Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
G3 (Bethesda) ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38856093

RESUMO

AlphaMissense identifies 23 million human missense variants as likely pathogenic, but only 0.1% have been clinically classified. To experimentally validate these predictions, chemical mutagenesis presents a rapid, cost-effective method to produce billions of mutations in model organisms. However, the prohibitive costs and limitations in the throughput of whole-genome sequencing (WGS) technologies, crucial for variant identification, constrain its widespread application. Here, we introduce a Tn5 transposase-assisted tagmentation technique for conducting WGS in Caenorhabditis elegans, Escherichia coli, Saccharomyces cerevisiae, and Chlamydomonas reinhardtii. This method, demands merely 20 min of hands-on time for a single-worm or single-cell clones and incurs a cost below 10 US dollars. It effectively pinpoints causal mutations in mutants defective in cilia or neurotransmitter secretion and in mutants synthetically sterile with a variant analogous to the B-Raf Proto-oncogene, Serine/Threonine Kinase (BRAF) V600E mutation. Integrated with chemical mutagenesis, our approach can generate and identify missense variants economically and efficiently, facilitating experimental investigations of missense variants in diverse species.


Assuntos
Caenorhabditis elegans , Transposases , Sequenciamento Completo do Genoma , Animais , Caenorhabditis elegans/genética , Sequenciamento Completo do Genoma/métodos , Transposases/genética , Transposases/metabolismo , Chlamydomonas reinhardtii/genética , Saccharomyces cerevisiae/genética , Escherichia coli/genética
2.
Plant Commun ; 3(4): 100308, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35605196

RESUMO

Understanding how cis-regulatory elements facilitate gene expression is a key question in biology. Recent advances in single-cell genomics have led to the discovery of cell-specific chromatin landscapes that underlie transcription programs in animal models. However, the high equipment and reagent costs of commercial systems limit their applications for many laboratories. In this study, we developed a combinatorial index and dual PCR barcode strategy to profile the Arabidopsis thaliana root single-cell epigenome without any specialized equipment. We generated chromatin accessibility profiles for 13 576 root nuclei with an average of 12 784 unique Tn5 integrations per cell. Integration of the single-cell assay for transposase-accessible chromatin sequencing and RNA sequencing data sets enabled the identification of 24 cell clusters with unique transcription, chromatin, and cis-regulatory signatures. Comparison with single-cell data generated using the commercial microfluidic platform from 10X Genomics revealed that this low-cost combinatorial index method is capable of unbiased identification of cell-type-specific chromatin accessibility. We anticipate that, by removing cost, instrumentation, and other technical obstacles, this method will be a valuable tool for routine investigation of single-cell epigenomes and provide new insights into plant growth and development and plant interactions with the environment.


Assuntos
Arabidopsis , Epigenômica , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Epigenômica/métodos , Sequências Reguladoras de Ácido Nucleico , Transposases/genética , Transposases/metabolismo
3.
Nat Protoc ; 15(10): 3264-3283, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913232

RESUMO

We recently introduced Cleavage Under Targets & Tagmentation (CUT&Tag), an epigenomic profiling strategy in which antibodies are bound to chromatin proteins in situ in permeabilized nuclei. These antibodies are then used to tether the cut-and-paste transposase Tn5. Activation of the transposase simultaneously cleaves DNA and adds adapters ('tagmentation') for paired-end DNA sequencing. Here, we introduce a streamlined CUT&Tag protocol that suppresses DNA accessibility artefacts to ensure high-fidelity mapping of the antibody-targeted protein and improves the signal-to-noise ratio over current chromatin profiling methods. Streamlined CUT&Tag can be performed in a single PCR tube, from cells to amplified libraries, providing low-cost genome-wide chromatin maps. By simplifying library preparation CUT&Tag requires less than a day at the bench, from live cells to sequencing-ready barcoded libraries. As a result of low background levels, barcoded and pooled CUT&Tag libraries can be sequenced for as little as $25 per sample. This enables routine genome-wide profiling of chromatin proteins and modifications and requires no special skills or equipment.


Assuntos
Cromatina/genética , Mapeamento Cromossômico/métodos , Epigenômica/métodos , Sequência de Bases , DNA/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Histonas/metabolismo , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Transposases/genética , Transposases/metabolismo
4.
Methods ; 170: 38-47, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31442560

RESUMO

Chromosome Conformation Capture (3C)-based technologies, such as Hi-C, have represented a significant breakthrough in investigating the structure and function of higher-order genome architecture. However, the mapping of global chromatin interactions remains challenging across many biological conditions due to high background noise and financial constraints, especially for small laboratories. Here, we describe the Bridge linker-Alul-Tn5 Hi-C (BAT Hi-C) method, which is a simple and efficient method for delineating chromatin conformational features of mouse embryonic stem (mES) cells and uncover DNA loops. This protocol combines Alul fragmentation and biotinylated linker-mediated proximity ligation to obtain kilobase (kb) resolution with a marked increase in the amount of unique read pairs. The protocol also includes chromatin isolation to reduce background noise and Tn5 tagmentation to cut down on preparation time. Importantly, with only one-third sequencing depth, our method revealed the same spectrum of chromatin contacts as in situ Hi-C. BAT Hi-C is an economical (i.e., approximately $40 for library preparation) and straightforward (total hands-on time of 3 days) tool that is ideal for the in-depth analysis of long-range chromatin looping events in a genome-wide fashion.


Assuntos
Cromatina/genética , Mapeamento Cromossômico/métodos , Genômica/métodos , Animais , Linhagem Celular , Núcleo Celular/genética , Cromatina/isolamento & purificação , Cromatina/metabolismo , Mapeamento Cromossômico/economia , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Células-Tronco Embrionárias , Biblioteca Gênica , Genômica/economia , Camundongos , Transposases/metabolismo
5.
Nucleic Acids Res ; 47(16): e91, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31199868

RESUMO

ATAC-seq has been widely adopted to identify accessible chromatin regions across the genome. However, current data analysis still utilizes approaches initially designed for ChIP-seq or DNase-seq, without considering the transposase digested DNA fragments that contain additional nucleosome positioning information. We present the first dedicated ATAC-seq analysis tool, a semi-supervised machine learning approach named HMMRATAC. HMMRATAC splits a single ATAC-seq dataset into nucleosome-free and nucleosome-enriched signals, learns the unique chromatin structure around accessible regions, and then predicts accessible regions across the entire genome. We show that HMMRATAC outperforms the popular peak-calling algorithms on published human ATAC-seq datasets. We find that single-end sequenced or size-selected ATAC-seq datasets result in a loss of sensitivity compared to paired-end datasets without size-selection.


Assuntos
DNA/genética , Nucleossomos/química , Software , Aprendizado de Máquina Supervisionado , Conjuntos de Dados como Assunto , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/genética , Histonas/metabolismo , Humanos , Cadeias de Markov , Análise de Sequência de DNA , Transposases/genética , Transposases/metabolismo
6.
BMC Genomics ; 19(1): 169, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490630

RESUMO

BACKGROUND: ATAC-seq (Assays for Transposase-Accessible Chromatin using sequencing) is a recently developed technique for genome-wide analysis of chromatin accessibility. Compared to earlier methods for assaying chromatin accessibility, ATAC-seq is faster and easier to perform, does not require cross-linking, has higher signal to noise ratio, and can be performed on small cell numbers. However, to ensure a successful ATAC-seq experiment, step-by-step quality assurance processes, including both wet lab quality control and in silico quality assessment, are essential. While several tools have been developed or adopted for assessing read quality, identifying nucleosome occupancy and accessible regions from ATAC-seq data, none of the tools provide a comprehensive set of functionalities for preprocessing and quality assessment of aligned ATAC-seq datasets. RESULTS: We have developed a Bioconductor package, ATACseqQC, for easily generating various diagnostic plots to help researchers quickly assess the quality of their ATAC-seq data. In addition, this package contains functions to preprocess aligned ATAC-seq data for subsequent peak calling. Here we demonstrate the utilities of our package using 25 publicly available ATAC-seq datasets from four studies. We also provide guidelines on what the diagnostic plots should look like for an ideal ATAC-seq dataset. CONCLUSIONS: This software package has been used successfully for preprocessing and assessing several in-house and public ATAC-seq datasets. Diagnostic plots generated by this package will facilitate the quality assessment of ATAC-seq data, and help researchers to evaluate their own ATAC-seq experiments as well as select high-quality ATAC-seq datasets from public repositories such as GEO to avoid generating hypotheses or drawing conclusions from low-quality ATAC-seq experiments. The software, source code, and documentation are freely available as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/ATACseqQC.html .


Assuntos
Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Software , Sítios de Ligação , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Mutagênese Insercional , Sítio de Iniciação de Transcrição , Transposases/genética , Transposases/metabolismo , Navegador
7.
G3 (Bethesda) ; 8(1): 79-89, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29118030

RESUMO

Efficient preparation of high-quality sequencing libraries that well represent the biological sample is a key step for using next-generation sequencing in research. Tn5 enables fast, robust, and highly efficient processing of limited input material while scaling to the parallel processing of hundreds of samples. Here, we present a robust Tn5 transposase purification strategy based on an N-terminal His6-Sumo3 tag. We demonstrate that libraries prepared with our in-house Tn5 are of the same quality as those processed with a commercially available kit (Nextera XT), while they dramatically reduce the cost of large-scale experiments. We introduce improved purification strategies for two versions of the Tn5 enzyme. The first version carries the previously reported point mutations E54K and L372P, and stably produces libraries of constant fragment size distribution, even if the Tn5-to-input molecule ratio varies. The second Tn5 construct carries an additional point mutation (R27S) in the DNA-binding domain. This construct allows for adjustment of the fragment size distribution based on enzyme concentration during tagmentation, a feature that opens new opportunities for use of Tn5 in customized experimental designs. We demonstrate the versatility of our Tn5 enzymes in different experimental settings, including a novel single-cell polyadenylation site mapping protocol as well as ultralow input DNA sequencing.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação Puntual , Proteínas Recombinantes de Fusão/genética , Transposases/genética , Sequência de Bases , Clonagem Molecular/métodos , DNA/genética , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Poliadenilação , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Transposases/metabolismo
8.
Hum Immunol ; 76(2-3): 166-75, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25543015

RESUMO

Next-generation sequencing (NGS) is increasingly recognized for its ability to overcome allele ambiguity and deliver high-resolution typing in the HLA system. Using this technology, non-uniform read distribution can impede the reliability of variant detection, which renders high-confidence genotype calling particularly difficult to achieve in the polymorphic HLA complex. Recently, library construction has been implicated as the dominant factor in instigating coverage bias. To study the impact of this phenomenon on HLA genotyping, we performed long-range PCR on 12 samples to amplify HLA-A, -B, -C, -DRB1, and -DQB1, and compared the relative contribution of three Illumina library construction methods (TruSeq Nano, Nextera, Nextera XT) in generating downstream bias. Here, we show high GC% to be a good predictor of low sequencing depth. Compared to standard TruSeq Nano, GC bias was more prominent in transposase-based protocols, particularly Nextera XT, likely through a combination of transposase insertion bias being coupled with a high number of PCR enrichment cycles. Importantly, our findings demonstrate non-uniform read depth can have a direct and negative impact on the robustness of HLA genotyping, which has clinical implications for users when choosing a library construction strategy that aims to balance cost and throughput with data quality.


Assuntos
Biblioteca Gênica , Antígenos HLA/genética , Teste de Histocompatibilidade , Alelos , Análise Custo-Benefício , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Teste de Histocompatibilidade/economia , Teste de Histocompatibilidade/métodos , Humanos , Reprodutibilidade dos Testes , Transposases/metabolismo
9.
Microb Cell Fact ; 12: 41, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23635356

RESUMO

BACKGROUND: Current methods of ethanol production from lignocelluloses generate a mixture of sugars, primarily glucose and xylose; the fermentation cells are always exposed to stresses like high temperature and low nutritional conditions that affect their growth and productivity. Stress-tolerant strains capable of using both glucose and xylose to produce ethanol with high yield are highly desirable. RESULTS: A recombinant Zymomonas mobilis (Z. mobilis) designated as HYMX was constructed by integrating seven genes (Pfu-sHSP, yfdZ, metB, xylA, xylB, tktA and talB) into the genome of Z. mobilis CP4 (CP4) via Tn5 transposon in the present study. The small heat shock protein gene (Pfu-sHSP) from Pyrococcus furious (P. furious) was used to increase the heat-tolerance, the yfdZ and metB genes from E. coli were used to decrease the nutritional requirement. To overcome the bottleneck of CP4 being unable to use pentose, xylose catabolic genes (xylA, xylB, tktA and talB) from E. coli were integrated into CP4 also for construction of the xylose utilizing metabolic pathway. CONCLUSIONS: The genomic integration confers on Z. mobilis the ability to grow in medium containing xylose as the only carbon source, and to grow in simple chemical defined medium without addition of amino acid. The HYMX demonstrated not only the high tolerance to unfavorable stresses like high temperature and low nutrient, but also the capability of converting both glucose and xylose to ethanol with high yield at high temperature. What's more, these genetic characteristics were stable up to 100 generations on nonselective medium. Although significant improvements were achieved, yeast extract is needed for ethanol production.


Assuntos
Etanol/metabolismo , Lignina/metabolismo , Transposases/metabolismo , Zymomonas/metabolismo , Clonagem Molecular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Glucose/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Metiltransferases/genética , Pyrococcus furiosus/metabolismo , Temperatura , Xilose/metabolismo , Zymomonas/crescimento & desenvolvimento
10.
Insect Biochem Mol Biol ; 41(1): 70-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20869440

RESUMO

The green blowfly species Lucilia cuprina and Lucilia sericata are economically important pests for the sheep industries of Australia and New Zealand. L. cuprina has long been considered a good target for a genetic pest management program. In addition, L. sericata maggots are used in the cleaning of wounds and necrotic tissue of patients suffering from ulcers that are difficult to treat by other methods. Development of efficient transgenesis methods would greatly facilitate the development of strains ideal for genetic control programs or could potentially improve "maggot therapy". We have previously reported the germ-line transformation of L. cuprina and the design of a "female killing system" that could potentially be applied to this species. However, the efficiency of transformation obtained was low and transformed lines were difficult to detect due to the low expression of the EGFP marker used. Here we describe an efficient and reliable method for germ-line transformation of L. cuprina using new piggyBac vector and helper plasmids containing the strong promoter from the L. cuprina hsp83 gene to drive expression of the transposase and fluorescent protein marker gene. We also report, for the first time, the germ-line transformation of L. sericata using the new piggyBac vector/helper combination.


Assuntos
Animais Geneticamente Modificados/metabolismo , Dípteros/genética , Transformação Genética , Animais , Austrália , Feminino , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Genes de Insetos , Células Germinativas/metabolismo , Proteínas de Fluorescência Verde/análise , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Larva/genética , Larva/metabolismo , Nova Zelândia , Controle Biológico de Vetores/métodos , Plasmídeos/genética , Plasmídeos/metabolismo , Ovinos , Transposases/genética , Transposases/metabolismo , Ferimentos e Lesões/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA