Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 619(7969): 300-304, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316658

RESUMO

Photosynthesis is generally assumed to be initiated by a single photon1-3 from the Sun, which, as a weak light source, delivers at most a few tens of photons per nanometre squared per second within a chlorophyll absorption band1. Yet much experimental and theoretical work over the past 40 years has explored the events during photosynthesis subsequent to absorption of light from intense, ultrashort laser pulses2-15. Here, we use single photons to excite under ambient conditions the light-harvesting 2 (LH2) complex of the purple bacterium Rhodobacter sphaeroides, comprising B800 and B850 rings that contain 9 and 18 bacteriochlorophyll molecules, respectively. Excitation of the B800 ring leads to electronic energy transfer to the B850 ring in approximately 0.7 ps, followed by rapid B850-to-B850 energy transfer on an approximately 100-fs timescale and light emission at 850-875 nm (refs. 16-19). Using a heralded single-photon source20,21 along with coincidence counting, we establish time correlation functions for B800 excitation and B850 fluorescence emission and demonstrate that both events involve single photons. We also find that the probability distribution of the number of heralds per detected fluorescence photon supports the view that a single photon can upon absorption drive the subsequent energy transfer and fluorescence emission and hence, by extension, the primary charge separation of photosynthesis. An analytical stochastic model and a Monte Carlo numerical model capture the data, further confirming that absorption of single photons is correlated with emission of single photons in a natural light-harvesting complex.


Assuntos
Complexos de Proteínas Captadores de Luz , Fótons , Fotossíntese , Rhodobacter sphaeroides , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Fluorescência , Processos Estocásticos , Método de Monte Carlo
2.
J Phys Chem Lett ; 13(38): 8845-8850, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36112145

RESUMO

The excited state dynamics in two fully characterized pyridoneBODIPY-fullerene complexes were investigated using time-resolved spectroscopy. Photoexcitation was initially localized on the pyridoneBODIPY chromophore. The energy was rapidly transferred to the fullerene, which subsequently underwent ISC to form a triplet state and returned the energy to the pyridoneBODIPY via triplet-triplet energy transfer. This ping-pong energy transfer mechanism resulted in efficient (>85%) overall conversion of the excited state pyridoneBODIPY constituent despite a complete lack of ISC in the pyridoneBODIPY in the absence of the fullerene partner. The small difference in attachment chemistry for the fullerene did not impact the initial singlet energy transfer. However, the N-methylpyrrolidine bridge did slow both the triplet-triplet energy transfer and the ultimate relaxation rate of the final triplet state when compared to an isoxazole-based bridge. The rates of each step were quantified, and computational predictions were used to complement the proposed mechanism and energetics. The result demonstrated efficient triplet sensitization of a strong chromophore that lacks significant spin-orbit coupling.


Assuntos
Fulerenos , Serviços Terceirizados , Transferência de Energia , Isoxazóis , Análise Espectral
3.
Methods Mol Biol ; 2525: 239-257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836073

RESUMO

Proteins play an important part in almost all life activities and across all organisms. Proteins occasionally act on their own but rather fulfill most of their biological tasks by cooperating with other proteins or ligand molecules. The bioluminescence resonance energy transfer (BRET) assay serves to measure dynamic events such as protein-protein or protein-ligand interactions in vitro or in-vivo. With several inherent attributes such as rapid and fairly sensitive ratio-metric measurements, assessment of interactions irrespective of protein location within the cellular compartment, cost-effectiveness consenting to high-throughput screening compatibility, makes BRET a popular genetic reporter-based assay system for protein-protein interaction (PPI) studies. Based on the Förster principle, BRET allows to judge if the proximity has been achieved between the interacting partners. In recent years, the BRET application has emerged as a significantly versatile assay format by using multiple detection devices such as a plate reader or in-vivo optical imaging platform, or even a bioluminescence microscope has expanded its scope for advancing PPI studies. Beyond the scope of quantitative measurement of PPIs, molecular optical imaging applications based on BRET assay have expanded the scope for screening pharmacological compounds by unifying live cell and in-vivo animal-/plant-based experiments using the same platform technology. In this chapter, we have given intricate methodological details for performing in-vitro and in-vivo BRET experiments, primarily by using donor/acceptor reporter protein combinations.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Medições Luminescentes , Animais , Bioensaio , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Transferência de Energia , Ligantes , Medições Luminescentes/métodos , Proteínas
4.
J Chem Phys ; 156(14): 144303, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35428398

RESUMO

The transport of free electrons in a water environment is still poorly understood. We show that additional insight can be brought about by investigating fragmentation patterns of finite-size particles upon electron impact ionization. We have developed a composite protocol aiming to simulate fragmentation of water clusters by electrons with kinetic energies in the range of up to 100 eV. The ionization events for atomistically described molecular clusters are identified by a kinetic Monte Carlo procedure. We subsequently model the fragmentation with classical molecular dynamics simulations, calibrated by non-adiabatic quantum mechanics/molecular mechanics simulations of the ionization process. We consider one-electron ionizations, energy transfer via electronic excitation events, elastic scattering, and also the autoionization events through intermolecular Coulombic decay. The simulations reveal that larger water clusters are often ionized repeatedly, which is the cause of substantial fragmentation. After losing most of its energy, low-energy electrons further contribute to fragmentation by electronic excitations. The simultaneous measurement of cluster size distribution before and after the ionization represents a sensitive measure of the energy transferred into the system by an incident electron.


Assuntos
Elétrons , Água , Simulação por Computador , Transferência de Energia , Método de Monte Carlo
5.
Sci Total Environ ; 802: 149750, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454158

RESUMO

The continuous growing demand for fossil fuel puts an enormous pressure on finding a better replacement. This research paper explores the detailed information on the improved production, emission and performance characteristics of the distinct bio-oil derived from the micro algae of Schizochytrium. The algae were grown in the artificial seawater with enough nitrogen supply at the required standard conditions. The lipid growth and production of the bio-oil were monitored closely and measured. Different fuel blends were used at different concentrations as B0 (100% Diesel), B10 (10% schizochytrium biofuel +90% diesel), B20 (20% schizochytrium biofuel +80% diesel) and B30 (30% schizochytrium biofuel +70% diesel). A small single cylinder, four stroke diesel engine was used to conduct the tests. All tests were conducted at different speed conditions of 1200 rpm to 2100 rpm in six intervals. The performance qualities of bio-oil such as CO, NOX, and smoke and CO2 emission along with the performance qualities of brake thermal efficiency and brake specific fuel consumption. Form the results, the Schizochytrium microalgae bio-oil as the bio fuel for diesel engines in the moderate level showed the improved performance by increasing the BTE and reducing the harmful gas emissions except NOX. However, the emission level of NOX was slightly higher than the diesel emitted value. The difference between them was negligible.


Assuntos
Biocombustíveis , Gasolina , Monóxido de Carbono/análise , Transferência de Energia , Óxidos de Nitrogênio/análise , Emissões de Veículos
6.
Chemosphere ; 290: 133267, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34914963

RESUMO

The adverse outcome pathway (AOP) has been recently proposed as an effective framework for chemical risk assessment. The AOP framework offers the advantage of effectively integrating individual in vitro studies and in silico prediction models. Thus, the development of an effective testing method to measure key events caused by chemicals is essential for chemical risk assessment through a fully developed AOP framework. We developed a human cell-based estrogen receptor α (ERα) dimerization assay using the bioluminescence resonance energy transfer (BRET) technique and evaluated the ERα dimerization activities of 72 chemicals. Fifty-one chemicals were identified to mediate dimerization of ERα, and the BRET-based ERα dimerization assay could effectively measure the events that mediated dimerization of ERα by the estrogenic chemicals. These results were compared with the results of pre-existing assay to determine whether the BRET-based ERα dimerization assay could be employed as an in vitro test method to provide scientific information for explaining key events as a part of the AOP framework. Consequently, we propose that the BRET-based ERα dimerization assay is suitable for measuring the chemical-mediated dimerization of ERα, a key event in the AOP framework for cellular-level risk assessment of estrogenic chemicals.


Assuntos
Rotas de Resultados Adversos , Disruptores Endócrinos , Dimerização , Disruptores Endócrinos/toxicidade , Transferência de Energia , Receptor alfa de Estrogênio/metabolismo , Humanos
7.
Sensors (Basel) ; 21(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833520

RESUMO

Piezoelectric energy harvesting (PEH) is studied in the case of a low-velocity impact of a rigid mass on a composite beam. A methodology is outlined, encompassing modelling of the open-circuit impact response in a finite element (FE) package, formulation of a lumped parameter (LP) model for the piezoelectric transducer connected with the harvesting circuit, and experimental verification of the impact using a custom portable configuration with impactor motion control. The subcircuit capacitor charging effect, the impactor mass and velocity on the harvesting subcircuit response, and the obtained output power are quantified. The results indicate that the current methodology can be used as a design tool for the structure and the harvesting circuit to achieve power output from composite beams with piezoelectric patches under impact conditions.


Assuntos
Transdutores , Vibração , Transferência de Energia , Desenho de Equipamento , Fenômenos Físicos
8.
Appl Radiat Isot ; 178: 109972, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34649094

RESUMO

Gel dosimeters, including radiochromic types like Fricke, as well as polymer formulations, are considered to be the only reliable option for accurate 3D dosimetry. Nevertheless, their implementation in daily clinical quality assurance still remains strongly limited for a few high specialized radiotherapy centres. Although gel dosimeters present very good water-equivalence due to their inherent chemical and isotopic compositions, addressing the corresponding dosimetry outputs is highly challenging, needing careful assessment in terms of the different radiation qualities involved in the mixed field. Accurate estimations of the linear energy transfer for each gel dosimeter formulation stands as a baseline for further accurate dose deconvolution in mixed radiation fields. The present study reports on the linear energy transfer characterization of five different gel dosimeter formulations, Fricke, Itabis, Magic, Nipam, and Pagat, for electron and proton therapeutic beams as obtained by Monte Carlo approaches, along with experimental results for validation purposes. The linear energy transfer, as a function of beam quality and penetration depth, is obtained for electron and proton therapeutic beams remarking the presence of non-negligible variations, which need to be accounted for a further accurate implementation of gel dosimetry as well as for precise dose deconvolution in mixed radiation fields.


Assuntos
Elétrons , Transferência de Energia , Géis , Prótons , Radiometria/métodos , Método de Monte Carlo
9.
Phys Chem Chem Phys ; 23(42): 24505-24517, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34700331

RESUMO

In this study, we investigated an experimental and Monte-Carlo computational characterization of self-assembled antennae built using CdTe colloidal quantum dots (QDs). These clusters provide efficient excitation of phycocyanine (PC) or phycobilisomes (PBSs). PBSs are light-harvesting complexes (LHCs) of cyanobacteria, made of several PC units, organized in disks and rods. Each PC contains three separate cofactors. Therefore, we analyzed variations in multi-donor and multi-acceptor systems. The self-assembled QD clusters were formed mostly by electrostatic interactions, possibly due to the introduction of a positive charge on an originally negatively charged nanoparticle surface. Our results suggest that PC may accept energy from multiple nanoparticles localized at a distance significantly longer than the Förster radius. The excitation transfers between particular nanoparticles with possible delocalization. The maximal energy transfer efficiency was obtained for the PC/PBS : QD ratio from 1 to 20 depending on the QD size. This cannot be fully explained using computational simulations; hence, we discussed the hypothesis and explained the observations. Our self-assembled systems may be considered for possible applications in artificial light-harvesting systems because absorption spectra of QDs are different from the absorption characteristics of PC/PBS. In addition, huge clusters of QDs may effectively increase the optical cross-section of so-created nanohybrids.


Assuntos
Compostos de Cádmio/química , Ficobilissomas/química , Ficocianina/química , Pontos Quânticos/química , Telúrio/química , Coloides/química , Transferência de Energia , Método de Monte Carlo
10.
J Phys Chem Lett ; 12(29): 6967-6973, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34283617

RESUMO

In photosynthesis, the efficiency with which a photogenerated exciton reaches the reaction center is dictated by chromophore energies and the arrangement of chromophores in the supercomplex. Here, we explore the interplay between the arrangement of light-harvesting antennae and the efficiency of exciton transport in purple bacterial photosynthesis. Using a Miller-Abrahams-based exciton hopping model, we compare different arrangements of light-harvesting proteins on the intracytoplasmic membrane. We find that arrangements with aggregated LH1s have a higher efficiency than arrangements with randomly distributed LH1s in a wide range of physiological light fluences. This effect is robust to the introduction of defects on the intracytoplasmic membrane. Our result explains the absence of species with aggregated LH1 arrangements in low-light niches and the large increase seen in the expression of LH1 dimer complexes in high fluences. We suggest that the effect seen in our study is an adaptive strategy toward solar light fluence across different purple bacterial species.


Assuntos
Proteínas de Bactérias/química , Membrana Celular/química , Complexos de Proteínas Captadores de Luz/química , Proteobactérias/química , Transferência de Energia , Método de Monte Carlo , Fotossíntese/fisiologia
11.
BMC Cardiovasc Disord ; 20(1): 355, 2020 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-32741356

RESUMO

BACKGROUND: Patients with chronic kidney disease (CKD) experience abnormality of intracardiac blood flow status during early-stages of disease. Left ventricular energy loss (EL) derived from vector flow mapping (VFM) represents fluid energy lost as heat in left ventricle and had been used to detect intracardiac blood flow efficiency. We aimed to evaluate the left ventricular EL in stage 1-3 CKD patients, and explored whether hypertension, a main cardiovascular risk, deteriorate the abnormality of intracardiac blood flow status. METHODS: Transthoracic echocardiography was performed in 41 controls and 48 patients with stages 1-3 CKD. CKD patients consisted a subgroup with no hypertension, a subgroup with well-controlled hypertension and a subgroup with poorly controlled hypertension. The EL were calculated in the left ventricle using VFM analysis from the apical 3-chamber view. Furthermore, the correlation and stepwise multiple regression analysis were used to explore the potential independent predictors of left ventricular EL. RESULTS: Compared with controls, stage 1-3 CKD patients showed increased left ventricular EL during total diastole, late diastole, total systole, isovolumic contraction and ejection. CKD patients with poorly controlled hypertension had higher left ventricular EL compared to the other CKD subgroups. Additionally, the ratio of mitral early filling wave peak velocity and early mitral annular peak velocity on septal side, mitral early filling wave peak velocity, and left ventricular mass index were independent predictors of the diastolic EL; whereas systolic blood pressure and left ventricular mass index were independent predictors of the systolic EL. CONCLUSIONS: Left ventricular EL was a useful echocardiographic parameter to evaluate the impaired intracardiac blood flow efficiency in patients with stages 1-3 CKD. Hypertension was a crucial contributor for intracardiac blood flow abnormality. This study might provide valuable clinical data to discern cardiac dysfunction and reduce the cardiovascular risk in early-stage CKD.


Assuntos
Ecocardiografia Doppler em Cores , Metabolismo Energético , Cardiopatias/diagnóstico por imagem , Insuficiência Renal Crônica/complicações , Função Ventricular Esquerda , Adulto , Pressão Sanguínea , Estudos de Casos e Controles , Estudos Transversais , Transferência de Energia , Feminino , Cardiopatias/etiologia , Cardiopatias/fisiopatologia , Temperatura Alta , Humanos , Hipertensão/complicações , Hipertensão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Valor Preditivo dos Testes , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/fisiopatologia , Reprodutibilidade dos Testes
12.
Int J Radiat Biol ; 96(6): 767-778, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32052675

RESUMO

Purpose: Interaction of ionizing radiations with cells leads to single- and double-strand breaks (SSBs and DSBs) as well as base lesions of DNA. Employing the Geant4-DNA toolkit, we simulated the transportation of primary alphas and secondary particles in liquid water to study the damage in the form of SSBs and DSBs.Materials and Methods: Simulations were performed in a spherical water medium, where we used a B-DNA model and classified the DNA damage and its complexity. We assumed that in a certain vicinity of the DNA volume, energy depositions of more than 17.5 eV or hydroxyl radicals with a chemical-reaction probability of 0.13 would lead to strand breaks.Results: The results of 2 to 20 MeV alpha particles showed that more than 65% of the energy-deposition cases within the DNA volume would result in a form of break. The frequency pattern of higher-complexity damage types appeared to peak at higher deposited energies. Conclusion: We observed a reasonable agreement in terms of trend and value between our DSB yield results and experimental data. The yield results, as function of LET, suggested independence from particle type and converge to some extent at large LET. This manifests the dominant contribution of secondary electrons.


Assuntos
Partículas alfa/uso terapêutico , Dano ao DNA , Elétrons/uso terapêutico , Método de Monte Carlo , Terapia com Prótons , Transferência de Energia
14.
PLoS One ; 14(3): e0213333, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30883549

RESUMO

This paper addresses the problem of energy management of mixed criticality applications in a multi-core partitioned architecture. Instead of focusing on new scheduling algorithms to adjust frequency in order to save energy, we propose a partition to CPU allocation that takes into account not only the different frequencies at which the CPU can operate but the level of criticality of the partitions. The goal is to provide a set of pre-calculated allocations, called profiles, so at run time the system can switch to different modes depending on the battery level. These profiles achieve different levels of energy saving and performance applying different strategies. We also present a comparison in terms of energy saving of the most used bin-packing algorithms for partition allocation. As this is an heuristic, it is not possible to ensure that our results involve the minimum energy consumption. For this reason, we also provide a comparison with a exact method, such as constraint programming.


Assuntos
Algoritmos , Simulação por Computador , Transferência de Energia , Alocação de Recursos
15.
Molecules ; 23(8)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061508

RESUMO

In this paper, the interaction between bovine lactoferrin (bLf) and tetracycline hydrochloride (TCH) was researched by microscale thermophoresis (MST), multi-spectroscopic methods, and molecular docking techniques. Normal fluorescence results showed that TCH effectively quenched the intrinsic fluorescence of bLf via static quenching. Moreover, MST confirmed that the combination force between bLf and TCH was very strong. Thermodynamic parameters and molecular docking further revealed that electrostatic forces, van der Waals, and hydrogen bonding forces played vital roles in the interaction between bLf and TCH. The binding distance and energy transfer efficiency between TCH and bLf were 2.81 nm and 0.053, respectively. Moreover, the results of circular dichroism spectra (CD), ultraviolet visible (UV-vis) absorption spectra, fluorescence Excitation-Emission Matrix (EEM) spectra, and molecular docking verified bLf indeed combined with TCH, and caused the changes of conformation of bLf. The influence of TCH on the functional changes of the protein was studied through the analysis of the change of the bLf surface hydrophobicity and research of the binding forces between bLf and iron ion. These results indicated that change in the structure and function of bLf were due to the interaction between bLf and TCH.


Assuntos
Ferro/química , Lactoferrina/química , Simulação de Acoplamento Molecular , Tetraciclina/química , Animais , Bovinos , Transferência de Energia , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Imagem Óptica , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Soluções , Espectrometria de Fluorescência , Eletricidade Estática , Termodinâmica
16.
Nat Chem ; 10(9): 981-988, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30082884

RESUMO

Sulfur-containing molecules participate in many essential biological processes. Of utmost importance is the methylthioether moiety, present in the proteinogenic amino acid methionine and installed in tRNA by radical-S-adenosylmethionine methylthiotransferases. Although the thiol-ene reaction for carbon-sulfur bond formation has found widespread applications in materials or medicinal science, a biocompatible chemo- and regioselective hydrothiolation of unactivated alkenes and alkynes remains elusive. Here, we describe the design of a general chemoselective anti-Markovnikov hydroalkyl/aryl thiolation of alkenes and alkynes-also allowing the biologically important hydromethylthiolation-by triplet-triplet energy transfer activation of disulfides. This fast disulfide-ene reaction shows extraordinary functional group tolerance and biocompatibility. Transient absorption spectroscopy was used to study the sensitization process in detail. The hereby gained mechanistic insights were successfully employed for optimization of the catalytic system. This photosensitized transformation should stimulate bioimaging applications and carbon-sulfur bond-forming late-stage functionalization chemistry, especially in the context of metabolic labelling.


Assuntos
Alcenos/química , Dissulfetos/química , Alcinos/química , Carbono/química , Catálise , Transferência de Energia , Irídio/química , Luz , Cadeias de Markov , Estereoisomerismo , Enxofre/química
17.
Eur J Pharm Biopharm ; 127: 159-170, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29476909

RESUMO

The continuous freeze-drying concept based on spinning the vials during freezing and on non-contact energy transfer via infrared (IR) radiation during drying, improves process efficiency and product quality (uniformity) compared to conventional batch freeze-drying. Automated control of this process requires the fundamental mechanistic modelling of each individual process step. Therefore, a framework is presented for the modelling and control of the continuous primary drying step based on non-contact IR radiation. The IR radiation emitted by the radiator filaments passes through various materials before finally reaching the spin frozen vial. The energy transfer was computed by combining physical laws with Monte Carlo simulations and was verified with experimental data. The influence of the transmission properties of various materials on the emitted IR radiation profile was evaluated. These results assist in the selection of proper materials which could serve as IR window in the continuous freeze-drying prototype. The modelling framework presented in this paper fits the model-based design approach used for the development of this prototype and shows the potential benefits of this design strategy by establishing the desired engineering parameters and by enabling the engineer to assess mechanical tolerances and material options.


Assuntos
Liofilização/métodos , Composição de Medicamentos/métodos , Transferência de Energia , Congelamento , Raios Infravermelhos , Método de Monte Carlo
18.
PLoS Biol ; 16(1): e2003446, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29315309

RESUMO

Global warming and ocean acidification are forecast to exert significant impacts on marine ecosystems worldwide. However, most of these projections are based on ecological proxies or experiments on single species or simplified food webs. How energy fluxes are likely to change in marine food webs in response to future climates remains unclear, hampering forecasts of ecosystem functioning. Using a sophisticated mesocosm experiment, we model energy flows through a species-rich multilevel food web, with live habitats, natural abiotic variability, and the potential for intra- and intergenerational adaptation. We show experimentally that the combined stress of acidification and warming reduced energy flows from the first trophic level (primary producers and detritus) to the second (herbivores), and from the second to the third trophic level (carnivores). Warming in isolation also reduced the energy flow from herbivores to carnivores, the efficiency of energy transfer from primary producers and detritus to herbivores and detritivores, and the living biomass of detritivores, herbivores, and carnivores. Whilst warming and acidification jointly boosted primary producer biomass through an expansion of cyanobacteria, this biomass was converted to detritus rather than to biomass at higher trophic levels-i.e., production was constrained to the base of the food web. In contrast, ocean acidification affected the food web positively by enhancing trophic flow from detritus and primary producers to herbivores, and by increasing the biomass of carnivores. Our results show how future climate change can potentially weaken marine food webs through reduced energy flow to higher trophic levels and a shift towards a more detritus-based system, leading to food web simplification and altered producer-consumer dynamics, both of which have important implications for the structuring of benthic communities.


Assuntos
Mudança Climática/economia , Cianobactérias/crescimento & desenvolvimento , Cadeia Alimentar , Adaptação Fisiológica , Animais , Organismos Aquáticos , Biomassa , Simulação por Computador , Cianobactérias/metabolismo , Ecologia , Ecossistema , Transferência de Energia , Aquecimento Global/economia , Homeostase
19.
Photosynth Res ; 136(3): 269-274, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29350323

RESUMO

William (Bill) E. Vidaver (February 2, 1921-August 31, 2017), who did his Ph.D. with Laurence (Larry) R. Blinks at Stanford (1964) and a postdoc with C. Stacy French (1965), taught and did research at Simon Fraser University (SFU) for almost 30 years. Here he published over 80 papers in photosynthesis-related areas co-authored by his graduate students, postdocs, visiting professors and SFU colleagues. He developed a unique high-pressure cuvette for the study of oxygen exchange and studied high-pressure effects in photosynthesis. Ulrich (Uli) Schreiber, as a postdoctoral fellow from Germany, introduced measurements on chlorophyll (Chl) a fluorescence to Bill's lab, leading to the discovery of reversible inhibition of excitation energy transfer between photosynthetic pigments and of a pivotal role of O2 in the oxidation of the electron transport chain between Photosystem II (PS II) and PS I. Bill's and Uli's work led to a patent of a portable chlorophyll fluorometer, the first available commercially, which was later modified to measure whole plantlets. The latter was used in pioneering measurement of the health of forest and crop plants undergoing in vitro clonal micropropagation. With several other researchers (including Doug Bruce, the late Radovan Popovic, and Sarah Swenson), he localized the quenching site of O2 and showed a dampening effect on measurements of the four-step process of O2 production by endogenous oxygen uptake. Bill is remembered as a hard-working but fun-loving person with a keen mind and strong sense of social justice.


Assuntos
Oxigênio/história , Fotossíntese , Plantas , Transporte de Elétrons , Transferência de Energia , Alemanha , História do Século XX , História do Século XXI , Pessoal de Laboratório/história , Oxigênio/metabolismo
20.
Environ Sci Pollut Res Int ; 25(2): 1508-1518, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29098575

RESUMO

This study is concerned with the impact factors of electric carbon productivity change in China. Some influencing factors are identified by examining the time series decomposition of electric carbon productivity based on data from 2003 to 2015, where the usual Logarithmic Mean Divisia Index (LMDI) method is used but with the regional dimension taken into consideration. Moreover, this study analyzes the driving factors of electric carbon productivity change from the perspective of production and consumption in China's power industry, where the influences of power transfers among provinces, imports and exports, and transmission losses are considered. Based on the decomposition analysis of existing data in 30 provinces (including province-level municipalities), from the perspective of production, regional actual electric carbon productivity, and per capita GDP are the main influencing forces for the growth of electric carbon productivity, and the reciprocal of per capita electric carbon emissions, energy intensity, and energy emission intensity play dominate roles in the decline of electric carbon productivity. From the perspective of consumption, the main impact factors to improve electric carbon productivity are power transfers among provinces, imports and exports, the reciprocal of emission intensity of power consumption and regional electric carbon productivity, and the impact of energy consumption on thermal power generation, the proportion of thermal power to total electricity generation, and the effect of transmission losses. Finally, several conclusions are drawn that might be meaningful for the Chinese government to improve China's electric carbon productivity.


Assuntos
Dióxido de Carbono/análise , Carbono/análise , Eletricidade , Transferência de Energia , Indústrias/estatística & dados numéricos , China , Fontes de Energia Elétrica/estatística & dados numéricos , Produto Interno Bruto/estatística & dados numéricos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA