Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Toxicol In Vitro ; 98: 105825, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615724

RESUMO

Volatile organic compounds, such as BTEX, have been the subject of numerous debates due to their detrimental effects on the environment and human health. Human beings have had a significant role in the emergence of this situation. Even though US EPA, WHO, and other health-related organizations have set standard limits as unhazardous levels, it has been observed that within or even below these limits, constant exposure to these toxic chemicals results in negative consequences as well. According to these facts, various studies have been carried out all over the world - 160 of which are collected within this review article, so that experts and governors may come up with effective solutions to manage and control these toxic chemicals. The outcome of this study will serve the society to evaluate and handle the risks of being exposed to BTEX. In this review article, the attempt was to collect the most accessible studies relevant to risk assessment of BTEX in the atmosphere, and for the article to contain least bias, it was reviewed and re-evaluated by all authors, who are from different institutions and backgrounds, so that the insights of the article remain unbiased. There may be some limitations to consistency or precision in some points due to the original sources, however the attempt was to minimize them as much as possible.


Assuntos
Poluentes Atmosféricos , Derivados de Benzeno , Humanos , Medição de Risco/métodos , Derivados de Benzeno/toxicidade , Derivados de Benzeno/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Animais , Benzeno/toxicidade , Xilenos/toxicidade , Xilenos/análise , Tolueno/toxicidade , Tolueno/análise
2.
Environ Toxicol Chem ; 43(7): 1677-1689, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38661489

RESUMO

Pesticide additives (PAs) are auxiliary ingredients added to the pesticide manufacturing and use processes, constituting 1% to 99% of the pesticide and often composed of benzene and chlorinated hydrocarbons. We selected three typical PAs, toluene, chloroform, and trichloroethylene, to evaluate their retention function toxicity and ecological risk in soil. Soil immobilization techniques and aquatic model organisms were used to demonstrate the effectiveness of the immobilized soil method to determine the ecological risk of chemicals. The 48-h median lethal concentrations of toluene, chloroform, and trichloroethylene alone in spiked soil on Daphnia magna were 10.5, 2.3, and 1.1 mg/L (medium, high, and high toxicity, respectively). The toxicity of the three-PA mixtures showed an antagonistic effect. The risk levels of toluene, chloroform, and trichloroethylene in the soil were evaluated as moderate to high, low to high, and high risk, respectively. The toxicity of two pesticide-contaminated sites in the Yangtze River Delta before and after remediation was successfully evaluated by immobilized soil technology. The toxicity of two soil sampling points was reduced from medium toxic to low toxic and no toxic, respectively, after remediation. The results of our study give a rationale for and prove the validity of the aquatic model organisms and soil immobilization techniques in assessing the soil retention functions toxicity of PAs. Environ Toxicol Chem 2024;43:1677-1689. © 2024 SETAC.


Assuntos
Daphnia , Recuperação e Remediação Ambiental , Praguicidas , Poluentes do Solo , Poluentes do Solo/toxicidade , Daphnia/efeitos dos fármacos , Animais , Praguicidas/toxicidade , Medição de Risco , Recuperação e Remediação Ambiental/métodos , Tolueno/toxicidade , Tolueno/análise , Tricloroetileno/toxicidade , Tricloroetileno/análise , Solo/química
3.
Sci Total Environ ; 917: 170407, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38296073

RESUMO

The safety of underground drinking water has received widespread attention. However, few studies have focused on the occurrence and health risks of pollutants in underground drinking water of coking contaminated sites. In this study, the distribution characteristics, sources, and human health risks of benzene, toluene, xylene (BTX) and polycyclic aromatic hydrocarbons (PAHs) in underground drinking water from a typical coking contaminated site in Shanxi of China were investigated. The average concentrations of BTX and PAHs in coking plant (CP) were 5.1 and 4.8 times higher than those in residential area (RA), respectively. Toluene and Benzene were the main BTX, while Acenaphthene, Fluorene, and Pyrene were the main PAHs. Concentrations of BTX/PAHs were negatively correlated with altitude, revealing altitude might be an important geological factor influencing spatial distribution of BTX/PAHs. PMF model demonstrated that the BTX/PAHs pollution in RA mainly originated from coking industrial activities. Health risk assessments were conducted by a modified US EPA-based model, in which environmental concentrations were replaced by residual concentrations after boiling. Residual ratios of different BTX/PAHs were determined by boiling experiments to be 9.4-93.8 %. The average total carcinogenic risks after boiling were decreased from 2.6 × 10-6 to 1.4 × 10-6 for adults, and from 4.3 × 10-6 to 2.1 × 10-6 for children, suggesting boiling was an effective strategy to reduce the carcinogenic risks from BTX/PAHs, especially for ingestion pathway. Monte Carlo simulation results matched well with the calculated results, suggesting the uncertainty was acceptable and the risk assessment results were reliable. This study provided useful information for revealing the spatial distribution of BTX/PAHs in underground drinking water of coking contaminated sites, understanding their linkage with altitude, and also helped to more accurately evaluate the health risks by using the newly established boiling-modified models.


Assuntos
Coque , Água Potável , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Criança , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Benzeno , Xilenos , Tolueno , Monitoramento Ambiental , Altitude , China , Medição de Risco
4.
Toxicol Ind Health ; 40(3): 104-116, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38166466

RESUMO

Flexible polyurethane foams (PUF) are used in many consumer products. PUF may contain trace levels of aromatic diamine impurities that could represent a potential health risk. The risk associated with sleeping on a PUF mattress was evaluated. Toxicity benchmarks for sensitization and non-cancer endpoints were derived from the respective points-of-departure using standard assessment factors. For the cancer endpoints, toxicity benchmarks were derived from the 25th-percentile values of animal studies. Recently published emission and migration data allowed to link exposure with the CertiPURTM voluntary quality limits of ≤5 mg.kg-1 for 2,4-toluene diamine and 4,4'-methylene dianiline in PUF. Using conservative exposure scenarios, lifetime-average daily internal doses from the combined inhalation and dermal exposures were calculated. Margins of safety for non-cancer and sensitization endpoints were >104. The theoretical excess cancer risk was ≤1.5 × 10-7. It is concluded that sleeping on a mattress that satisfies the CertiPUR limit value does not pose undue risk to consumers.


Assuntos
Diaminas , Poliuretanos , Animais , Medição de Risco , Tolueno
5.
Toxicol Ind Health ; 40(1-2): 33-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37936286

RESUMO

Benzene, toluene, ethyl benzene, and xylene (BTEX) are prevalent pollutants in shoe industry-related workplaces. The aim of this study was to assess exposure to BTEX and their carcinogenic and non-carcinogenic risks in shoe-industry-related workplaces. This study was carried out at different shoe manufactures, small shoe workshop units, shoe markets, and shoe stores in Tabriz, Iran in 2021. Personal inhalation exposure to BTEX was measured using the National Institute for Occupational Safety and Health (NIOSH) 1501 method. Carcinogenic and non-carcinogenic risks due to inhalation exposure to BTEX were estimated by United States Environmental Protection Agency (U.S. EPA) method based on Mont Carlo simulation. Results showed that the concentrations of benzene and toluene were higher than the threshold limit value (TLV) in both gluing and non-gluing units of shoe manufactures. The total carcinogenic risk (TCR) due to exposure to benzene and ethyl benzene was considerable in all shoe industry-related workplaces. Also, the hazard index (HI) as a non-carcinogenic index was higher than standard levels in all shoe industry-related workplaces. Therefore, shoe industry-related workers are at cancer and non-cancer risks due to exposure to BTEX. Prevention measures need to be implemented to reduce the concentration of BTEX in shoe industry-related workplaces.


Assuntos
Poluentes Atmosféricos , Benzeno , Humanos , Benzeno/toxicidade , Benzeno/análise , Xilenos/toxicidade , Xilenos/análise , Tolueno/toxicidade , Tolueno/análise , Sapatos , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Derivados de Benzeno/toxicidade , Derivados de Benzeno/análise , Carcinógenos , Local de Trabalho , Carcinogênese , Medição de Risco
6.
Molecules ; 28(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138607

RESUMO

This study demonstrates rapid photocatalytic oxidation of a benzene, toluene, ethylbenzene, and xylene (BTEX) mixture over TiO2/volcanic glass. The assessment of the photocatalytic oxidation of BTEX was conducted under conditions simulating those found in indoor environments affected by aromatic hydrocarbon release. We show, under UV-A intensities of 15 mW/cm2 and an air flow rate of 55 m3/h, that low ppmv levels of BTEX concentrations can be reduced to below detectable levels. Solid-phase microextraction technique was employed to monitor the levels of BTEX in the test chamber throughout the photocatalytic oxidation, lasting approximately 21 h. Destruction of BTEX from the gas phase was observed in the following sequence: o-xylene, ethylbenzene, toluene, and benzene. This study identified sequential degradation of BTEX, in combination with the stringent regulatory level set for benzene, resulted in the air quality hazard indexes (Total Hazard Index and Hazard Quotient) remaining relatively high during the process of photocatalytic oxidation. In the practical application of photocatalytic purification, it is crucial to account for the slower oxidation kinetics of benzene. This is of particular importance due to not only its extremely low exposure limits, but also due to the classification of benzene as a Group 1 carcinogenic compound by the International Agency for Research on Cancer (IARC). Our study underscores the importance of taking regulatory considerations into account when using photocatalytic purification technology.


Assuntos
Benzeno , Tolueno , Humanos , Xilenos/análise , Derivados de Benzeno/metabolismo , Medição de Risco , Monitoramento Ambiental/métodos
7.
Lancet Planet Health ; 7(11): e900-e911, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37940210

RESUMO

BACKGROUND: High-level exposure to indoor air pollutants (IAPs) and their corresponding adverse health effects have become a public concern in China in the past 10 years. However, neither national nor provincial level burden of disease attributable to multiple IAPs has been reported for China. This is the first study to estimate and rank the annual burden of disease and the financial costs attributable to targeted residential IAPs at the national and provincial level in China from 2000 to 2017. METHODS: We first did a systematic review and meta-analysis of 117 articles from 37 231 articles identified in major databases, and obtained exposure-response relationships for the candidate IAPs. The exposure levels to these IAPs were then collected by another systematic review of 1864 articles selected from 52 351 articles. After the systematic review, ten IAPs with significant and robust exposure-response relationships and sufficient exposure data were finally targeted: PM2·5, nitrogen dioxide, sulphur dioxide, ozone, carbon monoxide, radon, formaldehyde, benzene, toluene, and p-dichlorobenzene. The annual exposure levels in residences were then evaluated in all 31 provinces in mainland China continuously from 2000 to 2017, using the spatiotemporal Gaussian process regression model to analyse indoor originating IAPs, and the infiltration factor method to analyse outdoor originating IAPs. The disability-adjusted life-years (DALYs) attributable to the targeted IAPs were estimated at both national and provincial levels in China, using the population attributable fraction method. Financial costs were estimated by an adapted human capital approach. FINDINGS: From 2000 to 2017, annual DALYs attributable to the ten IAPs in mainland China decreased from 4620 (95% CI 4070-5040) to 3700 (3210-4090) per 100 000. Nevertheless, in 2017, IAPs still ranked third among all risk factors, and their DALYs and financial costs accounted for 14·1% (95% CI 12·3-15·6) of total DALYs and 3·45% (3·01-3·82) of the gross domestic product. Specifically, the rank of ten targeted IAPs in order of their contribution to DALYs in 2017 was PM2·5, carbon monoxide, radon, benzene, nitrogen dioxide, ozone, sulphur dioxide, formaldehyde, toluene, and p-dichlorobenzene. The DALYs attributable to IAPs were 9·50% higher than those attributable to outdoor air pollution in 2017. For the leading IAP, PM2·5, the DALYs attributable to indoor origins are 18·3% higher than those of outdoor origins. INTERPRETATION: DALYs attributed to IAPs in China have decreased by 20·0% over the past two decades. Even so, they are still much higher than those in the USA and European countries. This study can provide a basis for determining which IAPs to target in various indoor air quality standards and for estimating the health and economic benefits of various indoor air quality control approaches, which will help to reduce the adverse health effects of IAPs in China. FUNDING: The National Key Research and Development Program of China and the National Natural Science Foundation of China.


Assuntos
Poluentes Atmosféricos , Ozônio , Radônio , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Monóxido de Carbono/análise , Dióxido de Enxofre/análise , Benzeno/efeitos adversos , Benzeno/análise , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Formaldeído/análise , Efeitos Psicossociais da Doença , Material Particulado/análise , Radônio/análise , Ozônio/análise , Tolueno/análise
8.
Environ Monit Assess ; 195(12): 1507, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37987919

RESUMO

The proximity of fuel stations to the roads and the activities inside the station can contribute to PM and VOCs and impose health risks on station workers. The study presents the exposure and health risk assessment of the fuel station personnel to total volatile organic compounds (TVOCs) and particulate matter (PM) during refueling operations. TVOCs and PM monitoring were carried out at a fuel station in Chennai, India, for 1 week in March 2021, covering both weekdays and weekends. The health risks were assessed using EPA's health impact assessment methodology. Exposure to TVOCs (3177.39 ± 5450.32 µg/m3) exceeded the EPA standard of 5 µg/m3, by more than 500 times, peaking during refueling operations. The average concentrations of PM10, PM2.5, and PM1 were 76.55 ± 23.08 µg/m3, 41.81 ± 9 µg/m3, and 30.38 ± 7.56 µg/m3, respectively. The concentrations were observed to be high during morning and evening hours due to the increased traffic on the adjacent road and inside the fuel station. The synergistic health risks linked with long-term exposure to high concentrations of BTEX and PM were also estimated. At the fuel station, a significant contribution to the SOA formation potential was shown by toluene, followed by m-xylene, p-xylene, o-xylene, ethylbenzene, and benzene. Furthermore, the deposition of airborne particles in the workers' respiratory tract was calculated using the Multiple Path Particle Dosimetry model while considering the daily average exposure duration of 12 h. The results showed that 59% of PM10 particles were deposited in the head region, whereas 11% and 10% of PM2.5 and PM1 particles were deposited in the pulmonary region. Hence, the health risk assessment indicated no non-cancer risk of exposure to PM (hazard quotient = 0.13) to station personnel exposed regularly for 1 year. However, prolonged exposure to VOCs for more than 1 year can result in both carcinogenic and non-carcinogenic risk (hazard quotient = 0.045 and cancer risk > 10-6) in workers.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Índia , Benzeno/análise , Tolueno/análise , Medição de Risco , Compostos Orgânicos Voláteis/análise
9.
Chemosphere ; 345: 140518, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890789

RESUMO

BACKGROUND: Volatile organic compounds, mainly BTEX, are among the pollutants of concern in beauty salons and barbershops that threaten both staff personnel and clients' health. This study aimed to determine the concentration of BTEX in barbershops and beauty salons and assess the carcinogenic and non-carcinogenic risks based on the actual risk coefficients. Also, possible sources of BTEX were determined. METHOD: Samples were collected by passive sampling. Quantitative and qualitative measurements of BTEX compounds were performed using gas chromatography-mass spectrometry (GC-MASS). Subsequently, the health risks were assessed according to the US Environmental Protection Agency. SPSS24 software and positive matrix factorization (PMF) analysis were used for statistical analysis and source apportionment respectively. RESULTS: Toluene is the most abundant compound in beauty salons, with a maximum concentration of 219.4 (µg/m3) in beauty salons. Results indicated that the mean ELCR value estimated for benzene regarding female staff exposure (1.04 × 10-5) was higher than that for men (4.05 × 10-6). Also, ELCR values of ethylbenzene for staff exposure were 2.08 × 10-6 and 3.8 × 10-6 for men and women, respectively, and possess possible carcinogenesis risks. CONCLUSION: Use of solvents and cosmetic products, improper heating systems, and type of service are the sources that probably contribute to BTEX emissions in beauty salons. It is necessary to follow health guidelines and conduct continuous monitoring for their implementation, in addition to setting a mandated occupational regulation framework or air quality requirements, to improve the health conditions in beauty salons.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Masculino , Feminino , Humanos , Benzeno/análise , Xilenos/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição do Ar em Ambientes Fechados/análise , Derivados de Benzeno/análise , Tolueno/análise , Medição de Risco
10.
Huan Jing Ke Xue ; 44(10): 5418-5430, 2023 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-37827760

RESUMO

The situation of air pollution in Guanzhong Plain has been increasing in recent years; hence, it is very important to study the characteristics of volatile organic compounds (VOCs) and their health risks in urban functional zones. We analyzed 115 VOCs using gas chromatography-mass spectrometry/hydrogen ion flame detector (GC-MS/FID) and high performance liquid chromatography (HPLC) at four sampling sites in the traffic, comprehensive, industrial, and scenic zones of Baoji. We analyzed the main components and key species in the different functional zones. Ozone formation potential (OFP),·OH consumption rate (L·OH), and secondary organic aerosol formation potential (SOAFP) were used to evaluate the environmental impact, and the hazard index (HI) and lifetime cancer risk (LCR) methods were employed. The results revealed that the mean values of φ(TVOCs) in the traffic, comprehensive, industrial, and scenic zones were (59.63±23.85)×10-9, (42.92±11.88)×10-9, (60.27±24.09)×10-9, and (55.54±7.44)×10-9, respectively. The dominant contributors at the traffic zone were alkanes, and those at the other functional zones were OVOCs. Acetaldehyde, acetone, n-butane, and isopentane were abundant at different functional zones. According to the characteristic ratios of VOCs, the average ratio of toluene to benzene (T/B) at the traffic, comprehensive, industrial, and scenic zones were 1.84, 2.39, 1.28, and 1.64, respectively, and the ratio of iso-pentane to n-pentane (i/n) was mainly between 1 and 4. The results indicated that VOCs in Baoji were significantly affected by vehicle emissions and gasoline evaporation, biomass and coal combustion, and industrial coatings and foundry. The ratio of m/p-xylene to ethylbenzene (X/E) was lower than 2 at the four functional zones, and the minimum was 1.79 at the scenic zones; the results revealed that X/E was small, and the aging degree of air masses was high, indicating the influence of regional transport. According to the ratio of formaldehyde to acetaldehyde (C1/C2) and the ratio of acetaldehyde to propanal (C2/C3), it was suggested that there may have been evident anthropogenic emission sources, and the photochemical reaction had an important effect on aldehydes and ketones. Environmental impact assessment results revealed that OVOCs and alkenes contributed significantly to OFP and OFP from large to small was as follows:industrial zone>scenic zone>traffic zone>comprehensive zone. The range of L·OH in each functional zone was 8.77-15.82 s-1, with isoprene contributing the most in the industrial zone and acetaldehyde contributing the most at other functional zones. The SOAFP of each functional zone was as follows:scenic zone>comprehensive zone>traffic zone>industrial zone. Toluene, m/p-xylene, and isoprene were the notable species. According to the health risk assessment of EPA, the HI of toxic VOCs in all functional zones was lower than 1, which was at an acceptable level. However, the number of days with HI>1 in industrial zones accounted for 42.86% of the total sampling days, indicating a high risk. The lifetime carcinogenic risk (LCR) of the traffic, comprehensive, industrial, and scenic zones were 1.83×10-5, 1.21×10-5, 1.85×10-5, and 1.63×10-5, respectively, which were all in grade Ⅲ of the rating system, indicating a high probability of cancer risk. Species with LCR greater than 10-6 were formaldehyde; acetaldehyde; 1,2-dibromoethane; 1,2-dichloroethane; 1,2-dichloropropane; and chloroform.


Assuntos
Poluentes Atmosféricos , Neoplasias , Ozônio , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Emissões de Veículos/análise , Ozônio/análise , Tolueno/análise , Medição de Risco , Acetaldeído/análise , Formaldeído/análise , China
11.
J Chromatogr A ; 1708: 464320, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37669614

RESUMO

As production processes have evolved, airborne concentrations of benzene, toluene and xylene in many workplaces are already well below the occupational exposure limits. However, studies have shown that low levels of exposure to benzene, toluene and xylene can still cause health effects in people exposed occupationally. However, there is no literature on health risk assessment of internal exposure. In view of this, an analytical method based on quaternary amine-functionalized core-shell-shell magnetic polymers (QA-CSS-MPs) was developed for the determination of seven metabolites in urine by MSPE-UPLC-DAD-HRMS. Furthermore, an improved QuEChERS method for the extraction of seven metabolites from human urine samples was introduced for the first time and satisfactory extraction rates were achieved. In addition, QA-CSS-MPs microspheres with core-shell-shell structure were designed and synthesized, and the morphology, composition and magnetic properties of the materials were fully characterized to verify the rationality of the synthetic route. Subsequently, QA-CSS-MPs microspheres were used as magnetic solid-phase extraction (MSPE) adsorbents for the purification of urine extracts, and UPLC-DAD-HRMS was used for the detection of seven metabolites. As a result, this method allows the accurate determination of seven metabolites in urine samples over an ultra-wide concentration range (0.001-100 mg/L). Under optimal experimental conditions, i.e., 2% hydrochloric acid in urine for the hydrolysis and 20 mg of QA-CSS-MPs for 5 min purification, the spiked recoveries of the seven target metabolites ranged from 81.5% to 117.7% with RSDs of 1.0%-9.4%. The limits of detection (LODs, S/N≥3) for the established method were in the range of 0.2-0.3 µg/L. The developed method was applied to 254 human urine samples for the determination of seven metabolites. The results showed that the concentration distributions of three xylene metabolites in urine, 2-MHA, 3-MHA, 4-MHA and total MHA, showed statistically significant differences for occupational exposure (p<0.001). In addition, the results of the internal exposure assessment showed that there is a high potential health risk associated with occupational exposure processes.


Assuntos
Benzeno , Tolueno , Humanos , Xilenos , Aminas , Polímeros , Fenômenos Magnéticos
12.
Environ Monit Assess ; 195(9): 1080, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615789

RESUMO

This study assessed the levels of polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, and xylene (BTEX), and emerging contaminants in Chanomi Creek. Sediment samples were collected between March 2019 and July 2020 to evaluate the concentrations of PAH, BTEX, and emerging contaminants using GC-MS and GC-FID with Headspace extraction. Results indicated mean PAH concentrations were 22.691 ± 15.09 µg/kg. The highest individual PAH concentrations were fluorene (7.085 µg/kg), naphthalene (4.517 µg/kg), and phenanthrene (3.081 µg/kg). Carbazole (0.828 µg/kg) was discovered as a novel environmental toxin with dioxin-like toxicity and widespread prevalence in sediments. The most common congener (25%) was ethylbenzene, followed by toluene and ortho- and meta-xylene (21%) and benzene (13%). The analysis of diagnostic ratios revealed that the main factors responsible for the presence of PAHs in the study area are the residential use of firewood, emissions from industrial activities, bush burning, and petroleum slicks. The risk assessment indicated that most PAHs exceeded the permissible risk quotient values, suggesting a moderate to high ecological risk. However, cutaneous exposure to PAHs and BTEX was found to have minimal impact on human health, with no significant hazards identified in adults and children. Nevertheless, the study revealed low cancer risks associated with PAH and BTEX compounds for both age groups. The continued discharge of PAHs and BTEX compounds into Chanomi Creek could have significant long-term negative effects on human and aquatic health. Thus, contamination risk awareness programs and the development of stringent contextual thresholds for identified contaminants could enhance environmental and public health protection.


Assuntos
Benzeno , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Criança , Humanos , Tolueno , Xilenos , Nigéria , Níger , Monitoramento Ambiental , Medição de Risco
13.
Bull Environ Contam Toxicol ; 111(2): 25, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572109

RESUMO

The existence of several industries in Zarand, a city in Southeastern Iran, caused challenges for the residents about air pollutants and associated health effects. In the present study, the concentration of benzene, toluene, ethylbenzene, and xylene (BTEX), spatio-temporal distribution and related health risks were evaluated. Passive samplers were used to collect 30 samples in the over the hot and cold periods in 2020. The ordinary Kriging method was used to predict the spatio-temporal distribution of BTEXs. Also, the Monte Carlo simulation was used to evaluate the related carcinogenic and non-carcinogenic risks of BTEX for adults. The ranking of mean concentration of overall toluene, xylene, ethylbenzene, and benzene followed as 82.49 ± 26.86, 30.91 ± 14.04, 4.75 ± 3.28, and 0.91 ± 0.18 µg/m3, respectively. The mean value of lifetime carcinogenic risk (LTCR) for residents related to benzene was 7.52 × 10- 6, indicating a negligible carcinogenic risk for them. Furthermore, the ranking of non-carcinogenic risk calculated through hazard quotient (HQ) for investigated BTEX compounds followed as xylene > benzene > toluene > ethylbenzene over the hot period and xylene > toluene > ethylbenzene over the cold period which all points had HQ < 1. Additionally, according to the findings of the sensitivity analysis, the concentration of benzene was the main contributor in increasing the carcinogenic risk. According to our results, it can be stated that the existence of several industries in the study area could not possibly occur the significant carcinogenic and non-carcinogenic risks to the adults residents in the study period. Human studies are recommended to determine definite results.


Assuntos
Poluentes Atmosféricos , Benzeno , Adulto , Humanos , Benzeno/análise , Xilenos/análise , Tolueno/análise , Irã (Geográfico) , Monitoramento Ambiental/métodos , Derivados de Benzeno/análise , Poluentes Atmosféricos/análise , Carcinógenos/análise , Medição de Risco
14.
J Breath Res ; 17(4)2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37567168

RESUMO

Solid-phase sorption is widely used for the analysis of gaseous specimens as it allows at the same time to preconcentrate target analytes and store samples for relatively long periods. The addition of internal standards (ISs) in the analytical workflow can greatly reduce the variability of the analyses and improve the reliability of the protocols. In this work, we describe the development and testing of a portable system for the reliable production of gaseous mixture of8D-Toluene in a 1L Silonite canister as well as its reproducible loading into solid-phase sorbing tools as ISs. The portable system was tested using needle trap microextraction, solid-phase extraction, and thin-film microextraction techniques commonly employed for the analysis of gaseous samples. Even though our specific interest is in breath analysis, the system can also be used for the collection of any kind of gaseous specimen. A microcontroller allows the fine control of the sampling flow by a digital mass flow controller. Flow rate and sample volume could be set either through a rotary encoder mounted onto the control board or through a dedicated android app. The variability of the airflow is in the range 5-200 ml min-1and it is lower than 1%, whereas the variability of the IS (8D-Toluene) concentration dispensed over time by the loader measured by selected-ion flow-tube mass spectrometry (MS) is <3%. This combination resulted in intra- and inter-day precision of the amount loaded in the sorbent tools lower than 15%. No carry-over was detected in the loader after the delivery of the8D-Toluene measured by gas chromatography-MS. The8D-Toluene concentration in the canister was stable for up to three weeks at room temperature.


Assuntos
Testes Respiratórios , Microextração em Fase Sólida , Humanos , Microextração em Fase Sólida/métodos , Reprodutibilidade dos Testes , Cromatografia Gasosa-Espectrometria de Massas/métodos , Tolueno/análise , Gases
15.
J Occup Environ Hyg ; 20(11): 495-505, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37540163

RESUMO

Asian and Asian Americans (A/AA) are a group overlooked in general health outcomes but especially occupational safety and health outcomes. In the United States, the beauty service microbusiness industry (e.g., nail salons) predominantly employs immigrant Asian women who regularly encounter a plethora of occupational hazards (e.g., harmful chemical exposures -toluene, formaldehyde, bloodborne pathogens, fungi. However, due to the precariousness of beauty service jobs, cultural and linguistic barriers, and social determinants of health, A/AA beauty service workers face complex occupational safety and health challenges that require interdisciplinary collaboration and cultural competency to address. This commentary will discuss a multi-level approach including specific outreach partners that will offer the required diverse skillsets necessary for improving the occupational safety and health for this worker population in this microbusiness industry. Implications and suggestions for interventions and policy changes are also recommended utilizing the National Institute on Minority Health and Health Disparities' Research Framework.


Assuntos
Exposição Ocupacional , Saúde Ocupacional , Humanos , Feminino , Estados Unidos , Asiático , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise , Indústria da Beleza , Tolueno/análise
16.
J Air Waste Manag Assoc ; 73(9): 679-694, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37463235

RESUMO

Due to the production of volatile organic compounds (VOCs), large-scale composting can cause air pollution and occupational health issues. Due to this, it is necessary to determine if the amount generated poses a health risk to plant workers, which can be a starting point for those in charge of composting plant facilities. As a result, the goal of this work is to conduct a thorough analysis of both the physicochemical features and the VOC generation of three large-scale systems. For ten weeks, the three different composting plants were monitored weekly, and VOC identification and quantification were performed using GC-MS gas chromatography. It has been observed that the biggest risk related with VOC formation occurs between the fourth and fifth weeks, when microbial activity is at its peak. Similarly, it has been demonstrated that xylenes and toluene are the ones that are produced in the greatest quantity. Finally, after ten weeks of processing, it was discovered that the material obtained complies with the regulations for the sale of an amendment.Implications: The evaluation and monitoring of the composting processes at an industrial scale is very important, due to the implications they bring. VOCs are produced by the operation of composting facilities with substantial amounts of solid waste, such as the companies in this study. These may pose a health risk to those working in the plants; thus, it is critical to understand where the VOCs occur in the process in order to maintain workers' occupational health measures. This form of evaluation is rare or nonexistent in Colombia, which is why conducting this type of study is critical, as it will provide crucial input into determining when the highest levels of VOC generation occur. These are the ones that may pose a risk at some point, but with proper occupational safety planning, said risk may be avoided. This work has evaluated three composting systems, with different types of waste and mixtures. According to reports, while composting systems continue to produce VOCs and their generation is unavoidable, the potential risk exists only within the plant. These findings can pave the way for the implementation of public policies that will improve the design and operation of composting plants. There is no specific legislation in Colombia for the design and execution of this sort of technology, which allows the use of organic waste.


Assuntos
Compostagem , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Resíduos Sólidos/análise , Tolueno/análise , Xilenos/análise
17.
Asian Pac J Cancer Prev ; 24(7): 2245-2252, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37505753

RESUMO

OBJECTIVE: This study was performed to assessment the health and carcinogenic risk of exposure to by-products of photocatalytic degradation of toluene in a spouted bed reactor Equipped with porous and non-porous draft tube. METHODS: For this purpose, titanium dioxide nanoparticles were used as photocatalysts and UV lamps as radiation sources. Degradation efficiency and CO2 selectivity were compared. By-products were also detected in three spouted bed reactors with and without a porous and non-porous draft tube. RESULT: The results revealed that the degradation efficiency of toluene in the spouted bed reactor without a draft tube was 30.75%. The insertion of porous and non-porous draft tubes in the spouted bed reactor increased the degradation efficiency up to 54.88% and 47.63%, respectively. Meantime, CO2 selectivity decreased from 100% to 50.8% within 180 min irradiation time in the spouted bed reactor without draft tube, while in the spouted bed reactors with porous and non-porous draft tube maintained at 89.85% and 84.35%, respectively. Toluene and four by-products with carcinogenic and non-carcinogenic risk of 0.002176 and 182.2, respectively, were detected in the spouted bed reactors without draft tube. However, no by-products with carcinogenic risk were found in the spouted bed reactor with porous and non-porous draft tube. CONCLUSION: photocatalytic degradation of toluene in a spouted bed reactor without a draft tube produces by-products with health and carcinogenic risks. The insertion of a porous and non-porous draft tube in spouted bed reactors provided mineralization more complete than spouted bed reactor without a draft tube by reducing the dead zone and providing appropriate contact between the toluene, photocatalyst, and UV. Therefore, prevent the formation of dangerous and carcinogenic by-products.


Assuntos
Carcinógenos , Tolueno , Humanos , Dióxido de Carbono , Catálise , Titânio
18.
Sci Rep ; 13(1): 10670, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393319

RESUMO

The summer and winter concentrations of BTEX pollutants were investigated in various workplaces of an oil Refinery, Iran. In total 252 air samples from the breathing zones of the following employees were collected: supervisors, safetymen, repairmen, site men, and all workers. Carcinogenic and non-carcinogenic risk values were calculated based on the USEPA methodology using Monte Carlo simulations. BTEX concentrations were higher in the summer than in the winter season for all workstations, especially for toluene and ethylbenzene. The mean values of exposure to benzene for repairmen and site men were higher than threshold limit value of 1.60 mg/m3 for both seasons. Non-carcinogenic risk (HQ) values calculated for summer season for benzene, ethylbenzene, and xylene in all workstations, as well as for toluene for repairmen and site men exceeded acceptable level of 1. In winter season the mean HQ values for benzene and xylene in all workstations, for toluene for repairmen and site men, and for ethylbenzene for supervisors, repairmen, and site men were also > 1. For all workstations definite carcinogenic risk was indicated as calculated LCR values for benzene and ethylbenzene exposure were higher than 1 × 10-4 in both summer and winter seasons.


Assuntos
Benzeno , Xilenos , Masculino , Humanos , Estações do Ano , Medição de Risco , Carcinogênese , Carcinógenos , Tolueno , Indústria de Petróleo e Gás
19.
Environ Sci Pollut Res Int ; 30(33): 80791-80806, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37306882

RESUMO

The adsorbent MIL-101, a metal-organic framework material, was synthesized, characterized, and tested for removal of relatively low concentrations of benzene and toluene adsorbates (200 ppm) from a gas phase in a continuous flow system. Breakthrough studies were modeled based on Thomas, Yoon-Nelson, Yan, Clark, Bohart-Adams, bed-depth service time, modified dose response, Wolborska, and Gompertz in the continuous fixed-bed operation. Through statistical analysis, it was determined which type of regression is most suitable for the studied models, linear or nonlinear. By comparing the values of error functions, it was possible to infer that the Thomas model is the best match for the experimental breakthrough curves for benzene (with maximum solid-phase concentration qT=126,750 mg/g) and the Gompertz model for toluene (parameter ß=0.01 min-1). Overall, when compared to the model parameters of the linear regression, those obtained through nonlinear regression show a stronger correlation with the results found experimentally. Thus, this type of regression is more suitable for the adsorption model analysis. The liquid film and intraparticle diffusion analysis was described, and it was suggested that both types of diffusion contribute to the adsorption mechanism of benzene and toluene on MIL-101. As for the isotherms, the adsorption process was better fitted by the Freundlich isotherm. The reusability of MIL-101 after six cycles was 76.5% for benzene and 62.4% for toluene, indicating that MIL-101 was a better adsorbent for the removal of benzene in comparison with toluene.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Purificação da Água , Benzeno , Adsorção , Tolueno , Purificação da Água/métodos
20.
Environ Sci Pollut Res Int ; 30(30): 75989-76001, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37233938

RESUMO

The health risk and burden of disease induced by exposure to benzene, toluene, ethylbenzene, and xylene (BTEX) in the outdoor air in Tehran, 2019 were assessed based on the data of five fixed stations with weekly BTEX measurements. The non-carcinogenic risk, carcinogenic risk, and disease burden from exposure to BTEX compounds were determined by hazard index (HI), incremental lifetime cancer risk (ILCR), and disability-adjusted life year (DALY), respectively. The average annual concentrations of benzene, toluene, ethylbenzene, and xylene in the outdoor air in Tehran were 6.59, 21.62, 4.68, and 20.88 µg/m3, respectively. The lowest seasonal BTEX concentrations were observed in spring and the highest ones occurred in summer. The HI values of BTEX in the outdoor air in Tehran by district ranged from 0.34 to 0.58 (less than one). The average ILCR values of benzene and ethylbenzene were 5.37 × 10-5 and 1.23 × 10-5, respectively (in the range of probable increased cancer risk). The DALYs, death, DALY rate (per 100,000 people) and death rate (per 100,000 people) induced by BTEX exposure in the outdoor air in Tehran were determined to be 180.21, 3.51, 2.07, and 0.04, respectively. The five highest attributable DALY rates in Tehran by district were observed in the districts 10 (2.60), 11 (2.43), 17 (2.41), 20 (2.32), and 9 (2.32), respectively. The corrective measures such as controlling road traffic and improving the quality of vehicles and gasoline in Tehran could reduce the burden of disease from BTEX along with the health effects of other outdoor air pollutants.


Assuntos
Poluentes Atmosféricos , Neoplasias , Humanos , Benzeno/análise , Xilenos/análise , Tolueno/análise , Irã (Geográfico) , Monitoramento Ambiental , Derivados de Benzeno/análise , Poluentes Atmosféricos/análise , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA