Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Toxicol Ind Health ; 40(5): 272-291, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38523547

RESUMO

Perchloroethylene (PCE) is used as a solvent and chemical intermediate. Following chronic inhalation exposure, PCE selectively induced liver tumors in mice. Understanding the mode of action (MOA) for PCE carcinogenesis in mice is important in defining its possible human cancer risk. The proposed MOA is based on the extensive examination of the peer-reviewed studies that have assessed the mouse liver effects of PCE and its major oxidative metabolite trichloroacetic acid (TCA). Similar to PCE, TCA has also been demonstrated to liver tumors selectively in mice following chronic exposure. The Key Events (KE) of the proposed PCE MOA involve oxidative metabolism of PCE to TCA [KE 1]; activation of the peroxisome proliferator-activated receptor alpha (PPARα) [KE 2]; alteration in hepatic gene expression including cell growth pathways [KE 3]; increase in cell proliferation [KE 4]; selective clonal expansion of hepatic preneoplastic foci [KE 5]; and formation of hepatic neoplasms [KE 6]. The scientific evidence supporting the PPARα MOA for PCE is strong and satisfies the requirements for a MOA analysis. The PPARα liver tumor MOA in rodents has been demonstrated not to occur in humans; thus, human liver cancer risk to PCE is not likely.


Assuntos
Neoplasias Hepáticas , Tetracloroetileno , Camundongos , Humanos , Animais , Tetracloroetileno/toxicidade , Tetracloroetileno/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR alfa/farmacologia , Neoplasias Hepáticas/induzido quimicamente , Fígado , Oxirredução , Medição de Risco
2.
Environ Health Perspect ; 127(6): 67011, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31246107

RESUMO

BACKGROUND: Interindividual variability in susceptibility remains poorly characterized for environmental chemicals such as tetrachloroethylene (PERC). Development of population-based experimental models provide a potential approach to fill this critical need in human health risk assessment. OBJECTIVES: In this study, we aimed to better characterize the contribution of glutathione (GSH) conjugation to kidney toxicity of PERC and the degree of associated interindividual toxicokinetic (TK) and toxicodynamic (TD) variability by using the Collaborative Cross (CC) mouse population. METHODS: Male mice from 45 strains were intragastrically dosed with PERC ([Formula: see text]) or vehicle (5% Alkamuls EL-620 in saline), and time-course samples were collected for up to 24 h. Population variability in TK of S-(1,2,2-trichlorovinyl)GSH (TCVG), S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC), and N-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine (NAcTCVC) was quantified in serum, liver, and kidney, and analyzed using a toxicokinetic model. Effects of PERC on kidney weight, fatty acid metabolism-associated genes [ Acot1 (Acyl-CoA thioesterase 1), Fabp1 (fatty acid-binding protein 1), and Ehhadh (enoyl-coenzyme A, hydratase/3-hydroxyacyl coenzyme A dehydrogenase)], and a marker of proximal tubular injury [KIM-1 (kidney injury molecule-1)/Hepatitis A virus cellular receptor 1 ( Havcr1)] were evaluated. Finally, quantitative data on interstrain variability in both formation of GSH conjugation metabolites of PERC and its kidney effects was used to calculate adjustment factors for the interindividual variability in both TK and TD. RESULTS: Mice treated with PERC had significantly lower kidney weight, higher kidney-to-body weight (BW) ratio, and higher expression of fatty acid metabolism-associated genes ( Acot1, Fabp1, and Ehhadh) and a marker of proximal tubular injury (KIM-1/ Havcr1). Liver levels of TCVG were significantly correlated with KIM-1/ Havcr1 in kidney, consistent with kidney injury being associated with GSH conjugation. We found that the default uncertainty factor for human variability may be marginally adequate to protect 95%, but not more, of the population for kidney toxicity mediated by PERC. DISCUSSION: Overall, this study demonstrates the utility of the CC mouse population in characterizing metabolism-toxicity interactions and quantifying interindividual variability. Further refinement of the characterization of interindividual variability can be accomplished by incorporating these data into in silico population models both for TK (such as a physiologically based pharmacokinetic model), as well as for toxicodynamic responses. https://doi.org/10.1289/EHP5105.


Assuntos
Nefropatias/induzido quimicamente , Tetracloroetileno/farmacocinética , Tetracloroetileno/toxicidade , Animais , Camundongos de Cruzamento Colaborativo , Glutationa/análogos & derivados , Glutationa/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/genética , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Rim/efeitos dos fármacos , Nefropatias/metabolismo , Fígado/efeitos dos fármacos , Masculino , Medição de Risco/métodos , Especificidade da Espécie , Tetracloroetileno/metabolismo , Toxicocinética
3.
J Proteomics ; 192: 10-17, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29879467

RESUMO

Thermal proteome profiling (TPP) is increasingly applied in eukaryotes to investigate protein-ligand binding through protein melting curve shifts induced by the presence of a ligand. In anaerobic bacteria, identification of protein-substrate interactions is a major challenge. We applied TPP to Sulfurospirillum multivorans, which is able to use trichloroethene as electron acceptor for growth, to investigate the interaction of its tetrachloroethene reductive dehalogenase PceA with trichloroethene. Several modifications in the protocol (e.g., incubation under anaerobic conditions; increasing the temperature range up to 97 °C) extended the protein detection range and allowed the investigation of oxygen-sensitive proteins. Enzymatic reductive dehalogenation was prevented by omitting the electron donor during incubations. This enabled detecting the interaction of PceA with trichloroethene and confirmed that trichloroethene is a substrate of this enzyme. Interestingly, a putative response regulator showed a similar trend, which is the first biochemical hint for its proposed role in trichloroethene respiration. We proved that our TPP approach facilitates the identification of protein-substrate interactions of strictly anaerobic reductive dehalogenases and probably their regulators. This strategy can be used to identify yet unknown substrate specificities and possible signal-sensing proteins, and therefore has the potential to elucidate one of the unresolved fields in research on organohalide-respiring bacteria. SIGNIFICANCE: The assessment of enzyme-substrate or protein-ligand interactions in organohalide-respiring bacteria is a fundamental challenge. Thermal proteome profiling (TPP) allows elucidating proteome-wide thermal stability changes relying on the sensitivity of modern mass spectrometry. This gives access to the identification of interactions not detectable with other methods. In this TPP study, we demonstrate the interactions of a chlorinated substrate with a reductive dehalogenase and potentially with a response regulator, thereby supporting the response regulator's function in organohalide respiration. The strategy might also be applied to identify yet unknown substrates of other enzymes in bacteria which are difficult to investigate or for which only low amounts of biomass are available. The assessment of enzyme-substrate interactions, which might enable conclusions about enzyme specificities, represents a new application for TPP.


Assuntos
Proteínas de Bactérias/química , Campylobacteraceae/enzimologia , Temperatura Alta , Oxirredutases/química , Tetracloroetileno/química , Proteínas de Bactérias/metabolismo , Oxirredutases/metabolismo , Tetracloroetileno/metabolismo
4.
Water Res ; 44(7): 2360-70, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20106501

RESUMO

This study pilot-tested carboxymethyl cellulose (CMC) stabilized zero-valent iron (ZVI) nanoparticles (with a trace amount of Pd catalyst) for in situ destruction of chlorinated ethenes such as perchloroethylene (PCE) and trichloroethylene (TCE) and polychlorinated biphenyls (PCBs) that had been in groundwater for decades. The test site was located in a well-characterized secondary source zone of PCBs and chlorinated ethenes. Four test wells were installed along the groundwater flow direction (spaced 5 ft apart), including one injection well (IW), one up-gradient monitoring well (MW-3) and two down-gradient monitoring wells (MW-1 and MW-2). Stabilized nanoparticle suspension was prepared on-site and injected into the 50-ft deep, unconfined aquifer. Approximately 150 gallons of 0.2 g/L Fe-Pd (CMC = 0.1 wt%, Pd/Fe = 0.1 wt%) was gravity-fed through IW-1 over a 4-h period (Injection #1). One month later, another 150 gallons of 1.0 g/L Fe-Pd (CMC = 0.6 wt%, Pd/Fe = 0.1 wt%) was injected into IW-1 at an injection pressure <5 psi (Injection #2). When benchmarked against the tracer, approximately 37.4% and 70.0% of the injected Fe was detected in MW-1 during injection #1 and #2, respectively, confirming the soil mobility of the nanoparticles through the aquifer, and higher mobility of the particles was observed when the injection was performed under higher pressure. Rapid degradation of PCE and TCE was observed in both MW-1 and MW-2 following each injection, with the maximum degradation being observed during the first week of the injections. The chlorinated ethenes concentrations gradually returned to their pre-injection levels after approximately 2 weeks, indicating exhaustion of the ZVI's reducing power. However, the injection of CMC-stabilized nanoparticle and the abiotic reductive dechlorination process appeared to have boosted a long-term in situ biological dechlorination thereafter, which was evidenced by the fact that PCE and TCE concentrations showed further reduction after two weeks. After 596 days from the first injection, the total chlorinated ethenes concentration decreased by about 40% and 61% in MW-1 and MW-2, respectively. No significant long-term reduction of PCB 1242 was observed in MW-1, but a reduction of 87% was evident in MW-2. During the 596 days of testing, the total concentrations of cis-DCE (dichloroethylene) and VC (vinyl chloride) decreased by 20% and 38% in MW-1 and MW-2, respectively. However, the combined fraction of cis-DCE and VC in the total chlorinated ethenes (PCE, TCE, cis-DCE and VC) increased from 73% to 98% and from 62% to 98%, respectively, which supports the notion that biological dechlorination of PCE and TCE was active. It is proposed that CMC-stabilized ZVI-Pd nanoparticles facilitated the early stage rapid abiotic degradation. Over the long run, the existing biological degradation process was boosted with CMC as the carbon source and hydrogen from the abiotic/biotic processes as the electron donor, resulting in the sustained enhanced destruction of the chlorinated organic chlorinated ethenes in the subsurface.


Assuntos
Carboximetilcelulose Sódica/química , Hidrocarbonetos Clorados/química , Ferro/química , Nanopartículas Metálicas/química , Purificação da Água/métodos , Biodegradação Ambiental , Hidrocarbonetos Clorados/metabolismo , Projetos Piloto , Bifenilos Policlorados/química , Bifenilos Policlorados/metabolismo , Tetracloroetileno/química , Tetracloroetileno/metabolismo , Fatores de Tempo , Tricloroetileno/química , Tricloroetileno/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
5.
Environ Int ; 31(2): 185-90, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15661281

RESUMO

A microcosm study was used to assess the potential for in situ natural or enhanced bioremediation at a chloroethane- (i.e., tetrachloroethane, TeCA) and chloroethene-contaminated (i.e., tetrachloroethene, PCE; trichloroethene, TCE) groundwater in Northern Italy. All the live microcosms were positive for dechlorination, indicating the presence of an active native dechlorinating population in the subsurface. All the tested electron donors (i.e., yeast extract, lactate, butyrate, hydrogen) promoted enhanced dechlorination of chlorinated contaminants. Lactate- and butyrate-amended microcosms performed the best, and also dechlorinated the solvents past cis-dichloroethene (cis-DCE). The microcosm bioaugmented with a PCE-dechlorinating mixed culture containing Dehalococcoides spp. dechlorinated groundwater contaminants to DCE, vinyl chloride (VC), and ethene (ETH). In conclusion, results from this microcosm study indicate the potential for enhancing full dechlorination at the contaminated site, through a proper addition of a suitable electron donor (e.g., lactate or butyrate) and/or through bioaugmentation with a Dehalococcoides-containing culture.


Assuntos
Etano/análogos & derivados , Etano/metabolismo , Hidrocarbonetos Clorados/metabolismo , Poluentes do Solo/metabolismo , Tetracloroetileno/metabolismo , Tricloroetileno/metabolismo , Poluentes da Água/metabolismo , Biodegradação Ambiental , Itália , Oxirredução , Solventes/metabolismo
6.
J Expo Anal Environ Epidemiol ; 9(5): 381-92, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10554141

RESUMO

The National Human Exposure Assessment Survey (NHEXAS) Phase I field study conducted in EPA Region 5 provides extensive exposure data on approximately 250 study participants selected via probability sampling. Associated environmental media and biomarker (blood, urine) concentration data were also obtained to aid in the understanding of relationships of the exposures to both contaminant sources and doses. Distributional parameters for arsenic (As), lead (Pb), and four volatile organic compounds (VOCs)--benzene, chloroform, tetrachloroethylene, and trichloroethylene--were estimated for each of the relevant media using weighted data analysis techniques. Inter-media associations were investigated through correlation analysis, and longitudinal correlations and models were used to investigate longitudinal patterns. Solid food appeared to be a major contributor to urine As levels, while Pb levels in household (HH) dust, personal air, and beverages all were significantly associated with blood Pb levels. Relatively high (>0.50) longitudinal correlations were observed for tap water Pb and As, as compared to only moderate longitudinal correlations for the personal air VOCs.


Assuntos
Arsênio/metabolismo , Benzeno/metabolismo , Exposição Ambiental/análise , Hidrocarbonetos Clorados/metabolismo , Chumbo/metabolismo , Clorofórmio/metabolismo , Intervalos de Confiança , Great Lakes Region , Humanos , Escore Lod , Estudos Longitudinais , Tetracloroetileno/metabolismo , Tricloroetileno/metabolismo
7.
Ann Ist Super Sanita ; 27(4): 595-9, 1991.
Artigo em Inglês | MEDLINE | ID: mdl-1820731

RESUMO

Attempts to improve quantitative risk assessments inevitably lead to the use of additional biological data in the risk calculation. The need for more data increases further when differences in response between laboratory animals result in uncertainty in the choice of either the species or the tumour incidence on which to base the risk assessment. Of the many stages of carcinogenesis, the first stage, which involves the uptake and activation of the chemical, is probably the most understood and is by far the easiest to measure experimentally. A review of the use of metabolism and pharmacokinetics in risk assessment reveals how this type of data can explain species differences, the shape of the dose-response curve and even determine the relevance of the animal carcinogenicity data to man. A number of chlorinated hydrocarbons are used to illustrate each of these points.


Assuntos
Testes de Carcinogenicidade , Carcinógenos/metabolismo , Biotransformação , Carcinógenos/farmacocinética , Hidrocarbonetos Clorados/metabolismo , Hidrocarbonetos Clorados/farmacocinética , Cloreto de Metileno/metabolismo , Cloreto de Metileno/farmacocinética , Neoplasias Experimentais/induzido quimicamente , Fatores de Risco , Especificidade da Espécie , Tetracloroetileno/metabolismo , Tetracloroetileno/farmacocinética , Tricloroetileno/metabolismo , Tricloroetileno/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA