Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(41): 25700-25711, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989150

RESUMO

To generate antibodies with different effector functions, B cells undergo Immunoglobulin Heavy Chain (IgH) class switch recombination (CSR). The ligation step of CSR is usually mediated by the classical nonhomologous end-joining (cNHEJ) pathway. In cNHEJ-deficient cells, a remarkable ∼25% of CSR can be achieved by the alternative end-joining (Alt-EJ) pathway that preferentially uses microhomology (MH) at the junctions. While A-EJ-mediated repair of endonuclease-generated breaks requires DNA end resection, we show that CtIP-mediated DNA end resection is dispensable for A-EJ-mediated CSR using cNHEJ-deficient B cells. High-throughput sequencing analyses revealed that loss of ATM/ATR phosphorylation of CtIP at T855 or ATM kinase inhibition suppresses resection without altering the MH pattern of the A-EJ-mediated switch junctions. Moreover, we found that ATM kinase promotes Alt-EJ-mediated CSR by suppressing interchromosomal translocations independent of end resection. Finally, temporal analyses reveal that MHs are enriched in early internal deletions even in cNHEJ-proficient B cells. Thus, we propose that repetitive IgH switch regions represent favored substrates for MH-mediated end-joining contributing to the robustness and resection independence of A-EJ-mediated CSR.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA por Junção de Extremidades , Switching de Imunoglobulina , Cadeias Pesadas de Imunoglobulinas/genética , Motivos de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linfócitos B/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Camundongos , Fosforilação , Recombinação Genética
2.
Nat Immunol ; 19(9): 986-1000, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30127432

RESUMO

Gain-of-function mutations in the gene encoding the phosphatidylinositol-3-OH kinase catalytic subunit p110δ (PI3Kδ) result in a human primary immunodeficiency characterized by lymphoproliferation, respiratory infections and inefficient responses to vaccines. However, what promotes these immunological disturbances at the cellular and molecular level remains unknown. We generated a mouse model that recapitulated major features of this disease and used this model and patient samples to probe how hyperactive PI3Kδ fosters aberrant humoral immunity. We found that mutant PI3Kδ led to co-stimulatory receptor ICOS-independent increases in the abundance of follicular helper T cells (TFH cells) and germinal-center (GC) B cells, disorganized GCs and poor class-switched antigen-specific responses to immunization, associated with altered regulation of the transcription factor FOXO1 and pro-apoptotic and anti-apoptotic members of the BCL-2 family. Notably, aberrant responses were accompanied by increased reactivity to gut bacteria and a broad increase in autoantibodies that were dependent on stimulation by commensal microbes. Our findings suggest that proper regulation of PI3Kδ is critical for ensuring optimal host-protective humoral immunity despite tonic stimulation from the commensal microbiome.


Assuntos
Linfócitos B/fisiologia , Microbioma Gastrointestinal/imunologia , Centro Germinativo/fisiologia , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Linfócitos T Auxiliares-Indutores/fisiologia , Animais , Autoanticorpos/sangue , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases/genética , Modelos Animais de Doenças , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Imunidade Humoral/genética , Switching de Imunoglobulina/genética , Síndromes de Imunodeficiência/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
3.
Curr Allergy Asthma Rep ; 11(5): 352-60, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21792638

RESUMO

Human inherited antibody deficiency disorders are generally caused by mutations in genes involved in the pathways regulating B-cell class switch recombination; DNA damage repair; and B-cell development, differentiation, and survival. Sequencing a large set of candidate genes involved in these pathways appears to be a highly efficient way to identify novel mutations. Herein we review several high-throughput sequencing approaches as well as recent improvements in target gene enrichment technologies. Systematic improvement of enrichment and sequencing methods, along with refinement of the experimental process is necessary to develop a cost-effective high-throughput resequencing assay for a large cohort of patient samples. The Hyper-IgM/CVID chip is one example of a resequencing platform that may be used to identify known or novel mutations in patents with various types of inherited antibody deficiency.


Assuntos
Análise Mutacional de DNA/métodos , Síndromes de Imunodeficiência/genética , Técnicas Analíticas Microfluídicas/métodos , Linfócitos B/imunologia , Análise Mutacional de DNA/economia , Humanos , Switching de Imunoglobulina , Síndromes de Imunodeficiência/imunologia , Técnicas Analíticas Microfluídicas/economia
4.
J Vis Exp ; (42)2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20736917

RESUMO

Humoral immunity is the branch of the immune system maintained by B cells and mediated through the secretion of antibodies. Upon B cell activation, the immunoglobulin locus undergoes a series of genetic modifications to alter the binding capacity and effector function of secreted antibodies. This process is highlighted by a genomic recombination event known as class switch recombination (CSR) in which the default IgM antibody isotype is substituted for one of IgG, IgA, or IgE. Each isotype possesses distinct effector functions thereby making CSR crucial to the maintenance of immunity. Diversification of the immunoglobulin locus is mediated by the enzyme activation-induced cytidine deaminase (AID). A schematic video describing this process in detail is available online (http://video.med.utoronto.ca/videoprojects/immunology/aam.html). AID's activity and the CSR pathway are commonly studied in the assessment of B cell function and humoral immunity in mice. The protocol outlined in this report presents a method of B cell isolation from murine spleens and subsequent stimulation with bacterial lipopolysaccharide (LPS) to induce class switching to IgG3 (for other antibody isotypes see Table 1). In addition, the fluorescent cell staining dye Carboxyfluorescein succinimidyl ester (CFSE) is used to monitor cell division of stimulated cells, a process crucial to isotype switching. The regulation of AID and the mechanism by which CSR occurs are still unclear and thus in vitro class switch assays provide a reliable method for testing these processes in various mouse models. These assays have been previously used in the context of gene deficiency using knockout mice. Furthermore, in vitro switching of B cells can be preceded by viral transduction to modulate gene expression by RNA knockdown or transgene expression. The data from these types of experiments have impacted our understanding of AID activity, resolution of the CSR reaction, and antibody-mediated immunity in the mouse.


Assuntos
Linfócitos B/fisiologia , Switching de Imunoglobulina/genética , Isotipos de Imunoglobulinas/genética , Animais , Linfócitos B/imunologia , Citidina Desaminase/biossíntese , Citidina Desaminase/imunologia , Indução Enzimática , Switching de Imunoglobulina/imunologia , Isotipos de Imunoglobulinas/imunologia , Camundongos , Recombinação Genética/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA