow-up. CONCLUSIONS: The association of the EPSs produced by S. thermophilus ST10 and tara gum seems capable of significantly improving the intestinal functional barrier in healthy subjects. A wider study in subjects presenting impaired gut permeability would be useful in the future to confirm the positive results from this pilot trial. In any case, our findings are consistent with the parallel increase in exopolysaccharide concentration in the faecal material, thus suggesting the effective ability of the strain used to secrete EPSs in the gut lumen. An innovative approach of this type may be useful in helping to restore the physiological barrier by means of a merely natural and mechanical action.


Assuntos
Absorção Intestinal , Intestinos/microbiologia , Gomas Vegetais/química , Polissacarídeos Bacterianos/metabolismo , Probióticos , Streptococcus thermophilus/metabolismo , Adulto , Método Duplo-Cego , Fezes/química , Feminino , Géis , Humanos , Masculino , Manitol/metabolismo , Pessoa de Meia-Idade , Permeabilidade , Projetos Piloto , Estudos Prospectivos , Sacarose/análogos & derivados , Sacarose/metabolismo , Álcoois Açúcares/metabolismo , Fatores de Tempo , Adulto Jovem
9.
Can J Microbiol ; 57(12): 1002-15, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22107596

RESUMO

Using the yeast two-hybrid system, intraspecific protein interactions were detected in Streptococcus iniae and Lactococcus lactis subsp. cremoris between the transmembrane activation protein (CpsC and EpsA, respectively) and the protein tyrosine kinase (CpsD and EpsB, respectively), between two protein tyrosine kinases, and between the protein tyrosine kinase and the phosphotyrosine phosphatase (CpsB and EpsC, respectively). For each of these intraspecific interactions, interspecific interactions were also detected when one protein was from S. iniae and the other was from Streptococcus thermophilus . Interactions were also observed between two protein tyrosine kinases when one protein was from either of the Streptococcus species and the other from L. lactis subsp. cremoris. The results and sequence comparisons performed in this study support the conclusion that interactions among the components of the tyrosine kinase - phosphatase regulatory system are conserved in the order Lactobacillales and that interspecific genetic exchanges of the genes that encode these proteins have the potential to form functional recombinants. A better understanding of intraspecific and interspecific protein interactions involved in regulating exopolysaccharide biosynthesis may facilitate construction of improved strains for industrial uses as well as identification of factors needed to form functional regulatory complexes in naturally occurring recombinants.


Assuntos
Proteínas de Bactérias/metabolismo , Transferência Genética Horizontal , Lactococcus lactis , Streptococcus thermophilus , Streptococcus , Sequência de Aminoácidos , Cápsulas Bacterianas/biossíntese , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Enzimas/química , Enzimas/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Streptococcus/genética , Streptococcus/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Técnicas do Sistema de Duplo-Híbrido
10.
Int J Food Microbiol ; 126(3): 274-7, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17822794

RESUMO

Streptococcus thermophilus is a major dairy starter used in yogurt and cheese production. In Streptococcus genus, S. thermophilus is the only one food species among commensal and opportunistic pathogen species. Comparative genomics suggest that this species recently emerged and evolved by combination of loss-of-function and horizontal gene transfer events. These gene transfer events detected in S. thermophilus have originated from other dairy species and might contribute to its adaptation to the milk environment.


Assuntos
Qualidade de Produtos para o Consumidor , Produtos Fermentados do Leite/microbiologia , Filogenia , Medição de Risco , Streptococcus thermophilus , Bacteriocinas/efeitos adversos , Bacteriocinas/biossíntese , Queijo/microbiologia , Microbiologia de Alimentos , Transferência Genética Horizontal , Genoma Bacteriano , Humanos , Especificidade da Espécie , Streptococcus thermophilus/classificação , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Streptococcus thermophilus/patogenicidade , Iogurte/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA