Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(9): 3942-3952, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38652017

RESUMO

The aggregation of superoxide dismutase 1 (SOD1) results in amyloid deposition and is involved in familial amyotrophic lateral sclerosis, a fatal motor neuron disease. There have been extensive studies of its aggregation mechanism. Noncanonical amino acid 5-cyano-tryptophan (5-CN-Trp), which has been incorporated into the amyloid segments of SOD1 as infrared probes to increase the structural sensitivity of IR spectroscopy, is found to accelerate the overall aggregation rate and potentially modulate the aggregation process. Despite these observations, the underlying mechanism remains elusive. Here, we optimized the force field parameters of 5-CN-Trp and then used molecular dynamics simulation along with the Markov state model on the SOD128-38 dimer to explore the kinetics of key intermediates in the presence and absence of 5-CN-Trp. Our findings indicate a significantly increased probability of protein aggregate formation in 5CN-Trp-modified ensembles compared to wildtype. Dimeric ß-sheets of different natures were observed exclusively in the 5CN-Trp-modified peptides, contrasting with wildtype simulations. Free-energy calculations and detailed analyses of the dimer structure revealed augmented interstrand interactions attributed to 5-CN-Trp, which contributed more to peptide affinity than any other residues. These results explored the key events critical for the early nucleation of amyloid-prone proteins and also shed light on the practice of using noncanonical derivatives to study the aggregation mechanism.


Assuntos
Agregados Proteicos , Superóxido Dismutase-1 , Triptofano , Humanos , Cinética , Cadeias de Markov , Simulação de Dinâmica Molecular , Multimerização Proteica , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , Triptofano/química , Triptofano/metabolismo
2.
Neurotherapeutics ; 21(3): e00340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472048

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rare neuromuscular disease characterized by severe muscle weakness mainly due to degeneration and death of motor neurons. A peculiarity of the neurodegenerative processes is the variable susceptibility among distinct neuronal populations, exemplified by the contrasting resilience of motor neurons innervating the ocular motor system and the more vulnerable facial and hypoglossal motor neurons. The crucial role of vascular endothelial growth factor (VEGF) as a neuroprotective factor in the nervous system is well-established since a deficit of VEGF has been related to motoneuronal degeneration. In this study, we investigated the survival of ocular, facial, and hypoglossal motor neurons utilizing the murine SOD1G93A ALS model at various stages of the disease. Our primary objective was to determine whether the survival of the different brainstem motor neurons was linked to disparate VEGF expression levels in resilient and susceptible motor neurons throughout neurodegeneration. Our findings revealed a selective loss of motor neurons exclusively within the vulnerable nuclei. Furthermore, a significantly higher level of VEGF was detected in the more resistant motor neurons, the extraocular ones. We also examined whether TDP-43 dynamics in the brainstem motor neuron of SOD mice was altered. Our data suggests that the increased VEGF levels observed in extraocular motor neurons may potentially underlie their resistance during the neurodegenerative processes in ALS in a TDP-43-independent manner. Our work might help to better understand the underlying mechanisms of selective vulnerability of motor neurons in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Tronco Encefálico , Neurônios Motores , Superóxido Dismutase-1 , Fator A de Crescimento do Endotélio Vascular , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
3.
Ann Neurol ; 93(5): 881-892, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36627836

RESUMO

OBJECTIVE: The objective of this study was to use a novel combined pharmacoepidemiologic and amyotrophic lateral sclerosis (ALS) mouse model approach to identify potential motor neuron protective medications. METHODS: We constructed a large, population-based case-control study to investigate motor neuron disease (MND) among US Medicare beneficiaries aged 66 to 90 in 2009. We included 1,128 incident MND cases and 56,400 age, sex, race, and ethnicity matched controls. We calculated MND relative risk for >1,000 active ingredients represented in Part D (pharmacy) claims in 2006 to 2007 (>1 year before diagnosis/reference). We then applied a comprehensive screening approach to select medications for testing in SOD1G93A mice: sulfasalazine, telmisartan, and lovastatin. We treated mice with the human dose equivalent of the medication or vehicle via subcutaneous osmotic pump before onset of weakness. We then assessed weight, gait, and survival. In additional mice, we conducted histological studies. RESULTS: We observed previously established medical associations for MND and an inverse dose-response association between lovastatin and MND, with 28% reduced risk at 40 mg/day. In SOD1G93A mouse studies, sulfasalazine and telmisartan conferred no benefit, whereas lovastatin treatment delayed onset and prolonged survival. Lovastatin treated mice also had less microgliosis, misfolded SOD1, and spinal motor neuron loss in the ventral horn. INTERPRETATION: Lovastatin reduced the risk of ALS in humans, which was confirmed in an ALS mouse model by delayed symptom onset, prolonged survival, and preservation of motor neurons. Although further studies to understand the mechanism are required, lovastatin may represent a potential neuroprotective therapy for patients with ALS. These data demonstrate the utility of a combined pharmacoepidemiologic and mouse model approach. ANN NEUROL 2023;93:881-892.


Assuntos
Esclerose Lateral Amiotrófica , Doença dos Neurônios Motores , Idoso , Estados Unidos , Humanos , Camundongos , Animais , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Superóxido Dismutase-1 , Sulfassalazina/uso terapêutico , Estudos de Casos e Controles , Telmisartan/uso terapêutico , Medula Espinal/patologia , Camundongos Transgênicos , Superóxido Dismutase/uso terapêutico , Medicare , Modelos Animais de Doenças
4.
Photodiagnosis Photodyn Ther ; 41: 103185, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36414152

RESUMO

BACKGROUND: Antimicrobial Photodynamic Therapy (aPDT) is a treatment based on the interaction between a photosensitizer (PS), oxygen and a light source, resulting in the production of reactive oxygen species (ROS). There are two main types of reactions that can be triggered by this interaction: type I reaction, which can result in the production of hydrogen peroxide, superoxide anion and hydroxyl radical, and type II reaction, which is the Photodynamic Reaction, which results in singlet oxygen production. Antioxidant enzymes (e.g., catalase and superoxide dismutase) are agents that help prevent the damage caused by ROS and, consequently, reduce the effectiveness of aPDT. The aim of this study was to evaluate a possible synergism of the combined inhibition therapy of the enzyme Cu/Zn-Superoxide dismutase (SOD) and the methylene blue- and curcumin-mediated aPDT against Escherichia coli ATCC 25922, in suspension and biofilm. METHODS: Kinetic assay of antimicrobial activity of diethydithiocarbamate (DDC) and Minimum Bactericidal Concentration (MIC) of DDC were performed to evaluate the behavior of the compound on bacterial suspension. Inhibition times of Cu/Zn-SOD, as well as DDC concentration, were evaluated via bacterial susceptibility to combined therapy in suspension and biofilm. RESULTS: DDC did not present MIC at the evaluated concentrations. The inhibition time and Cu/Zn-SOD concentration with the highest bacterial reductions were 30 minutes and 1.2 µg/mL, respectively. Synergism occurred between DDC and MB-mediated aPDT, but not with CUR-mediated aPDT. CONCLUSIONS: The synergism between Cu/Zn-SOD inhibition and aPDT has been confirmed, opening up a new field of study full of possibilities.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Escherichia coli , Superóxido Dismutase-1 , Espécies Reativas de Oxigênio , Superóxido Dismutase , Zinco , Biofilmes
5.
Sci Rep ; 12(1): 17010, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220871

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder associated with the loss of cortical and spinal motor neurons (MNs) and muscle degeneration (Kiernan et al. in Lancet 377:942-955, 2011). In the preclinical setting, functional tests that can detect early changes in motor function in rodent models of ALS are critical to understanding the etiology of the disease and treatment development. Here, we established a string-pulling paradigm that can detect forelimb and hindlimb motor deficits in the SOD1 mouse model of ALS earlier than traditional motor performance tasks. Additionally, our findings indicate that early loss of forelimb and hindlimb function is correlated with cortical and spinal MN loss, respectively. This task is not only ecological, low-cost, efficient, and non-onerous, it also requires little animal handling and reduces the stress placed on the animal. It has long been a concern in the field that the SOD1 mouse does not display forelimb motor deficits and does not give researchers a complete picture of the disease. Here, we provide evidence that the SOD1 model does in fact develop early forelimb motor deficits due to the task's ability to assess fine-motor function, reconciling this model with the various clinical presentation of ALS. Taken together, the string-pulling paradigm may provide novel insights into the pathogenesis of ALS, offer nuanced evaluation of prospective treatments, and has high translational potential to the clinic.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Membro Anterior , Membro Posterior/patologia , Camundongos , Camundongos Transgênicos , Superóxido Dismutase/fisiologia , Superóxido Dismutase-1/genética
6.
Sci Rep ; 12(1): 3922, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273283

RESUMO

Loss-of-function mutations in parkin is associated with onset of juvenile Parkinson's disease (PD). Resveratrol is a polyphenolic stilbene with neuroprotective activity. Here, we evaluated the rescue action of resveratrol in parkin mutant D. melanogaster. The control flies (w1118) received diet-containing 2% ethanol (vehicle), while the PD flies received diets-containing resveratrol (15, 30 and 60 mg/kg diet) for 21 days to assess survival rate. Consequently, similar treatments were carried out for 10 days to evaluate locomotor activity, oxidative stress and antioxidant markers. We also determined mRNA levels of Superoxide dismutase 1 (Sod1, an antioxidant gene) and ple, which encodes tyrosine hydroxylase, the rate-limiting step in dopamine synthesis. Our data showed that resveratrol improved survival rate and climbing activity of PD flies compared to untreated PD flies. Additionally, resveratrol protected against decreased activities of acetylcholinesterase and catalase and levels of non-protein thiols and total thiols displayed by PD flies. Moreover, resveratrol mitigated against parkin mutant-induced accumulations of hydrogen peroxide, nitric oxide and malondialdehyde. Resveratrol attenuated downregulation of ple and Sod1 and reduction in mitochondrial fluorescence intensity displayed by PD flies. Overall, resveratrol alleviated oxidative stress and locomotor deficit associated with parkin loss-of-function mutation and therefore might be useful for the management of PD.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Estresse Oxidativo , Resveratrol/farmacologia , Compostos de Sulfidrila , Superóxido Dismutase-1 , Ubiquitina-Proteína Ligases/genética
7.
Toxicol In Vitro ; 69: 104969, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32805373

RESUMO

CuO nanoparticles (CuO-NPs) toxicity in organisms is contributed mainly through the copper uptake by both the ionic and nanoparticle form. However, the relative uptake ratio and bioavailability of the two different forms is not well known due to a lack of sensitive and effective assessment systems. We developed a series of both copper resistant and hyper sensitive Saccharomyces cerevisiae mutants to investigate and compare the effects of CuO-NPs and dissolved copper (CuCl2), on the eukaryote with the purpose of quantitating the relative contributions of nanoparticles and dissolved species for Cu uptake. We observed the toxicity of 10 mM CuO-NPs for copper sensitive strains is equal to that of 0.5 mM CuCl2 and the main toxic effect is most likely generated from oxidative stress through reactive oxygen species (ROS) production. About 95% CuO-NPs exist in nanoparticle form under neutral environmental conditions. Assessing the cellular metal content of wild type and copper transporter 1(CTR1) knock out cells showed that endocytosis is the major absorption style for CuO-NPs. This study also found a similar toxicity of Ag for both 10 mM Ag-NPs and 0.2 mM AgNO3 in the copper super sensitive strains. Our study revealed the absorption mechanism of soluble metal based nanomaterials CuO-NPs and Ag-NPs as well as provided a sensitive and delicate system to precisely evaluate the toxicity and stability of nanoparticles.


Assuntos
Cobre/toxicidade , Nanopartículas/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Testes de Toxicidade/métodos , Ceruloplasmina/metabolismo , Mutação , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Prata/toxicidade , Nitrato de Prata/toxicidade , Superóxido Dismutase-1/metabolismo
8.
Muscle Nerve ; 62(2): 187-191, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32134532

RESUMO

Genetic, epigenetic, and environmental factors are relevant in the causation of amyotrophic lateral sclerosis (ALS) in a multistep cascade. We suggest that exposure to environmental pollutants in early life is one such factor. ALS was first described in the 19th century in the context of the Industrial Revolution that began more than 50 years earlier. The rising incidence of ALS thereafter correlates with increasing longevity, but this is an incomplete association. We suggest that increasing exposure to environmental pollutants due to industrial activity, acting over a lifetime, is also important. The combination of genetic mutations and pollutant exposure, with increased life expectancy, may account for the apparent variations in incidence of the disease in different countries and continents and even regionally within a given country. This hypothesis is testable by focused epidemiological studies, evaluating early and lifelong industrial pollutant exposure of differing types, within the Bradford Hill framework.


Assuntos
Esclerose Lateral Amiotrófica/epidemiologia , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais , Interação Gene-Ambiente , Desenvolvimento Industrial/estatística & dados numéricos , Expectativa de Vida , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/história , Proteína C9orf72/genética , Causalidade , Proteínas de Ligação a DNA/genética , Exposição Ambiental/história , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Incidência , Desenvolvimento Industrial/história , Mutação , Superóxido Dismutase-1/genética
9.
Biomolecules ; 9(12)2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817166

RESUMO

Superoxide dismutase (SOD) is the primary enzyme of the cellular antioxidant defense cascade. Misfolding, concomitant oligomerization, and higher order aggregation of human cytosolic SOD are linked to amyotrophic lateral sclerosis (ALS). Although, with two metal ion cofactors SOD1 is extremely robust, the de-metallated apo form is intrinsically disordered. Since the rise of oxygen-based metabolism and antioxidant defense systems are evolutionary coupled, SOD is an interesting protein with a deep evolutionary history. We deployed statistical analysis of sequence space to decode evolutionarily co-varying residues in this protein. These were validated by applying graph theoretical modelling to understand the impact of the presence of metal ion co-factors in dictating the disordered (apo) to hidden disordered (wild-type SOD1) transition. Contact maps were generated for different variants, and the selected significant residues were mapped on separate structure networks. Sequence space analysis coupled with structure networks helped us to map the evolutionarily coupled co-varying patches in the SOD1 and its metal-depleted variants. In addition, using structure network analysis, the residues with a major impact on the internal dynamics of the protein structure were investigated. Our results reveal that the bulk of these evolutionarily co-varying residues are localized in the loop regions and positioned differentially depending upon the metal residence and concomitant steric restrictions of the loops.


Assuntos
Análise de Sequência de Proteína/métodos , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética , Evolução Molecular , Humanos , Cadeias de Markov , Modelos Moleculares , Mutação , Conformação Proteica , Dobramento de Proteína
10.
ACS Appl Mater Interfaces ; 11(27): 23909-23918, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31252451

RESUMO

Multifunctional nanoparticles that carry chemotherapeutic agents can be innovative anticancer therapeutic options owing to their tumor-targeting ability and high drug-loading capacity. However, the nonspecific release of toxic DNA-intercalating anticancer drugs from the nanoparticles has significant side effects on healthy cells surrounding the tumors. Herein, we report a tumor homing reactive oxygen species nanoparticle (THoR-NP) platform that is highly effective and selective for ablating malignant tumors. Sodium nitroprusside (SNP) and diethyldithiocarbamate (DDC) were selected as an exogenous reactive oxygen species (ROS) generator and a superoxide dismutase 1 inhibitor, respectively. DDC-loaded THoR-NP, in combination with SNP treatment, eliminated multiple cancer cell lines effectively by the generation of peroxynitrite in the cells (>95% cell death), as compared to control drug treatments of the same concentration of DDC or SNP alone (0% cell death). Moreover, the magnetic core (ZnFe2O4) of the THoR-NP can specifically ablate tumor cells (breast cancer cells) via magnetic hyperthermia, in conjunction with DDC, even in the absence of any exogenous RS supplements. Finally, by incorporating iRGD peptide moieties in the THoR-NP, integrin-enriched cancer cells (malignant tumors, MDA-MB-231) were effectively and selectively killed, as opposed to nonmetastatic tumors (MCF-7), as confirmed in a mouse xenograft model. Hence, our strategy of using nanoparticles embedded with ROS-scavenger-inhibitor with an exogenous ROS supplement is highly selective and effective cancer therapy.


Assuntos
Ditiocarb , Nanopartículas , Neoplasias Experimentais , Nitroprussiato , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1 , Animais , Ditiocarb/química , Ditiocarb/farmacologia , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/economia , Nanopartículas/uso terapêutico , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Nitroprussiato/química , Nitroprussiato/farmacologia , Superóxido Dismutase-1/química , Superóxido Dismutase-1/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Phys Chem B ; 123(9): 1920-1930, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30753785

RESUMO

Using NMR and Monte Carlo (MC) methods, we investigate the stability and dynamics of superoxide dismutase 1 (SOD1) in homogeneous crowding environments, where either bovine pancreatic trypsin inhibitor (BPTI) or the B1 domain of streptococcal protein G (PGB1) serves as a crowding agent. By NMR, we show that both crowders, and especially BPTI, cause a drastic loss in the overall stability of SOD1 in its apo monomeric form. Additionally, we determine chemical shift perturbations indicating that SOD1 interacts with the crowder proteins in a residue-specific manner that further depends on the identity of the crowding protein. Furthermore, the specificity of SOD1-crowder interactions is reciprocal: chemical shift perturbations on BPTI and PGB1 identify regions that interact preferentially with SOD1. By MC simulations, we investigate the local unfolding of SOD1 in the absence and presence of the crowders. We find that the crowders primarily interact with the long flexible loops of the folded SOD1 monomer. The basic mechanisms by which the SOD1 ß-barrel core unfolds remain unchanged when adding the crowders. In particular, both with and without the crowders, the second ß-sheet of the barrel is more dynamic and unfolding-prone than the first. Notably, the MC simulations (exploring the early stages of SOD1 unfolding) and the NMR experiments (under equilibrium conditions) identify largely the same set of PGB1 and BPTI residues as prone to form SOD1 contacts. Thus, contacts stabilizing the unfolded state of SOD1 in many cases appear to form early in the unfolding reaction.


Assuntos
Aprotinina/metabolismo , Proteínas de Bactérias/metabolismo , Desdobramento de Proteína , Superóxido Dismutase-1/metabolismo , Animais , Aprotinina/química , Proteínas de Bactérias/química , Escherichia coli/genética , Humanos , Método de Monte Carlo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Streptococcus/química , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética
12.
J Am Chem Soc ; 140(48): 16570-16579, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30359015

RESUMO

A conspicuous feature of the amyotrophic lateral sclerosis (ALS)-associated protein SOD1 is that its maturation into a functional enzyme relies on local folding of two disordered loops into a catalytic subdomain. To drive the disorder-to-order transition, the protein employs a single Zn2+ ion. The question is then if the entropic penalty of maintaining such disordered loops in the immature apoSOD1 monomer is large enough to explain its unusually low stability, slow folding, and pathological aggregation in ALS. To find out, we determined the effects of systematically altering the SOD1-loop lengths by protein redesign. The results show that the loops destabilize the apoSOD1 monomer by ∼3 kcal/mol, rendering the protein marginally stable and accounting for its aggregation behavior. Yet the effect on the global folding kinetics remains much smaller with a transition-state destabilization of <1 kcal/mol. Notably, this 1/3 transition-state to folded-state stability ratio provides a clear-cut example of the enigmatic disagreement between the Leffler α value from loop-length alterations (typically 1/3) and the "standard" reaction coordinates based on solvent perturbations (typically >2/3). Reconciling the issue, we demonstrate that the disagreement disappears when accounting for the progressive loop shortening that occurs along the folding pathway. The approach assumes a consistent Flory loop entropy scaling factor of c = 1.48 for both equilibrium and kinetic data and has the added benefit of verifying the tertiary interactions of the folding nucleus as determined by phi-value analysis. Thus, SOD1 not only represents a case where evolution of key catalytic function has come with the drawback of a destabilized apo state but also stands out as a well-suited model system for exploring the physicochemical details of protein self-organization.


Assuntos
Superóxido Dismutase-1/química , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Entropia , Humanos , Cinética , Mutação , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Superóxido Dismutase-1/genética
13.
J Comput Aided Mol Des ; 32(12): 1347-1361, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30368622

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that has been associated with mutations in metalloenzyme superoxide dismutase (SOD1) causing protein structural destabilization and aggregation. However, the mechanistic action and the cure for the disease still remain obscure. Herein, we initially studied the conformational preferences of SOD1 protein structures upon substitution of Ala at Gly93 in comparison with that of wild type. Our results corroborated with the previous experimental studies on the aggregation and the destabilizing activity of mutant SOD1 protein G93A. On the therapeutic point of view, we computationally analyzed the influence of resveratrol, a natural polyphenol widely found in red wine on mutant SOD1 relative to wild type, using molecular docking studies. Further, FMO calculations were performed, using GAMESS to study the pair residual interaction on the wild type and mutant complex systems. Consequently, the resveratrol showed greater interaction with mutant than the wild type. Subsequently, we evaluated the conformational preferences of wild type and mutant complex systems, where the protein conformational structures of mutant that were earlier found to lose their conformational stability was regained, upon binding with resveratrol. Similar trend of results were found on the 2-D free energy landscapes of both the wild type and mutant systems. Hence, the combined biophysical and quantum chemical studies in our study supported the results of previous experimental studies, thereby stipulating an action of resveratrol on mutant SOD1 and paving a way for the design of highly potent effective inhibitors against fALS affecting the mankind.


Assuntos
Resveratrol/química , Superóxido Dismutase-1/química , Humanos , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Conformação Proteica , Teoria Quântica , Superóxido Dismutase-1/genética , Termodinâmica
14.
FEBS Lett ; 592(10): 1725-1737, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29679384

RESUMO

Cu/Zn superoxide dismutase-1 (SOD1) mutations are causative for a subset of amyotrophic lateral sclerosis (ALS) cases. These mutations lead to structural instability, aggregation and ultimately motor neuron death. We have determined crystal structures of SOD1 in complex with a naphthalene-catechol-linked compound which binds with low micro-molar affinity to a site important for oxidative damage-induced aggregation. SOD1 Trp32 oxidation is indeed significantly inhibited by ligand binding. Our work shows how compound linking can be applied successfully to ligand interactions on the SOD1 surface to generate relatively good binding strength. The ligand, positioned in a region important for SOD1 fibrillation, offers the possibility that it, or a similar compound, could prevent the abnormal self-association that drives SOD1 toxicity in ALS.


Assuntos
Superóxido Dismutase-1/metabolismo , Sítios de Ligação , Catecóis/metabolismo , Cristalografia por Raios X , Dimerização , Humanos , Ligantes , Mutação , Naftalenos/metabolismo , Oxirredução , Ligação Proteica , Conformação Proteica , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética , Ressonância de Plasmônio de Superfície , Triptofano/metabolismo
15.
Am J Hum Biol ; 30(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28984395

RESUMO

OBJECTIVES: Life history theory predicts a trade-off between female investment in reproduction and somatic maintenance, which can result in accelerated senescence. Oxidative stress has been shown to be a causal physiological mechanism for accelerated aging and a possible contributor to this trade-off. We aimed to test the hypothesis for the existence of significant associations between measures of reproductive effort and the level of oxidative stress biomarkers in premenopausal and postmenopausal American women. METHODS: Serum samples and questionnaire data were collected from 63 premenopausal and postmenopausal women (mean age 53.4 years), controls in the Connecticut Thyroid Health Study, between May 2010 and December 2013. Samples were analyzed for levels of 8-OHdG and Cu/Zn-SOD using immunoassay method. RESULTS: Levels of oxidative damage (8-OHdG) but not oxidative defense (Cu/Zn-SOD) were negatively associated with parity and number of sons in premenopausal women (r = -0.52 for parity, r = -0.52 for number of sons, P < .01). Together, measures of reproductive effort, women's BMI, age, and menopausal status explained around 15% of variance in level of 8-OHdG. No association between reproductive effort characteristics and oxidative damage was found for postmenopausal women. CONCLUSIONS: We found no evidence of a trade-off between somatic maintenance as measured by 8-OHdG and reproductive effort in women from this American population. On the contrary, higher gravidity and parity in premenopausal women was associated with lower damage to cellular DNA caused by oxidative stress. These results highlight the importance of population variation and environmental conditions when testing the occurrence of life-history trade-offs.


Assuntos
Lactação/fisiologia , Estresse Oxidativo/fisiologia , Pós-Menopausa , Pré-Menopausa , Reprodução/fisiologia , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Idoso , Connecticut , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Gravidez , Superóxido Dismutase-1/metabolismo , Adulto Jovem
16.
Endocr J ; 65(1): 91-99, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29046499

RESUMO

Oxidative status is attributed to endothelial dysfunction and might be one of the key mechanisms of endothelial dysfunction in acromegaly. In this study, we aimed to investigate the effect of acromegaly on superoxide dismutase (SOD) and total antioxidant capacity (TAC) levels, and the possible influence of human manganese superoxide dismutase (MnSOD) polymorphism on these levels. 51 acromegaly patients and 57 age and sex matched healthy subjects were recruited to the study in Bezmialem Vakif University Hospital between 2011 and 2014. The median SOD and TAC levels were 42.7 (33-60) pg/mL and 1,313.7 (155-1,902) µM in acromegaly; and 46.3 (38-95) pg/mL and 1,607.3 (195-1,981) µM in healthy subjects (p < 0.001, p < 0.001). SOD levels were decreased in controlled and uncontrolled patients compared to healthy subjects (p = 0.05 and p = 0.002, respectively). Controlled and uncontrolled acromegaly displayed significantly decreased levels of TAC compared to healthy subjects (p < 0.05 and p < 0.001, respectively). SOD levels were not associated with MnSOD polymorphisms in acromegaly. In conclusion, this study showed that acromegaly was associated with decreased levels of SOD and TAC, and controlling the disease activity could not adequately improve these levels.


Assuntos
Acromegalia/sangue , Adenoma/fisiopatologia , Antioxidantes/metabolismo , Adenoma Hipofisário Secretor de Hormônio do Crescimento/fisiopatologia , Estresse Oxidativo , Superóxido Dismutase-1/sangue , Superóxido Dismutase/genética , Acromegalia/etiologia , Acromegalia/metabolismo , Acromegalia/prevenção & controle , Adenoma/diagnóstico por imagem , Adenoma/patologia , Adenoma/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Feminino , Estudos de Associação Genética , Adenoma Hipofisário Secretor de Hormônio do Crescimento/diagnóstico por imagem , Adenoma Hipofisário Secretor de Hormônio do Crescimento/patologia , Adenoma Hipofisário Secretor de Hormônio do Crescimento/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Hipófise/diagnóstico por imagem , Hipófise/patologia , Polimorfismo de Nucleotídeo Único , Indução de Remissão , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo , Carga Tumoral , Turquia
17.
Metallomics ; 9(2): 161-174, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28067393

RESUMO

Amyotrophic lateral sclerosis (ALS) is a motor neuron disease, which involves progressive motor neuron degeneration in the central nervous system (CNS). The G93A SOD1 mouse model simulates one of the most common causes of familial ALS through the overexpression of a mutated form of the human gene encoding copper/zinc superoxide dismutase (SOD1). Transition metals, particularly Cu and Zn, have been shown to behave abnormally in the disease context and have been hypothesized to contribute to and potentially trigger the disease. In this study, concentrations of Cu, Zn and Fe, as well as Cu isotope ratios were assessed in keystone tissues of ALS, including the brain, spinal cord, muscle and whole blood, from transgenic mutant SOD1G93A mice and non-transgenic controls. While no consistent Cu isotope signal was found to be related to the disease state, concentrations of Cu, Zn and Fe were significantly elevated in muscle tissue of the transgenic mice, even at pre-symptomatic time points. In brain and muscle tissue, in both animal groups, a time-dependent Cu isotope signal was observed. We hypothesize that the early and significant elevation in metal concentration in muscle tissue from SOD1 transgenic mice could facilitate the development of ALS, without affecting the overall signal from well-buffered CNS tissues. Ageing may be recorded isotopically as a shift from a neonatal Cu pool as inherited from the mother, through dietary Cu and recycling processes.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Radioisótopos de Cobre/metabolismo , Modelos Animais de Doenças , Metais/metabolismo , Superóxido Dismutase-1/fisiologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Radioisótopos de Cobre/análise , Feminino , Humanos , Estudos Longitudinais , Metais/análise , Camundongos , Camundongos Transgênicos , Mutação
18.
Respir Physiol Neurobiol ; 226: 81-6, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26724605

RESUMO

Integrated electrical activity in the phrenic nerve is commonly used to assess within-animal changes in phrenic motor output. Because of concerns regarding the consistency of nerve recordings, activity is most often expressed as a percent change from baseline values. However, absolute values of nerve activity are necessary to assess the impact of neural injury or disease on phrenic motor output. To date, no systematic evaluations of the repeatability/reliability have been made among animals when phrenic recordings are performed by an experienced investigator using standardized methods. We performed a meta-analysis of studies reporting integrated phrenic nerve activity in many rat groups by the same experienced investigator; comparisons were made during baseline and maximal chemoreceptor stimulation in 14 wild-type Harlan and 14 Taconic Sprague Dawley groups, and in 3 pre-symptomatic and 11 end-stage SOD1(G93A) Taconic rat groups (an ALS model). Meta-analysis results indicate: (1) consistent measurements of integrated phrenic activity in each sub-strain of wild-type rats; (2) with bilateral nerve recordings, left-to-right integrated phrenic activity ratios are ∼1.0; and (3) consistently reduced activity in end-stage SOD1(G93A) rats. Thus, with appropriate precautions, integrated phrenic nerve activity enables robust, quantitative comparisons among nerves or experimental groups, including differences caused by neuromuscular disease.


Assuntos
Nervo Frênico/fisiologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Células Quimiorreceptoras/fisiologia , Modelos Animais de Doenças , Humanos , Técnicas In Vitro , Masculino , Microeletrodos , Nervo Frênico/fisiopatologia , Ratos Sprague-Dawley , Ratos Transgênicos , Reflexo/fisiologia , Reprodutibilidade dos Testes , Respiração , Especificidade da Espécie , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
19.
Animal ; 9(1): 104-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25245143

RESUMO

Exercise has been shown to increase mRNA expression of a growing number of genes. The aim of this study was to assess if mRNA expression of the metabolism- and oxidative stress-related genes GLUT4 (glucose transporter 4), COX2 (cyclooxygenase 2), SOD1 (superoxide dismutase 1) and HSP70 (heat shock protein 70) in saliva changes following acute exercise stress in dogs. For this purpose, 12 avalanche dogs of the Italian Military Force Guardia di Finanza were monitored during simulation of a search for a buried person in an artificial avalanche area. Rectal temperature (RT) and saliva samples were collected the day before the trial (T0), immediately after the descent from a helicopter at the onset of a simulated avalanche search and rescue operation (T1), after the discovery of the buried person (T2) and 2 h later (T3). Expressions of GLUT4, SOD1, COX2 and HSP70 were measured by real-time PCR. The simulated avalanche search and rescue operation was shown to exert a significant effect on RT, as well as on the expression of all metabolism- and oxidative stress-related genes investigated, which peaked at T2. The observed expression patterns indicate an acute exercise stress-induced upregulation, as confirmed by the reductions in expression at T3. Moreover, our findings indicate that saliva is useful for assessing metabolism- and oxidative stress-related genes without the need for restraint, which could affect working dog performance.


Assuntos
Cães/fisiologia , Metabolismo Energético/fisiologia , Estresse Oxidativo/genética , Condicionamento Físico Animal/fisiologia , Saliva/metabolismo , Animais , Avalanche , Biomarcadores/análise , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Metabolismo Energético/genética , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Masculino , Militares , RNA Mensageiro/metabolismo , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Regulação para Cima
20.
J Negat Results Biomed ; 13: 14, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25103619

RESUMO

BACKGROUND: In vivo animal models of familial amyotrophic lateral sclerosis (fALS) are widely used to delineate the potential role that genetic mutations play in the neurodegenerative process. While these models are extensively used for establishing the safety and efficacy of putative therapeutics during pre-clinical development, effective clinical translation of pharmacological interventions has been largely unsuccessful. RESULTS: In this report we compare a recent cohort of G37R (line 29) mice generated from mating wild-type females with transgenic males obtained commercially to a previous set of offspring produced with transgenic male breeders from a colony established at a local collaborator's facility. Commercially derived progeny presented with a tightly clustered genomic signature for the mutant human superoxide dismutase1 transgene (hSOD1) locus, and exhibited a greater than two-fold reduction in the number of transgene copies present in the genome compared to offspring derived locally. Decrease in transgene levels corresponded with delayed ALS progression and a significant increase in overall lifespan (146%). CONCLUSIONS: These results highlight some key challenges inherent to the use of G37R (line 29) animals in pre-clinical studies for the development of ALS therapeutics. Without stringent assessment of mutant SOD1 copy number/protein levels, heterogeneity of transgene levels within cohorts may influence the behavioural and pathological presentation of disease and thus calls to question the validity of any detected therapeutic effects. Nuanced changes in mutant SOD1 copy number that currently remain unreported may undermine research endeavours, delay efforts for clinical translation, and compromise the rigor of animal studies by limiting reproducibility amongst research groups.


Assuntos
Esclerose Lateral Amiotrófica/genética , Superóxido Dismutase/genética , Animais , Estudos de Coortes , Feminino , Dosagem de Genes , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA