Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biotechnol ; 60(7): 492-505, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29796788

RESUMO

Natural production of anti-cancer drug taxol from Taxus has proved to be environmentally unsustainable and economically unfeasible. Currently, bioengineering the biosynthetic pathway of taxol is an attractive alternative production approach. 10-deacetylbaccatin III-10-O-acetyl transferase (DBAT) was previously characterized as an acyltransferase, using 10-deacetylbaccatin III (10-DAB) and acetyl CoA as natural substrates, to form baccatin III in the taxol biosynthesis. Here, we report that other than the natural acetyl CoA (Ac-CoA) substrate, DBAT can also utilize vinyl acetate (VA), which is commercially available at very low cost, acylate quickly and irreversibly, as acetyl donor in the acyl transfer reaction to produce baccatin III. Furthermore, mutants were prepared via a semi-rational design in this work. A double mutant, I43S/D390R was constructed to combine the positive effects of the different single mutations on catalytic activity, and its catalytic efficiency towards 10-DAB and VA was successfully improved by 3.30-fold, compared to that of wild-type DBAT, while 2.99-fold higher than the catalytic efficiency of WT DBAT towards 10-DAB and Ac-CoA. These findings can provide a promising economically and environmentally friendly method for exploring novel acyl donors to engineer natural product pathways.


Assuntos
Acetiltransferases/genética , Alcaloides/biossíntese , Antineoplásicos Fitogênicos/biossíntese , Taxus/enzimologia , Acetiltransferases/química , Acetiltransferases/metabolismo , Alcaloides/economia , Antineoplásicos Fitogênicos/economia , Bioengenharia , Vias Biossintéticas , Biologia Computacional , Análise Custo-Benefício , Engenharia Genética , Modelos Moleculares , Mutagênese , Paclitaxel/biossíntese , Paclitaxel/economia , Especificidade por Substrato , Taxoides/economia , Taxoides/metabolismo , Taxus/química , Taxus/genética , Taxus/metabolismo , Compostos de Vinila/química , Compostos de Vinila/metabolismo
2.
Biochem Biophys Res Commun ; 338(1): 410-7, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16137660

RESUMO

The biosynthesis of the anticancer drug Taxol in yew (Taxus) species is thought to involve the preliminary formation of the advanced taxane diterpenoid intermediate baccatin III upon which the functionally important N-benzoyl phenylisoserinoyl side chain is subsequently assembled at the C13-O-position. In vivo feeding studies with Taxus tissues and characterization of the two transferases responsible for C13-side chain construction have suggested a sequential process in which an aminomutase converts alpha-phenylalanine to beta-phenylalanine which is then activated to the corresponding CoA ester and transferred to baccatin III to yield beta-phenylalanoyl baccatin III (i.e., N-debenzoyl-2'-deoxytaxol) that undergoes subsequent 2'-hydroxylation and N-benzoylation to afford Taxol. However, because the side chain transferase can utilize both beta-phenylalanoyl CoA and phenylisoserinoyl CoA in the C13-O-esterification of baccatin III, ambiguity remained as to whether the 2'-hydroxylation step occurs before or after transfer of the amino phenylpropanoyl moiety. Using cell-free enzyme systems from Taxus suspension cells, no evidence was found for the direct hydroxylation of beta-phenylalanine to phenylisoserine; however, microsomal preparations from this tissue appeared capable of the cytochrome P450-mediated hydroxylation of beta-phenylalanoyl baccatin III to phenylisoserinoyl baccatin III (i.e., N-debenzoyltaxol) as the penultimate step in the formation of Taxol and related N-substituted taxoids. These preliminary results, which are consistent with the proposed side chain assembly process, have clarified an important step of Taxol biosynthesis and set the foundation for cloning the responsible cytochrome P450 hydroxylase gene.


Assuntos
Carbono/química , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Paclitaxel/biossíntese , Sistema Livre de Células , Cromatografia Líquida de Alta Pressão , Hidroxilação , Modelos Químicos , Modelos Moleculares , Paclitaxel/química , Taxus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA