Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.287
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 261: 116461, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38850737

RESUMO

Implantable devices are vital in healthcare, enabling continuous monitoring, early disease detection, informed decision-making, enhanced outcomes, cost reduction, and chronic condition management. These devices provide real-time data, allowing proactive healthcare interventions, and contribute to overall improvements in patient care and quality of life. The success of implantable devices relies on the careful selection of materials and manufacturing methods. Recent materials research and manufacturing advancements have yielded implantable devices with enhanced biocompatibility, reliability, and functionality, benefiting human healthcare. This paper provides a comprehensive overview of the latest developments in implantable medical devices, emphasizing the importance of material selection and manufacturing methods, including biocompatibility, self-healing capabilities, corrosion resistance, mechanical properties, and conductivity. It explores various manufacturing techniques such as microfabrication, 3D printing, laser micromachining, electrospinning, screen printing, inkjet printing, and nanofabrication. The paper also discusses challenges and limitations in the field, including biocompatibility concerns, privacy and data security issues, and regulatory hurdles for implantable devices.


Assuntos
Materiais Biocompatíveis , Técnicas Biossensoriais , Impressão Tridimensional , Próteses e Implantes , Humanos , Técnicas Biossensoriais/instrumentação , Materiais Biocompatíveis/química , Monitorização Fisiológica/instrumentação , Desenho de Equipamento
2.
Biosens Bioelectron ; 261: 116454, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38875866

RESUMO

Several organ-on-chip and cell-on-chip devices have been reported, however, their main drawback is that they are not interoperable (i.e., they have been fabricated with customized equipment, thus cannot be applied in other facilities, unless having the same setup), and require cell-culture facilities and benchtop instrumentation. As a consequence, results obtained with such devices do not generally comply with the principles of findability, accessibility, interoperability, and reusability (FAIR). To overcome such limitation, leveraging cost-effective 3D printing we developed a bioluminescent tissue on-a-chip device that can be easily implemented in any laboratory. The device enables continuous monitoring of cell co-cultures expressing different bioluminescent reporter proteins and, thanks to the implementation of new highly bioluminescent luciferases having high pH and thermal stability, can be monitored via smartphone camera. Another relevant feature is the possibility to insert the chip into a commercial 24-well plate for use with standard benchtop instrumentation. The suitability of this device for 3D cell-based biosensing for monitoring activation of target molecular pathways, i.e., the inflammatory pathway via nuclear factor kappa-B (NF-κB) activation, and general cytotoxicity is here reported showing similar analytical performance when compared to conventional 3D cell-based assays performed in 24-well plates.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Medições Luminescentes , Smartphone , Técnicas Biossensoriais/instrumentação , Smartphone/instrumentação , Humanos , Medições Luminescentes/instrumentação , Medições Luminescentes/economia , Desenho de Equipamento , Impressão Tridimensional/instrumentação , Luciferases/química , Luciferases/metabolismo , Luciferases/genética
3.
Molecules ; 29(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893328

RESUMO

Taste sensors with an allostery approach have been studied to detect non-charged bitter substances, such as xanthine derivatives, used in foods (e.g., caffeine) or pharmaceuticals (e.g., etofylline). In this study, the authors modified a taste sensor with 3-bromo-2,6-dihydroxybenzoic acid and used it in conjunction with sensory tests to assess the bitterness of non-charged pharmaceuticals with xanthine scaffolds (i.e., acefylline and doxofylline), as well as allopurinol, an analogue of hypoxanthine. The results show that the sensor was able to differentiate between different levels of sample bitterness. For instance, when assessing a 30 mM sample solution, the sensor response to acefylline was 34.24 mV, which corresponded to the highest level of bitterness (τ = 3.50), while the response to allopurinol was lowest at 2.72 mV, corresponding to relatively weaker bitterness (τ = 0.50). Additionally, this study extended the application of the sensor to detect pentoxifylline, an active pharmaceutical ingredient in pediatric medicines. These results underscore the taste sensor's value as an additional tool for early-stage assessment and prediction of bitterness in non-charged pharmaceuticals.


Assuntos
Alopurinol , Paladar , Xantina , Alopurinol/química , Humanos , Xantina/química , Técnicas Biossensoriais/métodos
4.
Anal Chem ; 96(25): 10467-10475, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38863336

RESUMO

"Signal-off" nanozyme sensing platforms are usually employed to detect analytes (e.g., ascorbic acid (AA) and alkaline phosphatase (ALP)), which are mostly based on oxidase (OXD) nanozymes. However, their drawbacks, like dissolved oxygen-dependent catalysis capability, relatively low enzyme activity, limited amount, and kind, may not favor sensing platforms' optimization. Meanwhile, with the need for sustainable development, a reusable "signal-off" sensing platform is essential for cutting down the cost of the assay, but it is rarely developed in previous studies. Magnetic peroxidase (POD) nanozymes potentially make up the deficiencies and become reusable and better "signal-off" sensing platforms. As a proof of concept, we first construct Fe3O4@polydopamine-supported Pt/Ru alloy nanoparticles (IOP@Pt/Ru) without stabilizers. IOP@Pt/Ru shows high POD activity with Vmax of 83.24 × 10-8 M·s-1 for 3,3',5,5'-Tetramethylbenzidine (TMB) oxidation. Meanwhile, its oxidation rate for TMB is slower than the reduction of oxidized TMB by reducers, favorable for a more significant detection signal. On the other hand, IOP@Pt/Ru possesses great magnet-responsive capability, making itself be recycled and reused for at least 15-round catalysis. When applying IOP@Pt/Ru for AA (ALP) detection, it performs better detectable adaptability, with a linear range of 0.01-0.2 mM (0.1-100 U/L) and a limit of detection of 0.01 mM (0.05 U/L), superior to most of OXD nanozyme-based ALP sensing platform. Finally, IOP@Pt/Ru's reusable assay was demonstrated in real blood samples for ALP assay, which has never been explored in previous studies. Overall, this study develops a reusable "signal-off" nanozyme sensing platform with superior assay capabilities than traditional OXD nanozymes, paves a new way to optimize nanozyme-based "signal-off" sensing platforms, and provides an idea for constructing inexpensive and sustainable sensing platforms.


Assuntos
Ligas , Peroxidase , Platina , Platina/química , Ligas/química , Peroxidase/química , Peroxidase/metabolismo , Benzidinas/química , Limite de Detecção , Oxirredução , Polímeros/química , Humanos , Catálise , Técnicas Biossensoriais/métodos , Ácido Ascórbico/análise , Ácido Ascórbico/química , Indóis
5.
ACS Appl Bio Mater ; 7(7): 4702-4709, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38910532

RESUMO

A label-free electrochemical immunosensor was developed for the rapid and sensitive detection of neuron-specific enolase (NSE). The electropolymerization of dopamine in conjunction with highly conductive carbon nanotubes offers a simple and quick platform for the direct anchoring of antibodies without the assistance of any coupling agent as well as a blocking agent. The developed immunosensor exhibited a wider detection range from 120 pM (9 ng mL-1) to 3 nM (200 ng mL-1) for NSE with a high sensitivity of 3.9 µA pM-1 cm-2 in 0.1 M phosphate-buffered saline (PBS) at physiological pH (7.4). Moreover, the short recognition time (15 min) for the antigen enabled the detection to be fast and less invasive. Additionally, the evaluation of a rate constant at various concentrations of NSE via feedback mode of scanning electrochemical microscopy (SECM) explained the profound effect of antigen concentration on the rate of flow of electrons. Therefore, the proposed immunosensor can be a promising tool for the early detection of small cell lung cancer in a very short period of time with consistent accuracy.


Assuntos
Materiais Biocompatíveis , Técnicas Biossensoriais , Indóis , Nanotubos de Carbono , Fosfopiruvato Hidratase , Polímeros , Nanotubos de Carbono/química , Fosfopiruvato Hidratase/imunologia , Fosfopiruvato Hidratase/metabolismo , Fosfopiruvato Hidratase/análise , Polímeros/química , Indóis/química , Humanos , Imunoensaio/métodos , Materiais Biocompatíveis/química , Teste de Materiais , Tamanho da Partícula , Técnicas Eletroquímicas
6.
Analyst ; 149(14): 3850-3856, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38855851

RESUMO

Aflatoxin B1 (AFB1), classified as a class I carcinogen, is a widespread mycotoxin that poses a serious threat to public health and economic development, and the food safety problems caused by AFB1 have aroused worldwide concern. The development of accurate and sensitive methods for the detection of AFB1 is significant for food safety monitoring. In this work, a sandwich-type photoelectrochemical (PEC) biosensor for AFB1 detection was constructed on the basis of an aptamer-antibody structure. A good photocurrent response was obtained due to the sensitization of In2S3 by Ru(bpy)32+. In addition, this sandwich-type sensor constructed by modification with the antibody, target detector, and aptamer layer by layer attenuated the migration hindering effect of photogenerated carriers caused by the double antibody structure. The aptamer and antibody synergistically recognized and captured the target analyte, resulting in more reliable PEC response signals. CdSe@CdS QDs-Apt were modified as a signal-off probe onto the sensor platform to quantitatively detect AFB1 with a "signal-off" response, which enhanced the sensitivity of the sensor. The PEC biosensor showed a linear response range from 10-12 to 10-6 g mL-1 with a detection limit of 0.023 pg mL-1, providing a feasible approach for the quantitative detection of AFB1 in food samples.


Assuntos
Aflatoxina B1 , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Limite de Detecção , Aflatoxina B1/análise , Aflatoxina B1/imunologia , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Pontos Quânticos/química , Contaminação de Alimentos/análise , Compostos de Cádmio/química , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química , Processos Fotoquímicos , Sulfetos/química , Compostos de Selênio/química , Compostos Organometálicos
7.
Sensors (Basel) ; 24(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38733009

RESUMO

Recent advancements in polymer-assisted layer-by-layer (LbL) fabrication have revolutionized the development of wearable sensors for health monitoring. LbL self-assembly has emerged as a powerful and versatile technique for creating conformal, flexible, and multi-functional films on various substrates, making it particularly suitable for fabricating wearable sensors. The incorporation of polymers, both natural and synthetic, has played a crucial role in enhancing the performance, stability, and biocompatibility of these sensors. This review provides a comprehensive overview of the principles of LbL self-assembly, the role of polymers in sensor fabrication, and the various types of LbL-fabricated wearable sensors for physical, chemical, and biological sensing. The applications of these sensors in continuous health monitoring, disease diagnosis, and management are discussed in detail, highlighting their potential to revolutionize personalized healthcare. Despite significant progress, challenges related to long-term stability, biocompatibility, data acquisition, and large-scale manufacturing are still to be addressed, providing insights into future research directions. With continued advancements in polymer-assisted LbL fabrication and related fields, wearable sensors are poised to improve the quality of life for individuals worldwide.


Assuntos
Técnicas Biossensoriais , Polímeros , Dispositivos Eletrônicos Vestíveis , Polímeros/química , Humanos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos
8.
Biosens Bioelectron ; 258: 116335, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710144

RESUMO

The detection of antibiotics is crucial for safeguarding the environment, ensuring food safety, and promoting human health. However, developing a rapid, convenient, low-cost, and sensitive method for antibiotic detection presents significant challenges. Herein, an aptamer-free biosensor was successfully constructed using upconversion nanoparticles (UCNPs) coated with silk fibroin (SF), based on Förster resonance energy transfer (FRET) and the charge-transfer effect, for detecting roxithromycin (RXM). A synergistic FRET efficiency was achieved by utilizing alizarin red and RXM complexes as energy acceptors, with UCNP as the energy donor, and immobilizing an ultrathin SF protein corona within 10 nm. The biosensor detects RXM in deionized water with high sensitivity primarily through monolayer adsorption, with a detection range of 1.0 nM-141.6 nM and a detection limit as low as 0.68 nM. The performance of this biosensor was compared with the ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) method for detecting antibiotics in river water separately and a strong correlation between the two methods was observed. The biosensor exhibited long-term stability in aqueous solutions (up to 60 d) with no attenuation of fluorescence intensity. Furthermore, the biosensor's applicability extended to the highly sensitive detection of other antibiotics, such as azithromycin. This study introduces a low-cost, eco-friendly, and highly sensitive method for antibiotic detection, with broad potential for future applications in environmental, healthcare, and food-related fields.


Assuntos
Antibacterianos , Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Limite de Detecção , Nanopartículas , Técnicas Biossensoriais/métodos , Antibacterianos/análise , Nanopartículas/química , Transferência Ressonante de Energia de Fluorescência/métodos , Roxitromicina/análise , Roxitromicina/química , Humanos , Poluentes Químicos da Água/análise , Fibroínas/química
9.
Biosens Bioelectron ; 258: 116352, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718635

RESUMO

The production of HbS - an abnormal hemoglobin (Hb) - in sickle cell disease (SCD) results in poorly deformable red blood cells (RBCs) that are prone to microcapillary occlusion, causing tissue ischemia and organ damage. Novel treatments, including gene therapy, may reduce SCD morbidity, but methods to functionally evaluate RBCs remain limited. Previously, we presented the microfluidic impedance red cell assay (MIRCA) for rapid assessment of RBC deformability, employing electrical impedance-based readout to measure RBC occlusion of progressively narrowing micropillar openings. We describe herein the design, development, validation, and clinical utility of the next-generation MIRCA assay, featuring enhanced portability, rapidity, and usability. It incorporates a miniaturized impedance analyzer and features a simplified wash-free operation that yields an occlusion index (OI) within 15 min as a new metric for RBC occlusion. We show a correlation between OI and percent fetal hemoglobin (%HbF), other laboratory biomarkers of RBC hemolysis, and SCD severity. To demonstrate the assay's versatility, we tested RBC samples from treatment-naïve SCD patients in Uganda that yielded OI levels similar to those from hydroxyurea (HU)-treated patients in the U.S., highlighting the role of %HbF in protecting against microcapillary occlusion independent of other pharmacological effects. The MIRCA assay could also identify a subset of HU-treated patients with high occlusion risks, suggesting that they may require treatment adjustments including a second-line therapy to improve their outcomes. This work demonstrates the potential of the MIRCA assay for accelerated evaluation of RBC health, function, and therapeutic effect in an ex vivo model of the microcapillary networks.


Assuntos
Anemia Falciforme , Técnicas Biossensoriais , Impedância Elétrica , Eritrócitos , Humanos , Anemia Falciforme/sangue , Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Deformação Eritrocítica , Técnicas Analíticas Microfluídicas/instrumentação , Hemólise , Dispositivos Lab-On-A-Chip
10.
Talanta ; 276: 126152, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718642

RESUMO

To enhance food safety, the need for swift and precise detection of B. licheniformis, a bacterium prevalent in various environments, including soil and food products, is paramount. This study presents an innovative and cost-effective bioassay designed to specifically identify the foodborne pathogen, B. licheniformis, utilizing a colorimetric signal approach. The biosensor, featuring a 3D-printed architecture, incorporates a casein-based liquid-proof gelatine film, selectively liquefying in response to the caseinolytic/proteolytic activity of external enzymes from the pathogen. As the sample liquefies, it progresses through a color layer, causing the migration of dye to an absorbent layer, resulting in a distinct positive signal. This bioassay exhibits exceptional sensitivity, detecting concentrations as low as 1 CFU/mL within a 9.3-h assay duration. Notably, this cost-efficient bioassay outperforms conventional methods in terms of efficacy and cost-effectiveness, offering a straightforward solution for promptly detecting B. licheniformis in food samples.


Assuntos
Bacillus licheniformis , Técnicas Biossensoriais , Microbiologia de Alimentos , Inocuidade dos Alimentos , Técnicas Biossensoriais/métodos , Microbiologia de Alimentos/métodos , Bacillus licheniformis/enzimologia , Colorimetria/métodos , Contaminação de Alimentos/análise
11.
Sensors (Basel) ; 24(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794056

RESUMO

Regional lung ventilation assessment is a critical tool for the early detection of lung diseases and postoperative evaluation. Biosensor-based impedance measurements, known for their non-invasive nature, among other benefits, have garnered significant attention compared to traditional detection methods that utilize pressure sensors. However, solely utilizing overall thoracic impedance fails to accurately capture changes in regional lung air volume. This study introduces an assessment method for lung ventilation that utilizes impedance data from the five lobes, develops a nonlinear model correlating regional impedance with lung air volume, and formulates an approach to identify regional ventilation obstructions based on impedance variations in affected areas. The electrode configuration for the five lung lobes was established through numerical simulations, revealing a power-function nonlinear relationship between regional impedance and air volume changes. An analysis of 389 pulmonary function tests refined the equations for calculating pulmonary function parameters, taking into account individual differences. Validation tests on 30 cases indicated maximum relative errors of 0.82% for FVC and 0.98% for FEV1, all within the 95% confidence intervals. The index for assessing regional ventilation impairment was corroborated by CT scans in 50 critical care cases, with 10 validation trials showing agreement with CT lesion localization results.


Assuntos
Impedância Elétrica , Pulmão , Ventilação Pulmonar , Testes de Função Respiratória , Humanos , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Pulmão/fisiopatologia , Testes de Função Respiratória/métodos , Ventilação Pulmonar/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Tomografia Computadorizada por Raios X/métodos , Técnicas Biossensoriais/métodos , Eletrodos
12.
Biosens Bioelectron ; 258: 116340, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718633

RESUMO

The escalating global incidence of infectious diseases caused by pathogenic bacteria, especially in developing countries, emphasises the urgent need for rapid and portable pathogen detection devices. This study introduces a sensitive and specific electrochemical biosensing platform utilising cost-effective electrodes fabricated by inkjet-printing gold and silver nanoparticles on a plastic substrate. The biosensor exploits the CRISPR/Cas12a system for detecting a specific DNA sequence selected from the genome of the target pathogen. Upon detection, the trans-activity of Cas12a/gRNA is triggered, leading to the cleavage of rationally designed single-strand DNA reporters (linear and hairpin) labelled with methylene blue (ssDNA-MB) and bound to the electrode surface. In principle, this sensing mechanism can be adapted to any bacterium by choosing a proper guide RNA to target a specific sequence of its DNA. The biosensor's performance was assessed for two representative pathogens (a Gram-negative, Escherichia coli, and a Gram-positive, Staphylococcus aureus), and results obtained with inkjet-printed gold electrodes were compared with those obtained by commercial screen-printed gold electrodes. Our results show that the use of inkjet-printed nanostructured gold electrodes, which provide a large surface area, in combination with the use of hairpin reporters containing a poly-T loop can increase the sensitivity of the assay corresponding to a signal variation of 86%. DNA targets amplified from various clinically isolated bacteria, have been tested and demonstrate the potential of the proposed platform for point-of-need applications.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Escherichia coli , Ouro , Nanopartículas Metálicas , Staphylococcus aureus , Técnicas Biossensoriais/instrumentação , Ouro/química , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/genética , Escherichia coli/isolamento & purificação , Escherichia coli/genética , Nanopartículas Metálicas/química , Prata/química , DNA Bacteriano/análise , DNA Bacteriano/genética , Técnicas Eletroquímicas/métodos , Humanos , Nanoestruturas/química , DNA de Cadeia Simples/química , Eletrodos , Impressão , Proteínas de Bactérias/genética , Endodesoxirribonucleases , Proteínas Associadas a CRISPR
13.
Nano Lett ; 24(20): 6069-6077, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739779

RESUMO

Nanoparticles (NPs) can be conjugated with diverse biomolecules and employed in biosensing to detect target analytes in biological samples. This proven concept was primarily used during the COVID-19 pandemic with gold-NP-based lateral flow assays (LFAs). Considering the gold price and its worldwide depletion, here we show that novel plasmonic NPs based on inexpensive metals, titanium nitride (TiN) and copper covered with a gold shell (Cu@Au), perform comparable to or even better than gold nanoparticles. After conjugation, these novel nanoparticles provided high figures of merit for LFA testing, such as high signals and specificity and robust naked-eye signal recognition. Since the main cost of Au NPs in commercial testing kits is the colloidal synthesis, our development with the Cu@Au and the laser-ablation-fabricated TiN NPs is exciting, offering potentially inexpensive plasmonic nanomaterials for various bioapplications. Moreover, our machine learning study showed that biodetection with TiN is more accurate than that with Au.


Assuntos
Cobre , Ouro , Nanopartículas Metálicas , Titânio , Nanopartículas Metálicas/química , Titânio/química , Ouro/química , Cobre/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/economia , Humanos , COVID-19/virologia , COVID-19/diagnóstico , Coloide de Ouro/química , SARS-CoV-2/isolamento & purificação
14.
Biosens Bioelectron ; 259: 116321, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749287

RESUMO

Milk fever is a metabolic disorder that predominantly affects dairy animals during the periparturient period and within four weeks of calving. Milk fever is primarily attributed to a decrease in the animal's serum Ca2+ levels. Clinical milk fever occurs when Ca2+ concentration drops below 1.5 mM (6 mg/dL). Without prompt intervention, clinical milk fever leads to noticeable physical symptoms and health complications including coma and fatality. Subclinical milk fever is characterized by Ca2+ levels between 1.5 and 2.12 mM (6-8.48 mg/dL). Approximately 50% of multiparous dairy cows suffer from subclinical milk fever during the transition to lactation. The economic impact of milk fever, both direct and indirect, is substantial, posing challenges for farmers. To address this issue, we developed a low-cost electrochemical sensor that can measure bovine serum calcium levels on-site, providing an opportunity for early detection of subclinical and clinical milk fever and early intervention. This calcium sensor is a scalable solid contact ion sensing platform that incorporates a polymeric calcium-selective membrane and ionic liquid-based reference membrane into laser-induced graphene (LIG) electrodes. Our sensing platform demonstrates a sensitivity close to the theoretical Nernstian value (29.6 mV/dec) with a limit of detection of 15.6 µM and selectivity against the species in bovine serum. Moreover, our sensor can detect Ca2+ in bovine serum with 91% recovery.


Assuntos
Técnicas Biossensoriais , Cálcio , Indústria de Laticínios , Técnicas Eletroquímicas , Animais , Bovinos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/economia , Feminino , Técnicas Eletroquímicas/economia , Técnicas Eletroquímicas/instrumentação , Cálcio/sangue , Indústria de Laticínios/instrumentação , Indústria de Laticínios/economia , Paresia Puerperal/diagnóstico , Paresia Puerperal/sangue , Desenho de Equipamento , Grafite/química , Limite de Detecção , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/sangue , Doenças dos Bovinos/economia
15.
Adv Healthc Mater ; 13(17): e2303923, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38573175

RESUMO

Smart biosensors attract significant interest due to real-time monitoring of user health status, where bioanalytical electronic devices designed to detect various activities and biomarkers in the human body have potential applications in physical sign monitoring and health care. Bioelectronics can be well integrated by output signals with wireless communication modules for transferring data to portable devices used as smart biosensors in performing real-time diagnosis and analysis. In this review, the scientific keys of biosensing devices and the current trends in the field of smart biosensors, (functional materials, technological approaches, sensing mechanisms, main roles, potential applications and challenges in health monitoring) will be summarized. Recent advances in the design and manufacturing of bioanalytical sensors with smarter capabilities and enhanced reliability indicate a forthcoming expansion of these smart devices from laboratory to clinical analysis. Therefore, a general description of functional materials and technological approaches used in bioelectronics will be presented after the sections of scientific keys to bioanalytical sensors. A careful introduction to the established systems of smart monitoring and prediction analysis using bioelectronics, regarding the integration of machine-learning-based basic algorithms, will be discussed. Afterward, applications and challenges in development using these smart bioelectronics in biological, clinical, and medical diagnostics will also be analyzed. Finally, the review will conclude with outlooks of smart biosensing devices assisted by machine learning algorithms, wireless communications, or smartphone-based systems on current trends and challenges for future works in wearable health monitoring.


Assuntos
Técnicas Biossensoriais , Humanos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/tendências , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Monitorização Fisiológica/tendências , Dispositivos Eletrônicos Vestíveis , Aprendizado de Máquina , Tecnologia sem Fio/instrumentação , Tecnologia sem Fio/tendências
16.
Angew Chem Int Ed Engl ; 63(27): e202403583, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682251

RESUMO

While levodopa (L-Dopa) is the primary treatment for alleviating Parkinson's disease (PD), its efficacy is hindered by challenges such as a short half-life and inconsistent plasma levels. As PD progresses, the rising need for increased and more frequent L-Dopa doses coupled with symptom fluctuations and dyskinesias underscores the urgency for improved comprehension of the interplay between L-Dopa levels and PD motor symptoms. Addressing this critical need, we present a decentralized testing method using a disposable biosensor strip and a universal slope (U-slope) calibration-free approach. This enables reliable, rapid, simple, and cost-effective decentralized L-Dopa measurements from capillary blood. A pilot study with PD persons demonstrates the ability to monitor real-time L-Dopa pharmacokinetics from fingerstick blood after oral L-Dopa-Carbidopa (C-Dopa) tablet administration. Correlating capillary blood L-Dopa levels with PD motor scores revealed a well-defined inverse correlation with temporal motor fluctuations. We compared the resulting dynamic capillary blood L-Dopa levels with plasma L-Dopa levels using the traditional but clinically impractical high-performance liquid chromatography technique. By providing timely feedback on a proper L-Dopa dosing regimen in a decentralized and rapid fashion, this new biosensing platform will facilitate tailored optimal L-Dopa dosing, towards improving symptom management and enhancing health-related quality of life.


Assuntos
Técnicas Biossensoriais , Levodopa , Doença de Parkinson , Levodopa/farmacocinética , Levodopa/uso terapêutico , Levodopa/sangue , Levodopa/química , Doença de Parkinson/tratamento farmacológico , Humanos , Antiparkinsonianos/uso terapêutico , Antiparkinsonianos/farmacocinética , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/sangue , Carbidopa/farmacocinética , Carbidopa/uso terapêutico , Carbidopa/administração & dosagem , Projetos Piloto , Masculino
17.
Biosens Bioelectron ; 257: 116284, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657379

RESUMO

Smart contact lenses (SCLs) have been considered as novel wearable devices for out-of-hospital and self-monitoring applications. They are capable of non-invasively and continuously monitoring physiological signals in the eyes, including vital biophysical (e.g., intraocular of pressure, temperature, and electrophysiological signal) and biochemical signals (e.g., pH, glucose, protein, nitrite, lactic acid, and ions). Recent progress mainly focuses on the rational design of wearable SCLs for physiological signal monitoring, while also facilitating the treatment of various ocular diseases. It covers contact lens materials, fabrication technologies, and integration methods. We also highlight and discuss a critical comparison of SCLs with electrical, microfluidic, and optical signal outputs in health monitoring. Their advantages and disadvantages could help researchers to make decisions when developing SCLs with desired properties for physiological signal monitoring. These unique capabilities make SCLs promising diagnostic and therapeutic tools. Despite the extensive research in SCLs, new technologies are still in their early stages of development and there are a few challenges to be addressed before these SCLs technologies can be successfully commercialized particularly in the form of rigorous clinical trials.


Assuntos
Técnicas Biossensoriais , Lentes de Contato , Dispositivos Eletrônicos Vestíveis , Humanos , Técnicas Biossensoriais/instrumentação , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Desenho de Equipamento
18.
Biosens Bioelectron ; 256: 116242, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631133

RESUMO

Psychiatric disorders are associated with serve disturbances in cognition, emotional control, and/or behavior regulation, yet few routine clinical tools are available for the real-time evaluation and early-stage diagnosis of mental health. Abnormal levels of relevant biomarkers may imply biological, neurological, and developmental dysfunctions of psychiatric patients. Exploring biosensors that can provide rapid, in-situ, and real-time monitoring of psychiatric biomarkers is therefore vital for prevention, diagnosis, treatment, and prognosis of mental disorders. Recently, psychiatric biosensors with high sensitivity, selectivity, and reproducibility have been widely developed, which are mainly based on electrochemical and optical sensing technologies. This review presented psychiatric disorders with high morbidity, disability, and mortality, followed by describing pathophysiology in a biomarker-implying manner. The latest biosensors developed for the detection of representative psychiatric biomarkers (e.g., cortisol, dopamine, and serotonin) were comprehensively summarized and compared in their sensitivities, sensing technologies, applicable biological platforms, and integrative readouts. These well-developed biosensors are promising for facilitating the clinical utility and commercialization of point-of-care diagnostics. It is anticipated that mental healthcare could be gradually improved in multiple perspectives, ranging from innovations in psychiatric biosensors in terms of biometric elements, transducing principles, and flexible readouts, to the construction of 'Big-Data' networks utilized for sharing intractable psychiatric indicators and cases.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Transtornos Mentais , Humanos , Biomarcadores/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Dopamina/análise , Técnicas Eletroquímicas/métodos , Transtornos Mentais/diagnóstico , Transtornos Mentais/fisiopatologia , Saúde Mental , Serotonina/análise , Serotonina/sangue , Serotonina/metabolismo
19.
Sensors (Basel) ; 24(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38676201

RESUMO

This paper presents an enhanced version of our previously developed bio-optical transceiver, presenting a significant advancement in nanosensor technology. Using self-assembled polymers, this nanodevice is capable of electron detection while maintaining biocompatibility, an essential feature for in vivo medical biosensors. This enhancement finds significance in the field of infectious disease control, particularly in the early detection of respiratory viruses, including high-threat pathogens such as SARS-CoV-2. The proposed system harnesses bioluminescence by converting electric signaling to visible blue light, effectively opening the path of linking nano-sized mechanisms to larger-scale systems, thereby pushing the boundaries of in vivo biomedical sensing. The performance evaluation of our technology is analytical and is based on the use of Markov chains, through which we assess the bit error probability. The calculated improvements indicate that this technology qualifies as a forerunner in terms of supporting the communication needs of smaller, safer, and more efficient manufactured sensor technologies for in vivo medical applications.


Assuntos
Técnicas Biossensoriais , COVID-19 , SARS-CoV-2 , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , SARS-CoV-2/isolamento & purificação , COVID-19/diagnóstico , COVID-19/virologia , Humanos , Desenho de Equipamento , Polímeros/química , Cadeias de Markov
20.
Food Chem ; 449: 139050, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581779

RESUMO

Ensuring the safety of animal-derived foods requires the reliable and swift identification of enrofloxacin residues to monitor the presence of antibiotics. In this regard, we synthesized, tuned, and investigated the optical properties of a bimetallic metal-organic framework (Ce/Zr-UiO 66). The investigation was facilitated by employing a polydopamine-coated pipette tip with high adsorption efficiency, serving as an immunoreactive carrier. Subsequently, an immunofunctionalized variant of Ce/Zr-UiO 66, referred to as Ce/Zr-UiO 66@ Bovine serum albumin-enrofloxacin, was developed as an optical probe for the rapid and sensitive identification of enrofloxacin across a variety of samples. The method can accurately detect enrofloxacin at concentrations as low as 0.12 ng/mL, with a determination time of under 15 min; furthermore, it demonstrates exceptional efficacy when applied to food, environmental, and clinical samples. The implementation of this methodology offers a valuable means for cost-effective, rapid, and on-site enrofloxacin determination.


Assuntos
Antibacterianos , Enrofloxacina , Contaminação de Alimentos , Estruturas Metalorgânicas , Leite , Enrofloxacina/análise , Estruturas Metalorgânicas/química , Animais , Leite/química , Contaminação de Alimentos/análise , Antibacterianos/análise , Bovinos , Imunoensaio/métodos , Imunoensaio/instrumentação , Imunoensaio/economia , Técnicas Biossensoriais/instrumentação , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA