Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9505, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664430

RESUMO

The effects of low-cost Thai leucoxene mineral (LM) at different concentrations (10, 20, 30, 40, 50, and 60 mg/L) on the growth and antibacterial properties of Chrysanthemum indium L. cuttings under in vitro were evaluated. The primary chemical composition of LM was approximately 86% titanium dioxide (TiO2), as determined by dispersive X-ray spectroscopy. The crystalline structure, shape, and size were investigated by X-ray diffraction and scanning electron microscopy. LM at 40 and 50 mg/L significantly increased plant height, leaf number, node number, and fresh and dry weight. These growth-promoting properties were accompanied by improved chlorophyll and carotenoid contents and antioxidant enzyme activities and reduced malondialdehyde levels. Additionally, LM treatment at 40 and 50 mg/L had positive effects on antibacterial activity, as indicated by the lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. The high levels of phenolic compounds in the plants contributed to the MIC and MBC values. In conclusion, these findings provide evidence for the effectiveness of LM in enhancing the growth of Chrysanthemum plants in in vitro culture and improving their antibacterial abilities.


Assuntos
Antibacterianos , Chrysanthemum , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/química , Carotenoides/química , Clorofila/química , Chrysanthemum/química , Folhas de Planta/química , Tailândia , Titânio/química , Titânio/farmacologia
2.
ACS Biomater Sci Eng ; 9(8): 4673-4685, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37399249

RESUMO

In this work, a titanium-doped hydroxyapatite (HAp) scaffold was produced from two different sources (natural eggshell and laboratory-grade reagents) to compare the efficacy of natural and synthetic resources of HAp materials on new bone regeneration. This comparative study also reports the effect of Ti doping on the physical, mechanical, and in vitro as well as in vivo biological properties of the HAp scaffold. Pellets were prepared in the conventional powder metallurgy route, compacted, and sintered at 900 °C, showing sufficient porosity for bony ingrowth. The physical-mechanical characterizations were performed by density, porosity evaluation, XRD, FTIR, SEM analysis, and hardness measurement. In vitro interactions were evaluated by bactericidal assay, hemolysis, MTT assay, and interaction with simulated body fluid. All categories of pellets showed absolute nonhemolytic and nontoxic character. Furthermore, significant apatite formation was observed on the Ti-doped HAp samples in the simulated body fluid immersion study. The developed porous pellets were implanted to assess the bone defect healing in the femoral condyle of healthy rabbits. A 2 month study after implantation showed no marked inflammatory reaction for any samples. Radiological analysis, histological analysis, SEM analysis, and oxytetracycline labeling studies depicted better invasion of mature osseous tissue in the pores of doped eggshell-derived HAp scaffolds as compared to the undoped HAp, and laboratory-made samples. Quantification using oxytetracycline labeling depicted 59.31 ± 1.89% new bone formation for Ti-doped eggshell HAp as compared to Ti-doped pure HAp (54.41 ± 1.93) and other undoped samples. Histological studies showed the presence of abundant osteoblastic and osteoclastic cells in Ti-doped eggshell HAp in contrast to other samples. Radiological and SEM data also showed similar results. The results indicated that Ti-doped biosourced HAp samples have good biocompatibility, new bone-forming ability, and could be used as a bone grafting material in orthopedic surgery.


Assuntos
Durapatita , Oxitetraciclina , Animais , Coelhos , Durapatita/farmacologia , Titânio/farmacologia , Casca de Ovo , Regeneração Óssea , Modelos Animais
3.
Radiat Res ; 199(5): 429-438, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014873

RESUMO

Low-energy X-ray sources that operate in the kilovoltage energy range have been shown to induce more cellular damage when compared to their megavoltage counterparts. However, low-energy X-ray sources are more susceptible to the effects of filtration on the beam spectrum. This work sought to characterize the biological effects of the Xoft Axxent® source, a low-energy therapeutic X-ray source, both with and without the titanium vaginal applicator in place. It was hypothesized that there would be an increase in relative biological effectiveness (RBE) of the Axxent® source compared to 60Co and that the source in the titanium vaginal applicator (SIA) would have decreased biological effects compared to the bare source (BS). This hypothesis was drawn from linear energy transfer (LET) simulations performed using the TOPAS Monte Carlo user code as well a reduction in dose rate of the SIA compared to the BS. A HeLa cell line was maintained and used to evaluate these effects. Clonogenic survival assays were performed to evaluate differences in the RBE between the BS and SIA using 60Co as the reference beam quality. Neutral comet assay was used to assess induction of DNA strand damage by each beam to estimate differences in RBE. Quantification of mitotic errors was used to evaluate differences in chromosomal instability (CIN) induced by the three beam qualities. The BS was responsible for the greatest quantity of cell death due to a greater number of DNA double strand breaks (DSB) and CIN observed in the cells. The differences observed in the BS and SIA surviving fractions and RBE values were consistent with the 13% difference in LET as well as the factor of 3.5 reduction in dose rate of the SIA. Results from the comet and CIN assays were consistent with these results as well. The use of the titanium applicator results in a reduction in the biological effects observed with these sources, but still provides an advantage over megavoltage beam qualities. © 2023 by Radiation Research Society.


Assuntos
Braquiterapia , Neoplasias do Colo do Útero , Feminino , Humanos , Braquiterapia/métodos , Células HeLa , Neoplasias do Colo do Útero/radioterapia , Titânio/farmacologia , Eficiência Biológica Relativa , DNA , Método de Monte Carlo
4.
Int J Implant Dent ; 8(1): 12, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275307

RESUMO

BACKGROUND: The aim of the current study was to comparatively assess the efficiency of three different adjunctive therapy options (cold atmospheric plasma, [CAP], photodynamic therapy [PDT] and chemical decontamination via 35% phosphoric acid gel [PAG]) on decontamination of titanium implant surfaces in-vitro. MATERIALS AND METHODS: Implants were inserted in concavities of four mm in depth mimicking a bone defect at the implant recipient site. In each model, two implants were inserted in the fourth and one implant in the third quadrants. After contamination with E. faecalis, the first group has been treated with CAP for 3 min, the second group with 35% PAG (and the third group with PDT. After treatment, quantification of bacterial colonization was assessed by quantification via colony forming units and qualitatively by fluorescence microscopy and scanning electron microscopy. RESULTS: With a mean value of 1.24 × 105 CFU/ml, the CAP treated implants have showed the least microorganisms. The highest number of CFU was found after PDT with mean value of 8.28 × 106 CFU/ml. For the implants that were processed with phosphoric acid, a mean value of 3.14 × 106 CFU/ml could be detected. When the groups were compared, only the CAP and PDT groups differed significantly from each other (p = 0.005). CONCLUSION: A complete cleaning of the micro-textured implant surface or the killing of the bacteria could not be achieved by any of the investigated treatment options, thus bacteria in the microstructure of the titanium surface cannot be completely reached by mechanical and physico-chemical processes. CLINICAL RELEVANCE: The main goal of the adjunctive peri-implantitis treatment is the decontamination of the implant surface. However, there is still an ongoing need to define the most appropriate adjunctive therapy method. Due to its antimicrobial effects, CAP combined with mechanical debridement could be a feasible treatment modality in the management of peri-implantitis.


Assuntos
Implantes Dentários , Peri-Implantite , Gases em Plasma , Descontaminação , Implantes Dentários/microbiologia , Humanos , Peri-Implantite/prevenção & controle , Gases em Plasma/farmacologia , Titânio/farmacologia
5.
Biomed Mater ; 16(6)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34492651

RESUMO

In order to support bone tissue regeneration, porous biomaterial implants (scaffolds) must offer chemical and mechanical properties, besides favorable fluid transport. Titanium implants provide these requirements, and depending on their microstructural parameters, the osteointegration process can be stimulated. The pore structure of scaffolds plays an essential role in this process, guiding fluid transport for neo-bone regeneration. The objective of this work was to analyze geometric and morphologic parameters of the porous microstructure of implants and analyze their influences in the bone regeneration process, and then discuss which parameters are the most fundamental. Bone ingrowths into two different sorts of porous titanium implants were analyzed after 7, 14, 21, 28, and 35 incubation days in experimental animal models. Measurements were accomplished with x-ray microtomography image analysis from rabbit tibiae, applying a pore-network technique. Taking into account the most favorable pore sizes for neo-bone regeneration, a novel approach was employed to assess the influence of the pore structure on this process: the analyses were carried out considering minimum pore and connection sizes. With this technique, pores and connections were analyzed separately and the influence of connectivity was deeply evaluated. This investigation showed a considerable influence of the size of connections on the permeability parameter and consequently on the neo-bone regeneration. The results indicate that the processing of porous scaffolds must be focused on deliver pore connections that stimulate the transport of fluids throughout the implant to be applied as a bone replacer.


Assuntos
Osseointegração/efeitos dos fármacos , Alicerces Teciduais/química , Titânio , Microtomografia por Raio-X , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Imageamento Tridimensional , Masculino , Coelhos , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Titânio/química , Titânio/farmacologia
6.
Mater Sci Eng C Mater Biol Appl ; 128: 112286, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474837

RESUMO

The number of total knee and/or hip replacements are expected to exceed 5 million a year by 2030; the incidence of biofilm-associated complications can vary from 1% in primary implants to 5.6% in case of revision. The purpose of this study was to test the ability of sHA-DA, a partially sulphated hyaluronic acid (sHA) functionalized with a dopamine (DA) moiety, to prevent acute bacterial growth in an in vivo model of an intra-operatively highly contaminated implant. Previously, in vitro studies showed that the DA moiety guarantees good performance as binding agent for titanium surface adhesion, while the negatively charged sHA has both a high efficiency in electrostatic binding of positively charged antibiotics, and bone regenerative effects. The in vitro testing also highlighted the effectiveness of the sHA-DA system in inhibiting bacterial spreading through a sustained release of the antibiotic payload from the implant coating. In this study the chemical stability of the sHA-DA to ß-ray sterilization was demonstrated, based on evaluation by NMR, SEC-TDA Omnisec and HPLC-MS analysis, thus supporting the approach of terminal sterilization of the coated implant with no loss of efficacy. Furthermore, an in vivo study in rabbits was performed according to UNI EN ISO 10993-6 to assess the histocompatibility of titanium nails pre-coated with sHA-DA. The implants, placed in the femoral medullary cavity and harvested after 12 weeks, proved to be histocompatible and to allow bone growth in adhesion to the metal surface. Finally, an in vivo model of bacterial contamination was set up by injecting 1 mL of bacterial suspension containing 104 or 106 CFU of methicillin-resistant Staphylococcus aureus (MRSA) into the femoral medullary cavity of 30 rabbits. Titanium nails either uncoated or pre-coated with sHA-DA and loaded directly by the surgeon with 5% vancomycin were implanted in the surgical site. After 1 week, only the animals treated with pre-coated nails did not show the presence of systemic or local bacterial infection, as confirmed by microbiology and histology (Smeltzer score). Further insights into the animal model setup are crucial, however the results obtained suggest that the system can be effective in preventing the onset of the bacterial infective process.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Dopamina , Ácido Hialurônico/farmacologia , Coelhos , Titânio/farmacologia
7.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445265

RESUMO

Standard toxicity tests might not be fully adequate for evaluating nanomaterials since their unique features are also responsible for unexpected interactions. The in vitro cytokinesis-block micronucleus (CBMN) test is recommended for genotoxicity testing, but cytochalasin-B (Cyt-B) may interfere with nanoparticles (NP), leading to inaccurate results. Our objective was to determine whether Cyt-B could interfere with MN induction by TiO2 NP in human SH-SY5Y cells, as assessed by CBMN test. Cells were treated for 6 or 24 h, according to three treatment options: co-treatment with Cyt-B, post-treatment, and delayed co-treatment. Influence of Cyt-B on TiO2 NP cellular uptake and MN induction as evaluated by flow cytometry (FCMN) were also assessed. TiO2 NP were significantly internalized by cells, both in the absence and presence of Cyt-B, indicating that this chemical does not interfere with NP uptake. Dose-dependent increases in MN rates were observed in CBMN test after co-treatment. However, FCMN assay only showed a positive response when Cyt-B was added simultaneously with TiO2 NP, suggesting that Cyt-B might alter CBMN assay results. No differences were observed in the comparisons between the treatment options assessed, suggesting they are not adequate alternatives to avoid Cyt-B interference in the specific conditions tested.


Assuntos
Citocinese/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico , Nanopartículas/efeitos adversos , Titânio/efeitos adversos , Linhagem Celular Tumoral , Citocalasina B/farmacologia , Relação Dose-Resposta a Droga , Humanos , Titânio/farmacologia
8.
Mater Sci Eng C Mater Biol Appl ; 123: 112002, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812622

RESUMO

The paper focuses on the SiOx-doped amorphous hydrocarbon (a-C:H:SiOx) coating on the titanium (Ti-6Al-4V) alloy substrate obtained by plasma-assisted chemical vapor deposition (PACVD) in a mixture of argon gas and polyphenylmethylsiloxane vapor using a bipolar substrate bias. It is shown that the a-C:H:SiOx coating deposition results in the formation of a negative surface potential important for application of this coating for medical implants. The a-C:H:SiOx coatings improve the corrosion resistance of Ti alloy to 0.5 M NaCl solution and phosphate-buffered saline. In particular, the corrosion current density of the a-C:H:SiOx-coated sample in a 0.5 M NaCl solution at 22 °C decreases from 1∙10-8 to 1.7∙10-10 A/cm2, that reduces the corrosion rate from 9∙10-5 to 15∙10-7 mm/year. The a-C:H:SiOx coating facilitates the surface endothelization of an implant located in the thoracic aorta of a mini pig, and reduces the risk of thrombosis and implant failure. This effect can be explained by the ability of the a-C:H:SiOx coating ability to reduce in vitro a 24-hour secretion of pro-inflammatory interleukins (IL-6, IL-12(p70), IL-15, and IL-17) and cytokines (IFN-g and TNF-a) by blood mononuclear cells (MNCs) and elevates the concentration of anti-inflammatory interleukin IL-1Ra. In vitro analysis shows no cytotoxicity of the a-C:H:SiOx coating for the human blood MNCs, suggesting a promising PACVD on Ti alloys for cardiovascular implants, including pumps for mechanical heart support systems.


Assuntos
Titânio , Ligas , Animais , Corrosão , Teste de Materiais , Propriedades de Superfície , Suínos , Porco Miniatura , Titânio/farmacologia
9.
Colloids Surf B Biointerfaces ; 188: 110788, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31945634

RESUMO

Anti-biofouling treatment is required in various fields such as biomedical application, construction, civil engineering, and so on. Currently available techniques such as lithography and replica methods have several limitations in application and accessibility. We introduced a simple, biocompatible, and cost-effective anti-biofouling dip-coating method with polyurethane-inorganic (anisotropic montmorillonite and spherical TiO2) hybrid coating agent. Layer thickness of coating was as thin as 5 µm. It was cross-confirmed with thickness gauge and cross-section scanning electron microscopy. Through atomic force microscopy, inorganic nanoparticles were observed to be randomly arrayed with particles partially embedded in the polyurethane network. The calculated surface roughness of inorganic-polyurethane hybrid coating was five times larger than the neat substrate film and three times larger than coating without inorganic nanoparticles. Surface energy of the inorganic-polyurethane film decreased with increasing surface roughness as random pattern of inorganic particle reduced van der Waals interaction. Biofouling efficacy was evaluated by mucin adsorption and consecutive alcian blue assay. Results showed that coated film decreased biofouling 81% compared to bare film.


Assuntos
Incrustação Biológica/prevenção & controle , Poliuretanos/química , Titânio/farmacologia , Tamanho da Partícula , Propriedades de Superfície , Titânio/química
10.
Int J Nanomedicine ; 14: 8149-8159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632024

RESUMO

INTRODUCTION: Recently several new approaches were emerging in bone tissue engineering to develop a substitute for remodelling the damaged tissue. In order to resemble the native extracellular matrix (ECM) of the human tissue, the bone scaffolds must possess necessary requirements like large surface area, interconnected pores and sufficient mechanical strength. MATERIALS AND METHODS: A novel bone scaffold has been developed using polyurethane (PE) added with wintergreen (WG) and titanium dioxide (TiO2). The developed nanocomposites were characterized through field emission scanning electron microscopy (FESEM), Fourier transform and infrared spectroscopy (FTIR), X-ray diffraction (XRD), contact angle measurement, thermogravimetric analysis (TGA), atomic force microscopy (AFM) and tensile testing. Furthermore, anticoagulant assays, cell viability analysis and calcium deposition were used to investigate the biological properties of the prepared hybrid nanocomposites. RESULTS: FESEM depicted the reduced fibre diameter for the electrospun PE/WG and PE/WG/TiO2 than the pristine PE. The addition of WG and TiO2 resulted in the alteration in peak intensity of PE as revealed in the FTIR. Wettability measurements showed the PE/WG showed decreased wettability and the PE/WG/TiO2 exhibited improved wettability than the pristine PE. TGA measurements showed the improved thermal behaviour for the PE with the addition of WG and TiO2. Surface analysis indicated that the composite has a smoother surface rather than the pristine PE. Further, the incorporation of WG and TiO2 improved the anticoagulant nature of the pristine PE. In vitro cytotoxicity assay has been performed using fibroblast cells which revealed that the electrospun composites showed good cell attachment and proliferation after 5 days. Moreover, the bone apatite formation study revealed the enhanced deposition of calcium content in the fabricated composites than the pristine PE. CONCLUSION: Fabricated nanocomposites rendered improved physico-chemical properties, biocompatibility and calcium deposition which are conducive for bone tissue engineering.


Assuntos
Osso e Ossos/fisiologia , Poliuretanos/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Osso e Ossos/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Teste de Materiais , Nanocompostos/química , Nanocompostos/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Termogravimetria , Titânio/farmacologia , Molhabilidade , Difração de Raios X
11.
Biomed Pharmacother ; 119: 109404, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31526972

RESUMO

Currently, bio-mimetic material synthetic processes are involved in bone implant design which is closely related to natural bone. In this work, Zinc, Cerium and Selenium substituted hydroxyapatite/ Poly (sorbitol sebacate glutamate) (Zn, Ce, Se-HAP/PSSG, M-HAP/PSSG) composite was prepared by sol-gel method as a bio-mimetic materials for bone implantation. The physiochemical characterizations of M-HAP/PSSG was analyzed by Fourier transform infra red (FT-IR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX) and High resolution transmission electron microscopy (HRTEM). Then, the prepared M-HAP/PSSG composite was compared with HAP/PSSG, Zn-HAP/PSSG, Ce-HAP/PSSG and Se-HAP/PSSG composites in order to evaluate the influence of single minerals on HAP matrix. Then the coating ability of the final better M-HAP/PSSG composite on surface treated titanium (Ti) was investigated to evaluate the perfection of implant material. The higher micro-hardness was observed on M-HAP/PSSG composite coated Ti (305.92 ±â€¯20.42) due to the presence of multi-minerals as well as the co-polymer PSSG when compared with M-HAP coated Ti plate (273.0 ±â€¯15.75). The bio-compatibility and osteogenic activity evaluation of all prepared composite on human osteoblasts MG-63 cells shows that the better cell attachment, proliferation and differentiation was observed by M-HAP/PSSG bio-composites when compared with other composites. Histological staining and X-ray photographs of in-vivo rat model confirms that the formation of new tibial bone when the defected rat was treated with M-HAP/PSSG composite coated Ti implant. In conclusion, the bio-composite M-HAP/PSSG is better scaffold for coating on the surface of Ti implant for orthopedic implantation.


Assuntos
Osso e Ossos/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/farmacologia , Implantes Experimentais , Minerais/farmacologia , Sorbitol/farmacologia , Titânio/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Antibacterianos/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Durapatita/química , Dureza , Humanos , Masculino , Testes de Sensibilidade Microbiana , Osteogênese/efeitos dos fármacos , Ratos Wistar , Regeneração/efeitos dos fármacos , Sorbitol/síntese química , Sorbitol/química , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Natação , Difração de Raios X
12.
J Photochem Photobiol B ; 198: 111584, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31434036

RESUMO

Although several short-term assays are available for cosmetic photosafety assessment, cell models are usually highly sensitive to UV radiation, tending to overestimate both phototoxic and photomutagenic risks. In addition, these assays are performed with UV doses/fluences that do not correspond to actual environmental conditions. In this sense, Saccharomyces cerevisiae has already proved to be an interesting tool to predict photomutagenic potential of several compounds, including sunscreens. Yeast can support environmental UVB doses compatible with human daily sunlight exposure, allowing the use of irradiation sources to faithfully mimic the external conditions of ambient sunlight. Herein, we used a set of S. cerevisiae mutant strains sensitive to UVA, UVB and Solar Simulated Light sources in order to evaluate their potential as bioindicators for sunscreen development. The bioindicator potential of the strains was tested with the widely-used titanium dioxide inorganic sunscreen. The AWP001 (yno1) and LPW002 (ogg1yno1) strains obtained in this study stood out as promising experimental tools for the validation of this assay. Overall, our results evidenced a set of S. cerevisiae strains particularly useful for evaluating both photoprotective (efficacy) and photo/antiphotomutagenic (safety) potential of UV filters, meeting the industries and regulatory agencies demand for robust and efficient in vitro screening tests.


Assuntos
Saccharomyces cerevisiae/efeitos dos fármacos , Protetores Solares/química , Titânio/química , Raios Ultravioleta , Testes de Mutagenicidade , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos da radiação , Luz Solar , Protetores Solares/farmacologia , Titânio/farmacologia
13.
Int J Nanomedicine ; 14: 4613-4624, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308651

RESUMO

Background: Bacterial infection is a common and serious complication in orthopedic implants following traumatic injury, which is often associated with extensive soft tissue damage and contaminated wounds. Multidrug-resistant bacteria have been found in these infected wounds, especially in patients who have multi trauma and prolonged stay in intensive care units.Purpose: The objective of this study was to develop a coating on orthopedic implants that is effective against drug-resistant bacteria. Methods and results: We applied nanoparticles (30-70nm) of the trace element selenium (Se) as a coating through surface-induced nucleation-deposition on titanium implants and investigated the antimicrobial activity against drug resistant bacteria including Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-resistant Staphylococcus epidermidis (MRSE) in vitro and in an infected femur model in rats.The nanoparticles were shown in vitro to have antimicrobial activity at concentrations as low as 0.5ppm. The nanoparticle coatings strongly inhibited biofilm formation on the implants and reduced the number of viable bacteria in the surrounding tissue following inoculation of implants with biofilm forming doses of bacteria. Conclusion: This study shows a proof of concept for a selenium nanoparticle coatings as a potential anti-infective barrier for orthopedic medical devices in the setting of contamination with multi-resistant bacteria. It also represents one of the few (if only) in vivo assessment of selenium nanoparticle coatings on reducing antibiotic-resistant orthopedic implant infections.


Assuntos
Anti-Infecciosos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas/química , Ortopedia , Próteses e Implantes , Selênio/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Placas Ósseas , Parafusos Ósseos , Células Cultivadas , Contagem de Colônia Microbiana , Humanos , Masculino , Nanopartículas/ultraestrutura , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Ratos Sprague-Dawley , Titânio/farmacologia
14.
Mater Sci Eng C Mater Biol Appl ; 99: 552-562, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889729

RESUMO

In this work, two new α +â€¯ß titanium alloys with low contents of ubiquitous and low-cost alloying elements (i.e., Mo and Fe) were designed on the basis of the electronic parameters and molybdenum equivalent approaches. The designed Ti - 2Mo - 0.5Fe at. % (TMF6) and Ti - 3Mo - 0.5Fe at. % (TMF8) alloys were produced using arc melting process for studying their mechanical, electrochemical and cytotoxicity compatibilities and comparing these compatibilities to those of Ti-6Al-4V ELI alloy. The cost of the used raw materials for producing the TMF6 and TMF8 alloys are almost 1/6 of those for producing the Ti-6Al-4V ELI alloy. The hardness of the two alloys are higher than that of the Ti-6Al-4V ELI alloy, while their Young's moduli (in the range of 85-82 GPa) are lower than that of the Ti-6Al-4V ELI alloy (110 GPa). Increasing the Mo equivalent from 6 (in TMF6 alloy) to 8 (in TMF8 alloy) led to an increase in the plastic strain percent from 4% to 17%, respectively, and a decrease in the ultimate tensile strength from 949 MPa to 800 MPa, respectively. The microstructure of TMF6 alloy consists of α'/α″ phases, while TMF8 alloy substantially consists of α″ phase. The corrosion current densities and the film resistances of the new alloys are in the range of 0.70-1.07 nA/cm2 and on the order of 105â€¯Ω·cm2, respectively. These values are more compatible with biomedical applications than those measured for the Ti-6Al-4V ELI alloy. Furthermore, the cell viabilities of the TMF6 and TMF8 alloys indicate their improved compatibility compared to that of the Ti-6Al-4V ELI alloy. The CCK-8 (Cell Counting Kit-8) assay was conducted to investigate the cytotoxicity, proliferation, and shape index of the cells of the candidate alloys. Overall, the measured compatibility of the new V-free low-cost alloys, particularly TMF8, makes them promising candidates for replacing the Ti-6Al-4V ELI alloy in biomedical applications.


Assuntos
Ligas/farmacologia , Materiais Biocompatíveis/economia , Materiais Biocompatíveis/farmacologia , Custos e Análise de Custo , Ferro/farmacologia , Molibdênio/farmacologia , Implantação de Prótese , Titânio/farmacologia , Ligas/economia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Forma Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Corrosão , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Espectroscopia Dielétrica , Módulo de Elasticidade , Técnicas Eletroquímicas , Dureza , Camundongos , Estresse Mecânico , Resistência à Tração , Difração de Raios X
15.
Colloids Surf B Biointerfaces ; 173: 109-120, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30273871

RESUMO

Biologically safe Ti-based quaternary Ti-Nb-Zr-Si thin film metallic glass (TFMG) was fabricated by sputtering on Titanium alloy (Ti6Al4V or Ti alloy) substrates. A preliminary assessment regarding glass forming ability, thermal stability and corrosion behavior was performed. The amorphous nature of the film is evidenced from the X-ray Diffraction (XRD) and Transmission Electron Microscope (TEM) and Selected Area Electron Diffraction (SAED) patterns. Ion scattering spectroscopy (ISS) and X-ray Photoelectron Spectroscopy (XPS) were used to analyse the chemical composition of surface which indicated oxygen on the top surface of the film and confirms the presence of Ti, Nb, Si, Zr without any other impurities. The surface morphology of the film showed a smooth surface as observed from scanning electron microscope (SEM) and atomic force microscope (AFM) analysis. It is found that the TFMG can sustain in the body-fluid, exhibiting superior corrosion resistance and electrochemical stability than the bare titanium. The cytotoxicity studies with L929 fibroblast cells showed that coatings were graded as zero and non-cytotoxic in nature. No hemolysis was observed on the coated surface indicating a better hemocompatibility. Assay using SaOS-2 bone cells showed good growth on the coated surfaces. The calcium assay showed that the SaOS-2 cells grown and differentiated on the control (Tissue Culture Polystyrene) TCPS surface had the highest mineral level. Higher alkaline phosphatase activity is obtained in SaOS-2 osteoblast cell cultures on TFMG than the control.


Assuntos
Ligas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Osteoblastos/efeitos dos fármacos , Alicerces Teciduais , Fosfatase Alcalina/metabolismo , Ligas/química , Animais , Biomarcadores/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/química , Eritrócitos/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Camundongos , Nióbio/química , Nióbio/farmacologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Silício/química , Silício/farmacologia , Propriedades de Superfície , Titânio/química , Titânio/farmacologia , Zircônio/química , Zircônio/farmacologia
16.
Photodiagnosis Photodyn Ther ; 25: 208-213, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30529388

RESUMO

OBJECTIVES: This study aimed to determine the efficacy of a combination of photocatalysts-hydrogen peroxide at a low concentration (3.5%) and titanium dioxide (TiO2)-activated at a wavelength of 405 nm using quantitative light-induced fluorescence (QLF) technology, and to quantify their tooth-bleaching efficacy using fluorescence images obtained from QLF technology. MATERIALS AND METHODS: Forty bovine incisors were extrinsically stained according to Stookey's method, and were randomly divided into four groups (n = 10 per group). Two bleaching solutions were prepared by mixing 3.5% H2O2 with 0.05% of anatase and rutile TiO2 powders. These solutions were applied to the stained teeth using a microbrush and then irradiated for 15 min at either 306 or 405 nm to activate the bleaching agent. The color difference (ΔE*) was assessed before and after every 5 min of treatment. The ΔE* and the changes in the fluorescence loss (ΔΔF) were obtained from white-light and fluorescence images, respectively. RESULTS: All of the low-H2O2/TiO2 treatments caused significant tooth-bleaching efficacy after irradiation at 306 and 405 nm (p < 0.05). The results did not differ significantly between the two wavelengths (p > 0.05), but the bleaching efficacy was greater with anatase TiO2 at 306 nm and rutile TiO2 at 405 nm. Analysis of the fluorescence images revealed that the ΔF values increased significantly in all groups with the treatment time (p < 0.05). There was a statistically significant correlation between ΔE* and the change in ΔΔF (r = 0.822, p < 0.001). CONCLUSIONS: Combining low-H2O2/TiO2 with QLF technology at 405 nm has an efficacy of tooth-bleaching as a less harmful and biofriendly method, while the fluorescence images obtained by QLF technology could be used to assess tooth-bleaching.


Assuntos
Peróxido de Hidrogênio/farmacologia , Fluorescência Quantitativa Induzida por Luz/métodos , Titânio/farmacologia , Clareamento Dental/métodos , Animais , Bovinos , Relação Dose-Resposta a Droga , Distribuição Aleatória
17.
Prog Orthod ; 19(1): 35, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30221309

RESUMO

BACKGROUND: The antimicrobial properties of orthodontic wire and brackets with nitrogen-doped titanium dioxide (N-doped TiO2) coating have been studied in the past. However, the evaluation period had been short and limited to 30 days. The aim of the present study was to extend the evaluation period (up to 90 days) of assessing the long-term antimicrobial effects of stainless steel orthodontic brackets coated with nitrogen-doped titanium dioxide (N-doped TiO2). METHODS: A total of 40 stainless steel pre-adjusted premolar brackets were equally divided into two groups; namely the control group (n=20, uncoated brackets) and the experimental group (n=20, coated brackets). RF magnetron sputtering was used to apply a thin film of TiO2 on the bracket surface. The crystalline structure of the thin film was assessed using X-ray diffraction. The antimicrobial property of the brackets against Streptococcus mutans (S. mutans) was evaluated using the survival rate by colony-forming units (CFU) at four intervals: 24 hours (T0), 30 days (T1), 60 days (T2), and 90 days (T3). 2-way ANOVA Repeated Measures was used to compare the effects between the groups over the time. RESULTS: There was no significant interaction between group and time (p = 0.568). The orthodontic brackets coated with the N-doped TiO2 thin film showed a significant CFU reduction (37.71 ± 5.21, 37.81 ± 5.03, 37.98 ± 5.37, and 37.74 ± 5.21 at T0, T1, T2, and T3, respectively) compared to the uncoated brackets (400.91 ± 14.67, 401.58 ± 14.01, 400.31 ± 14.68, and 402.04 ± 13.98 at T0, T1, T2, and T3, respectively) through visible light (p < 0.001). CONCLUSION: N-doped TiO2 coated orthodontic brackets showed strong antimicrobial property against S. mutans over a period of 90 days, which is effective in preventing enamel decalcification during orthodontic therapy.


Assuntos
Anti-Infecciosos/farmacologia , Braquetes Ortodônticos/microbiologia , Streptococcus mutans/efeitos dos fármacos , Titânio/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Contagem de Colônia Microbiana , Humanos , Teste de Materiais , Nanopartículas , Desenho de Aparelho Ortodôntico , Streptococcus mutans/crescimento & desenvolvimento , Propriedades de Superfície , Fatores de Tempo , Difração de Raios X
18.
Mater Sci Eng C Mater Biol Appl ; 87: 10-21, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29549938

RESUMO

In this study, the ultrasound-assisted pulse electrodeposition was introduced to fabricate the graphene oxide (GO)-hydroxyapatite (HA) coating on TiO2 nanotubes. The results of the X-ray diffraction (XRD), Fourier Transform Infrared spectroscope (FTIR), Transmission Electron Microscope (TEM) and micro-Raman spectroscopy showed the successful synthesis of GO. The Scanning Electron Microscope (SEM) images revealed that in the presence of ultrasonic waves and GO sheets a more compact HA-based coating with refined microstructure could be formed on the pretreated titanium. The results of micro-Raman analysis confirmed the successful incorporation of the reinforcement filler of GO into the coating electrodeposited by the ultrasound-assisted method. The FTIR analysis showed that the GO-HA coating was consisted predominantly of the B-type carbonated HA (CHA) phase. The pretreatment of the substrate and incorporation of the GO sheets into the HA coating had a significant effect on improving the bonding strength at the coating-substrate interface. Moreover, the results of the fibroblast cell culture and 3­(4,5­dimethylthiazolyl­2)­2, 5­diphenyltetrazolium bromide (MTT) assay after 2 days demonstrated a higher percentage of cell activity for the GO-HA coated sample. Finally, the 7-day exposure to simulated body fluid (SBF) showed a faster rate of apatite precipitation on the GO-HA coating, as compared to the HA coating and pretreated titanium.


Assuntos
Materiais Revestidos Biocompatíveis , Durapatita , Técnicas Eletroquímicas , Fibroblastos/metabolismo , Grafite , Teste de Materiais , Titânio , Ondas Ultrassônicas , Animais , Linhagem Celular , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/química , Durapatita/farmacologia , Fibroblastos/citologia , Grafite/química , Grafite/farmacologia , Camundongos , Titânio/química , Titânio/farmacologia
19.
J Biomed Mater Res A ; 106(2): 580-589, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28884517

RESUMO

As the applications of titanium dioxide nanomaterials (nTiO2 ) are growing with an ever-increasing speed, the hazardous risks of this material have become a major concern. Several recent studies have reported that nTiO2 can cross the placental barrier in pregnant mice and cause neurotoxicity in their offspring. However, the influence of these nanoparticles on the fetoplacental unit during the pregnancy is yet to be studied. The present study reports on the effects of nTiO2 on the anatomical structure of fetal brain and liver in a pregnant mice model. Moreover, changes in the size and weight of the fetus and placenta are investigated as markers of fetal growth. Lastly, the toxicity of nTiO2 in primary brain and liver is quantified. Animals treated with nTiO2 showed a disrupted anatomical structure of the fetal brain and liver. Furthermore, the fetus and placental unit in the mice treated with these nanoparticles were smaller compared to untreated controls. Toxicity analyses revealed that nTiO2 was toxic to the brain and liver cells and the mechanism of cell death was mostly necrosis. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 580-589, 2018.


Assuntos
Materiais Biocompatíveis/farmacologia , Feto/efeitos dos fármacos , Teste de Materiais , Nanopartículas/química , Placenta/efeitos dos fármacos , Titânio/farmacologia , Animais , Apoptose/efeitos dos fármacos , Encéfalo/citologia , Córtex Cerebral/efeitos dos fármacos , Feminino , Feto/anatomia & histologia , Ventrículos do Coração/efeitos dos fármacos , Fígado/anatomia & histologia , Fígado/citologia , Camundongos , Nanopartículas/ultraestrutura , Necrose , Tamanho do Órgão/efeitos dos fármacos , Placenta/anatomia & histologia , Gravidez , Difração de Raios X
20.
J Biomed Mater Res B Appl Biomater ; 106(2): 834-842, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28390183

RESUMO

Ti-based alloys have increased importance for biomedical applications due to their excellent properties. In particular, the two recently developed TiZrPdSi(Nb) alloys, with a predominant ß-Ti phase microstructure, have good mechanical properties, such as a relatively low Young's modulus and high hardness. In the present work, the cytocompatibility of these alloys was assessed using human osteoblast-like Saos-2 cells. Cells grown on the alloys showed larger spreading areas (more than twice) and higher vinculin content (nearly 40% increment) when compared with cells grown on glass control surfaces, indicating a better cell adhesion. Moreover, cell proliferation was 18% higher for cells growing on both alloys than for cells growing on glass and polystyrene control surfaces. Osteogenic differentiation was evaluated by quantifying the expression of four osteogenic genes (osteonectin, osteocalcin, osteopontin, and bone sialoprotein), the presence of three osteogenic proteins (alkaline phosphatase, collagen I, and osteocalcin) and the activity of alkaline phosphatase at different time-points. The results demonstrated that TiZrPdSi and TiZrPdSiNb alloys enhance osteoblast differentiation, and that cells grown on TiZrPdSiNb alloy present higher levels of some late osteogenic markers during the first week in culture. These results suggest that the TiZrPdSi(Nb) alloys can be considered as excellent candidates for orthopaedical uses. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 834-842, 2018.


Assuntos
Ligas , Diferenciação Celular/efeitos dos fármacos , Módulo de Elasticidade , Teste de Materiais , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Ligas/química , Ligas/farmacologia , Linhagem Celular , Humanos , Nióbio/química , Nióbio/farmacologia , Osteoblastos/citologia , Paládio/química , Paládio/farmacologia , Silicones/química , Silicones/farmacologia , Titânio/química , Titânio/farmacologia , Zircônio/química , Zircônio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA