Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 594
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893328

RESUMO

Taste sensors with an allostery approach have been studied to detect non-charged bitter substances, such as xanthine derivatives, used in foods (e.g., caffeine) or pharmaceuticals (e.g., etofylline). In this study, the authors modified a taste sensor with 3-bromo-2,6-dihydroxybenzoic acid and used it in conjunction with sensory tests to assess the bitterness of non-charged pharmaceuticals with xanthine scaffolds (i.e., acefylline and doxofylline), as well as allopurinol, an analogue of hypoxanthine. The results show that the sensor was able to differentiate between different levels of sample bitterness. For instance, when assessing a 30 mM sample solution, the sensor response to acefylline was 34.24 mV, which corresponded to the highest level of bitterness (τ = 3.50), while the response to allopurinol was lowest at 2.72 mV, corresponding to relatively weaker bitterness (τ = 0.50). Additionally, this study extended the application of the sensor to detect pentoxifylline, an active pharmaceutical ingredient in pediatric medicines. These results underscore the taste sensor's value as an additional tool for early-stage assessment and prediction of bitterness in non-charged pharmaceuticals.


Assuntos
Alopurinol , Paladar , Xantina , Alopurinol/química , Humanos , Xantina/química , Técnicas Biossensoriais/métodos
2.
Analyst ; 149(14): 3850-3856, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38855851

RESUMO

Aflatoxin B1 (AFB1), classified as a class I carcinogen, is a widespread mycotoxin that poses a serious threat to public health and economic development, and the food safety problems caused by AFB1 have aroused worldwide concern. The development of accurate and sensitive methods for the detection of AFB1 is significant for food safety monitoring. In this work, a sandwich-type photoelectrochemical (PEC) biosensor for AFB1 detection was constructed on the basis of an aptamer-antibody structure. A good photocurrent response was obtained due to the sensitization of In2S3 by Ru(bpy)32+. In addition, this sandwich-type sensor constructed by modification with the antibody, target detector, and aptamer layer by layer attenuated the migration hindering effect of photogenerated carriers caused by the double antibody structure. The aptamer and antibody synergistically recognized and captured the target analyte, resulting in more reliable PEC response signals. CdSe@CdS QDs-Apt were modified as a signal-off probe onto the sensor platform to quantitatively detect AFB1 with a "signal-off" response, which enhanced the sensitivity of the sensor. The PEC biosensor showed a linear response range from 10-12 to 10-6 g mL-1 with a detection limit of 0.023 pg mL-1, providing a feasible approach for the quantitative detection of AFB1 in food samples.


Assuntos
Aflatoxina B1 , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Limite de Detecção , Aflatoxina B1/análise , Aflatoxina B1/imunologia , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Pontos Quânticos/química , Contaminação de Alimentos/análise , Compostos de Cádmio/química , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química , Processos Fotoquímicos , Sulfetos/química , Compostos de Selênio/química , Compostos Organometálicos
3.
Anal Chem ; 96(25): 10467-10475, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38863336

RESUMO

"Signal-off" nanozyme sensing platforms are usually employed to detect analytes (e.g., ascorbic acid (AA) and alkaline phosphatase (ALP)), which are mostly based on oxidase (OXD) nanozymes. However, their drawbacks, like dissolved oxygen-dependent catalysis capability, relatively low enzyme activity, limited amount, and kind, may not favor sensing platforms' optimization. Meanwhile, with the need for sustainable development, a reusable "signal-off" sensing platform is essential for cutting down the cost of the assay, but it is rarely developed in previous studies. Magnetic peroxidase (POD) nanozymes potentially make up the deficiencies and become reusable and better "signal-off" sensing platforms. As a proof of concept, we first construct Fe3O4@polydopamine-supported Pt/Ru alloy nanoparticles (IOP@Pt/Ru) without stabilizers. IOP@Pt/Ru shows high POD activity with Vmax of 83.24 × 10-8 M·s-1 for 3,3',5,5'-Tetramethylbenzidine (TMB) oxidation. Meanwhile, its oxidation rate for TMB is slower than the reduction of oxidized TMB by reducers, favorable for a more significant detection signal. On the other hand, IOP@Pt/Ru possesses great magnet-responsive capability, making itself be recycled and reused for at least 15-round catalysis. When applying IOP@Pt/Ru for AA (ALP) detection, it performs better detectable adaptability, with a linear range of 0.01-0.2 mM (0.1-100 U/L) and a limit of detection of 0.01 mM (0.05 U/L), superior to most of OXD nanozyme-based ALP sensing platform. Finally, IOP@Pt/Ru's reusable assay was demonstrated in real blood samples for ALP assay, which has never been explored in previous studies. Overall, this study develops a reusable "signal-off" nanozyme sensing platform with superior assay capabilities than traditional OXD nanozymes, paves a new way to optimize nanozyme-based "signal-off" sensing platforms, and provides an idea for constructing inexpensive and sustainable sensing platforms.


Assuntos
Ligas , Peroxidase , Platina , Platina/química , Ligas/química , Peroxidase/química , Peroxidase/metabolismo , Benzidinas/química , Limite de Detecção , Oxirredução , Polímeros/química , Humanos , Catálise , Técnicas Biossensoriais/métodos , Ácido Ascórbico/análise , Ácido Ascórbico/química , Indóis
4.
Nanotechnology ; 35(42)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897177

RESUMO

Silicon in its nanoscale range offers a versatile scope in biomedical, photovoltaic, and solar cell applications. Due to its compatibility in integration with complex molecules owing to changes in charge density of as-fabricated Silicon Nanostructures (SiNSs) to realize label-free and real-time detection of certain biological and chemical species with certain biomolecules, it can be exploited as an indicator for ultra-sensitive and cost-effective biosensing applications in disease diagnosis. The morphological changes of SiNSs modified receptors (PNA, DNA, etc) have huge future scope in optimized sensitivity (due to conductance variations of SiNSs) of target biomolecules in health care applications. Further, due to the unique optical and electrical properties of SiNSs realized using the chemical etching technique, they can be used as an indicator for photovoltaic and solar cell applications. In this work, emphasis is given on different critical parameters that control the fabrication morphologies of SiNSs using metal-assisted chemical etching technique (MACE) and its corresponding fabrication mechanisms focusing on numerous applications in energy storage and health care domains. The evolution of MACE as a low-cost, easy process control, reproducibility, and convenient fabrication mechanism makes it a highly reliable-process friendly technique employed in photovoltaic, energy storage, and biomedical fields. Analysis of the experimental fabrication to obtain high aspect ratio SiNSs was carried out using iMAGEJ software to understand the role of surface-to-volume ratio in effective bacterial interfacing. Also, the role of silicon nanomaterials has been discussed as effective anti-bacterial surfaces due to the presence of silver investigated in the post-fabrication energy dispersive x-ray spectroscopy analysis using MACE.


Assuntos
Nanoestruturas , Silício , Silício/química , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Energia Solar , Humanos , Nanotecnologia/métodos , Nanotecnologia/economia
5.
Sensors (Basel) ; 24(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794056

RESUMO

Regional lung ventilation assessment is a critical tool for the early detection of lung diseases and postoperative evaluation. Biosensor-based impedance measurements, known for their non-invasive nature, among other benefits, have garnered significant attention compared to traditional detection methods that utilize pressure sensors. However, solely utilizing overall thoracic impedance fails to accurately capture changes in regional lung air volume. This study introduces an assessment method for lung ventilation that utilizes impedance data from the five lobes, develops a nonlinear model correlating regional impedance with lung air volume, and formulates an approach to identify regional ventilation obstructions based on impedance variations in affected areas. The electrode configuration for the five lung lobes was established through numerical simulations, revealing a power-function nonlinear relationship between regional impedance and air volume changes. An analysis of 389 pulmonary function tests refined the equations for calculating pulmonary function parameters, taking into account individual differences. Validation tests on 30 cases indicated maximum relative errors of 0.82% for FVC and 0.98% for FEV1, all within the 95% confidence intervals. The index for assessing regional ventilation impairment was corroborated by CT scans in 50 critical care cases, with 10 validation trials showing agreement with CT lesion localization results.


Assuntos
Impedância Elétrica , Pulmão , Ventilação Pulmonar , Testes de Função Respiratória , Humanos , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Pulmão/fisiopatologia , Testes de Função Respiratória/métodos , Ventilação Pulmonar/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Tomografia Computadorizada por Raios X/métodos , Técnicas Biossensoriais/métodos , Eletrodos
6.
Talanta ; 276: 126152, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718642

RESUMO

To enhance food safety, the need for swift and precise detection of B. licheniformis, a bacterium prevalent in various environments, including soil and food products, is paramount. This study presents an innovative and cost-effective bioassay designed to specifically identify the foodborne pathogen, B. licheniformis, utilizing a colorimetric signal approach. The biosensor, featuring a 3D-printed architecture, incorporates a casein-based liquid-proof gelatine film, selectively liquefying in response to the caseinolytic/proteolytic activity of external enzymes from the pathogen. As the sample liquefies, it progresses through a color layer, causing the migration of dye to an absorbent layer, resulting in a distinct positive signal. This bioassay exhibits exceptional sensitivity, detecting concentrations as low as 1 CFU/mL within a 9.3-h assay duration. Notably, this cost-efficient bioassay outperforms conventional methods in terms of efficacy and cost-effectiveness, offering a straightforward solution for promptly detecting B. licheniformis in food samples.


Assuntos
Bacillus licheniformis , Técnicas Biossensoriais , Microbiologia de Alimentos , Inocuidade dos Alimentos , Técnicas Biossensoriais/métodos , Microbiologia de Alimentos/métodos , Bacillus licheniformis/enzimologia , Colorimetria/métodos , Contaminação de Alimentos/análise
7.
Nano Lett ; 24(20): 6069-6077, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739779

RESUMO

Nanoparticles (NPs) can be conjugated with diverse biomolecules and employed in biosensing to detect target analytes in biological samples. This proven concept was primarily used during the COVID-19 pandemic with gold-NP-based lateral flow assays (LFAs). Considering the gold price and its worldwide depletion, here we show that novel plasmonic NPs based on inexpensive metals, titanium nitride (TiN) and copper covered with a gold shell (Cu@Au), perform comparable to or even better than gold nanoparticles. After conjugation, these novel nanoparticles provided high figures of merit for LFA testing, such as high signals and specificity and robust naked-eye signal recognition. Since the main cost of Au NPs in commercial testing kits is the colloidal synthesis, our development with the Cu@Au and the laser-ablation-fabricated TiN NPs is exciting, offering potentially inexpensive plasmonic nanomaterials for various bioapplications. Moreover, our machine learning study showed that biodetection with TiN is more accurate than that with Au.


Assuntos
Cobre , Ouro , Nanopartículas Metálicas , Titânio , Nanopartículas Metálicas/química , Titânio/química , Ouro/química , Cobre/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/economia , Humanos , COVID-19/virologia , COVID-19/diagnóstico , Coloide de Ouro/química , SARS-CoV-2/isolamento & purificação
8.
Sensors (Basel) ; 24(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38733009

RESUMO

Recent advancements in polymer-assisted layer-by-layer (LbL) fabrication have revolutionized the development of wearable sensors for health monitoring. LbL self-assembly has emerged as a powerful and versatile technique for creating conformal, flexible, and multi-functional films on various substrates, making it particularly suitable for fabricating wearable sensors. The incorporation of polymers, both natural and synthetic, has played a crucial role in enhancing the performance, stability, and biocompatibility of these sensors. This review provides a comprehensive overview of the principles of LbL self-assembly, the role of polymers in sensor fabrication, and the various types of LbL-fabricated wearable sensors for physical, chemical, and biological sensing. The applications of these sensors in continuous health monitoring, disease diagnosis, and management are discussed in detail, highlighting their potential to revolutionize personalized healthcare. Despite significant progress, challenges related to long-term stability, biocompatibility, data acquisition, and large-scale manufacturing are still to be addressed, providing insights into future research directions. With continued advancements in polymer-assisted LbL fabrication and related fields, wearable sensors are poised to improve the quality of life for individuals worldwide.


Assuntos
Técnicas Biossensoriais , Polímeros , Dispositivos Eletrônicos Vestíveis , Polímeros/química , Humanos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos
9.
Biosens Bioelectron ; 258: 116335, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710144

RESUMO

The detection of antibiotics is crucial for safeguarding the environment, ensuring food safety, and promoting human health. However, developing a rapid, convenient, low-cost, and sensitive method for antibiotic detection presents significant challenges. Herein, an aptamer-free biosensor was successfully constructed using upconversion nanoparticles (UCNPs) coated with silk fibroin (SF), based on Förster resonance energy transfer (FRET) and the charge-transfer effect, for detecting roxithromycin (RXM). A synergistic FRET efficiency was achieved by utilizing alizarin red and RXM complexes as energy acceptors, with UCNP as the energy donor, and immobilizing an ultrathin SF protein corona within 10 nm. The biosensor detects RXM in deionized water with high sensitivity primarily through monolayer adsorption, with a detection range of 1.0 nM-141.6 nM and a detection limit as low as 0.68 nM. The performance of this biosensor was compared with the ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) method for detecting antibiotics in river water separately and a strong correlation between the two methods was observed. The biosensor exhibited long-term stability in aqueous solutions (up to 60 d) with no attenuation of fluorescence intensity. Furthermore, the biosensor's applicability extended to the highly sensitive detection of other antibiotics, such as azithromycin. This study introduces a low-cost, eco-friendly, and highly sensitive method for antibiotic detection, with broad potential for future applications in environmental, healthcare, and food-related fields.


Assuntos
Antibacterianos , Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Limite de Detecção , Nanopartículas , Técnicas Biossensoriais/métodos , Antibacterianos/análise , Nanopartículas/química , Transferência Ressonante de Energia de Fluorescência/métodos , Roxitromicina/análise , Roxitromicina/química , Humanos , Poluentes Químicos da Água/análise , Fibroínas/química
10.
Adv Healthc Mater ; 13(17): e2303923, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38573175

RESUMO

Smart biosensors attract significant interest due to real-time monitoring of user health status, where bioanalytical electronic devices designed to detect various activities and biomarkers in the human body have potential applications in physical sign monitoring and health care. Bioelectronics can be well integrated by output signals with wireless communication modules for transferring data to portable devices used as smart biosensors in performing real-time diagnosis and analysis. In this review, the scientific keys of biosensing devices and the current trends in the field of smart biosensors, (functional materials, technological approaches, sensing mechanisms, main roles, potential applications and challenges in health monitoring) will be summarized. Recent advances in the design and manufacturing of bioanalytical sensors with smarter capabilities and enhanced reliability indicate a forthcoming expansion of these smart devices from laboratory to clinical analysis. Therefore, a general description of functional materials and technological approaches used in bioelectronics will be presented after the sections of scientific keys to bioanalytical sensors. A careful introduction to the established systems of smart monitoring and prediction analysis using bioelectronics, regarding the integration of machine-learning-based basic algorithms, will be discussed. Afterward, applications and challenges in development using these smart bioelectronics in biological, clinical, and medical diagnostics will also be analyzed. Finally, the review will conclude with outlooks of smart biosensing devices assisted by machine learning algorithms, wireless communications, or smartphone-based systems on current trends and challenges for future works in wearable health monitoring.


Assuntos
Técnicas Biossensoriais , Humanos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/tendências , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Monitorização Fisiológica/tendências , Dispositivos Eletrônicos Vestíveis , Aprendizado de Máquina , Tecnologia sem Fio/instrumentação , Tecnologia sem Fio/tendências
11.
Sensors (Basel) ; 24(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38676201

RESUMO

This paper presents an enhanced version of our previously developed bio-optical transceiver, presenting a significant advancement in nanosensor technology. Using self-assembled polymers, this nanodevice is capable of electron detection while maintaining biocompatibility, an essential feature for in vivo medical biosensors. This enhancement finds significance in the field of infectious disease control, particularly in the early detection of respiratory viruses, including high-threat pathogens such as SARS-CoV-2. The proposed system harnesses bioluminescence by converting electric signaling to visible blue light, effectively opening the path of linking nano-sized mechanisms to larger-scale systems, thereby pushing the boundaries of in vivo biomedical sensing. The performance evaluation of our technology is analytical and is based on the use of Markov chains, through which we assess the bit error probability. The calculated improvements indicate that this technology qualifies as a forerunner in terms of supporting the communication needs of smaller, safer, and more efficient manufactured sensor technologies for in vivo medical applications.


Assuntos
Técnicas Biossensoriais , COVID-19 , SARS-CoV-2 , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , SARS-CoV-2/isolamento & purificação , COVID-19/diagnóstico , COVID-19/virologia , Humanos , Desenho de Equipamento , Polímeros/química , Cadeias de Markov
12.
Biosens Bioelectron ; 256: 116242, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631133

RESUMO

Psychiatric disorders are associated with serve disturbances in cognition, emotional control, and/or behavior regulation, yet few routine clinical tools are available for the real-time evaluation and early-stage diagnosis of mental health. Abnormal levels of relevant biomarkers may imply biological, neurological, and developmental dysfunctions of psychiatric patients. Exploring biosensors that can provide rapid, in-situ, and real-time monitoring of psychiatric biomarkers is therefore vital for prevention, diagnosis, treatment, and prognosis of mental disorders. Recently, psychiatric biosensors with high sensitivity, selectivity, and reproducibility have been widely developed, which are mainly based on electrochemical and optical sensing technologies. This review presented psychiatric disorders with high morbidity, disability, and mortality, followed by describing pathophysiology in a biomarker-implying manner. The latest biosensors developed for the detection of representative psychiatric biomarkers (e.g., cortisol, dopamine, and serotonin) were comprehensively summarized and compared in their sensitivities, sensing technologies, applicable biological platforms, and integrative readouts. These well-developed biosensors are promising for facilitating the clinical utility and commercialization of point-of-care diagnostics. It is anticipated that mental healthcare could be gradually improved in multiple perspectives, ranging from innovations in psychiatric biosensors in terms of biometric elements, transducing principles, and flexible readouts, to the construction of 'Big-Data' networks utilized for sharing intractable psychiatric indicators and cases.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Transtornos Mentais , Humanos , Biomarcadores/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Dopamina/análise , Técnicas Eletroquímicas/métodos , Transtornos Mentais/diagnóstico , Transtornos Mentais/fisiopatologia , Saúde Mental , Serotonina/análise , Serotonina/sangue , Serotonina/metabolismo
13.
Biosens Bioelectron ; 254: 116232, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38520984

RESUMO

Healthcare system is undergoing a significant transformation from a traditional hospital-centered to an individual-centered one, as a result of escalating chronic diseases, ageing populations, and ever-increasing healthcare costs,. Wearable sensors have become widely used in health monitoring systems since the COVID-19 pandemic. They enable continuous measurement of important health indicators like body temperature, wrist pulse, respiration rate, and non-invasive bio fluids like saliva and perspiration. Over the last few decades, the development has mostly concentrated on electrochemical and electrical wearable sensors. However, due to the drawbacks of such sensors, such as electronic waste, electromagnetic interference, non-electrical security, and poor performance, researchers are exhibiting a strong interest in optical principle-based systems. Fiber-based optical wearables are among the most promising healthcare systems because of advancements in high-sensitivity, durable, multiplexed sensing, and simple integration with flexible materials to improve wearability and simplicity. We present an overview of recent developments in optical fiber-based wearable sensors, focusing on two mechanisms: wavelength interrogation and intensity modulation for the detection of body temperature, pulse rate, respiration rate, body movements, and biomedical noninvasive fluids, with a thorough examination of their benefits and drawbacks. This review also focuses on improving working performance and application techniques for healthcare systems, including the integration of nanomaterials and the usage of the Internet of Things (IoT) with signal processing. Finally, the review concludes with a discussion of the future possibilities and problems for optical fiber-based wearables.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Técnicas Biossensoriais/métodos , Fibras Ópticas , Pandemias , Monitorização Fisiológica/métodos
14.
Adv Mater ; 36(21): e2312985, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373270

RESUMO

Invasive fungal infections pose a significant public health threat. The lack of precise and timely diagnosis is a primary factor contributing to the significant increase in patient mortality rates. Here, an interface-modulated biosensor utilizing an optical fiber for quantitative analysis of fungal biomarkers at the early stage of point-of-care testing (POCT), is reported. By integrating surface refractive index (RI) modulation and plasmon enhancement, the sensor to achieve high sensitivity in a directional response to the target analytes, is successfully optimized. As a result, a compact fiber-optic sensor with rapid response time, cost-effectiveness, exceptional sensitivity, stability, and specificity, is developed. This sensor can successfully identify the biomarkers of specific pathogens from blood or other tissue specimens in animal models. It quantifies clinical blood samples with precision and effectively discriminates between negative and positive cases, thereby providing timely alerts to potential patients. It significantly reduces the detection time of fungal infection to only 30 min. Additionally, this approach exhibits remarkable stability and achieves a limit of detection (LOD) three orders of magnitude lower than existing methods. It overcomes the limitations of existing detection methods, including a high rate of misdiagnosis, prolonged detection time, elevated costs, and the requirement for stringent laboratory conditions.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Fibras Ópticas , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Biomarcadores/análise , Biomarcadores/sangue , Humanos , Animais , Fungos , Limite de Detecção , Tecnologia de Fibra Óptica , Micoses/diagnóstico , Testes Imediatos , Camundongos
15.
Biosens Bioelectron ; 252: 116135, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387230

RESUMO

MicroRNAs are small single-stranded RNA molecules associated with gene expression and immune response, suggesting their potential as biomarkers for health monitoring. Herein, we designed a novel upconversion-based multimode lateral flow assay (LFA) system to detect microRNAs in body fluids by simultaneously producing three unique signals within a detection strip. The core-shell Au-DTNB@Ag nanoparticles act as both the Raman reporters and acceptors, quenching fluorescence from upconversion nanoparticles (UCNPs, NaYF4: Yb3+, Er3+) via the Förster resonance energy transfer mechanism. Using microRNA-21 as a representative analyte, the LFA system offers remarkable detection range from 2 nM to 1 fM, comparable to outcomes from signal amplification methods, due to the successful single-layer self-assembly of UCNPs on the NC membrane, which greatly enhances both the convenience and sensitivity of the LFA technique. Additionally, our proprietary fluorescence-Raman detection platform simplifies result acquisition by reducing procedural intricacies. The biosensor, when evaluated with diverse bodily fluids, showed remarkable selectivity and sustained stability. Importantly, our LFA biosensor effectively identified periodontitis and lung cancer patients from healthy subjects in genuine samples, indicating significant potential for disease prediction, early diagnosis, and progression tracking. This system holds promise as a multifunctional tool for various biomarker assays.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Nanopartículas , Humanos , Técnicas Biossensoriais/métodos , Prata , Transferência Ressonante de Energia de Fluorescência , Biomarcadores
16.
ACS Nano ; 18(3): 1757-1777, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38189684

RESUMO

Many systems have been designed for the detection of SARS-CoV-2, which is the virus that causes COVID-19. SARS-CoV-2 is readily transmitted, resulting in the rapid spread of disease in human populations. Frequent testing at the point of care (POC) is a key aspect for controlling outbreaks caused by SARS-CoV-2 and other emerging pathogens, as the early identification of infected individuals can then be followed by appropriate measures of isolation or treatment, maximizing the chances of recovery and preventing infectious spread. Diagnostic tools used for high-frequency testing should be inexpensive, provide a rapid diagnostic response without sophisticated equipment, and be amenable to manufacturing on a large scale. The application of these devices should enable large-scale data collection, help control viral transmission, and prevent disease propagation. Here we review functional nanomaterial-based optical and electrochemical biosensors for accessible POC testing for COVID-19. These biosensors incorporate nanomaterials coupled with paper-based analytical devices and other inexpensive substrates, traditional lateral flow technology (antigen and antibody immunoassays), and innovative biosensing methods. We critically discuss the advantages and disadvantages of nanobiosensor-based approaches compared to widely used technologies such as PCR, ELISA, and LAMP. Moreover, we delineate the main technological, (bio)chemical, translational, and regulatory challenges associated with developing functional and reliable biosensors, which have prevented their translation into the clinic. Finally, we highlight how nanobiosensors, given their unique advantages over existing diagnostic tests, may help in future pandemics.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Teste para COVID-19 , Pandemias , Técnicas Biossensoriais/métodos , Tecnologia
17.
Analyst ; 149(4): 1081-1089, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38204338

RESUMO

Gastrointestinal bleeding (GIB) is a serious medical condition, which requires immediate attention to establish the cause of the bleeding. Here, we present the development of a miniaturised electrochemical impedance spectroscopy (EIS) device for the detection of GIB. The device performs EIS measurements up to 100 kHz. Following the development of an immunosensor for haemoglobin (Hb) on screen printed electrodes, the EIS device was used for detecting Hb as an early indication of bleeding. The sensor was able to detect Hb in a redox solution in a linear range between 5 µg mL-1 and 60 µg mL-1, with a limit of detection of 13.3 µg mL-1. It was also possible to detect Hb in simulated intestinal fluid, without the need for a redox solution, within a range of 10 µg mL-1 to 10 mg mL-1 with a limit of detection of 2.31 mg mL-1. The miniature EIS device developed in this work is inexpensive, with an estimated cost per unit of £30, and has shown a comparable performance to existing commercial tools, demonstrating its potential to be used in the future as an ingestible sensor to detect GIB. All these measurements were carried out in a purpose built flow cell with supporting hardware electronics outside the cell. Integration of the hardware and the sensing electrodes was demonstrated in pill form. This pill after integration sampling fluidics has potential to be used in detecting gastrointestinal bleeding.


Assuntos
Técnicas Biossensoriais , Hemoglobina Falciforme , Humanos , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Espectroscopia Dielétrica , Hemorragia Gastrointestinal/induzido quimicamente , Hemorragia Gastrointestinal/diagnóstico , Eletrodos , Limite de Detecção , Técnicas Eletroquímicas/métodos , Ouro/química
18.
Macromol Biosci ; 24(3): e2300283, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37815087

RESUMO

Soft bioelectronics have great potential for the early diagnosis of plant diseases and the mitigation of adverse outcomes such as reduced crop yields and stunted growth. Over the past decade, bioelectronic interfaces have evolved into miniaturized conformal electronic devices that integrate flexible monitoring systems with advanced electronic functionality. This development is largely attributable to advances in materials science, and micro/nanofabrication technology. The approach uses the mechanical and electronic properties of functional materials (polymer substrates and sensing elements) to create interfaces for plant monitoring. In addition to ensuring biocompatibility, several other factors need to be considered when developing these interfaces. These include the choice of materials, fabrication techniques, precision, electrical performance, and mechanical stability. In this review, some of the benefits plants can derive from several of the materials used to develop soft bioelectronic interfaces are discussed. The article describes how they can be used to create biocompatible monitoring devices that can enhance plant growth and health. Evaluation of these devices also takes into account features that ensure their long-term durability, sensitivity, and reliability. This article concludes with a discussion of the development of reliable soft bioelectronic systems for plants, which has the potential to advance the field of bioelectronics.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Eletrônica/métodos , Conformação Molecular
19.
Artigo em Inglês | MEDLINE | ID: mdl-38083605

RESUMO

This study developed a low-cost paper-based biosensor for point-of-care (POC) detection of blood creatinine by using differential optical signal readout. Dual-channel photochemical paper-based test strips were fabricated with stackable multilayer films containing pre-immobilized enzymes and reagents for the identification and conversion of creatinine and creatine. Enzyme-linked reactions generated hydrogen peroxide (H2O2), which formed a blue oxidized condensate with aniline derivatives. The color depth was quantified via the differential optical signal of the two channels and positively correlated with the concentration of the analyte. This method was first proposed to address the issue of endogenous interferences in the enzymatic assay of creatinine, greatly improving the detection accuracy. The proposed biosensor was calibrated with spiked blood samples, and achieved a wide detection range of 31-1483 µmol/L, showing superior detection performance to general enzymatic methods, especially in the low concentration range. Creatine interference testing demonstrated that the biosensor could resist the interference of ≤ 300 µmol/L endogenous creatine. It is believed that the proposed optical differential biosensor for blood creatinine could enable to pave the way for a daily monitoring system for renal diseases.Clinical Relevance- This stackable multilayer paper-based biosensor provides an enzymatic colorimetric assay of creatinine in whole blood, which can be read out by the differential optical signal to exclude interference from endogenous creatine.


Assuntos
Técnicas Biossensoriais , Peróxido de Hidrogênio , Creatinina/análise , Creatina/análise , Enzimas Imobilizadas , Técnicas Biossensoriais/métodos
20.
Biosensors (Basel) ; 13(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38131791

RESUMO

Technological progress has led to the development of analytical tools that promise a huge socio-economic impact on our daily lives and an improved quality of life for all. The use of plant extract synthesized nanoparticles in the development and fabrication of optical or electrochemical (bio)sensors presents major advantages. Besides their low-cost fabrication and scalability, these nanoparticles may have a dual role, serving as a transducer component and as a recognition element, the latter requiring their functionalization with specific components. Different approaches, such as surface modification techniques to facilitate precise biomolecule attachment, thereby augmenting recognition capabilities, or fine tuning functional groups on nanoparticle surfaces are preferred for ensuring stable biomolecule conjugation while preserving bioactivity. Size optimization, maximizing surface area, and tailored nanoparticle shapes increase the potential for robust interactions and enhance the transduction. This article specifically aims to illustrate the adaptability and effectiveness of these biosensing platforms in identifying precise biological targets along with their far-reaching implications across various domains, spanning healthcare diagnostics, environmental monitoring, and diverse bioanalytical fields. By exploring these applications, the article highlights the significance of prioritizing the use of natural resources for nanoparticle synthesis. This emphasis aligns with the worldwide goal of envisioning sustainable and customized biosensing solutions, emphasizing heightened sensitivity and selectivity.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Óxidos , Qualidade de Vida , Técnicas Biossensoriais/métodos , Tecnologia , Técnicas Eletroquímicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA